中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DEAD-box解旋酶3X-连锁(DDX3X)在免疫介导性肝损伤小鼠模型和HBV相关肝损伤患者中的表达分析

潘桢桢 徐玲 朱先茹 范子豪 曹亚玲 莫胤康 闫赛 任锋

引用本文:
Citation:

DEAD-box解旋酶3X-连锁(DDX3X)在免疫介导性肝损伤小鼠模型和HBV相关肝损伤患者中的表达分析

DOI: 10.12449/JCH260116
基金项目: 

国家自然科学基金 (81770611);

国家自然科学基金 (82002243);

北京自然科学基金和北京市教委联合资助重点项目 (KZ202010025035);

首都卫生发展科研专项重点攻关项目 (SF2020-1-1151);

北京市科技计划“首都临床诊疗技术研究及示范应用”专项课题 (Z191100006619096);

北京市科技计划“首都临床诊疗技术研究及示范应用”专项课题 (Z191100006619097);

北京市医院管理中心“青苗”计划专项 (QML20201702);

北京市医管局“登峰”人才计划 (DFL20221503);

高层次公共卫生技术人才建设项目 (Subject leaders-02-13)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:潘桢桢负责设计实验,分析、解释数据,起草文章,统计分析;徐玲负责实施研究,审阅文章,统计分析;朱先茹负责实施研究,分析、解释数据,统计分析;范子豪负责设计实验,统计分析;曹亚玲负责审阅文章;莫胤康负责分析、解释数据;闫赛负责统计分析;任锋负责审阅文章,获取研究经费,技术及材料支持。
详细信息
    通信作者:

    任锋, renfeng7512@ccmu.edu.cn (ORCID: 0000-0001-7736-8637)

Role of endoplasmic reticulum stress-mediated DEAD-box helicase 3 X-linked in a mouse model of concanavalin A-induced immune-mediated liver injury

Research funding: 

National Natural Science Foundation of China (81770611);

National Natural Science Foundation of China (82002243);

Key Projects of the Beijing Municipal Education Commission’s Science and Technology Plan (KZ202010025035);

Special Key Research Project of Capital Health Development Scientific Research (SF2020-1-1151);

The Demonstrating Application and Research of Clinical Diagnosis and Treatment Technology in Beijing (Z191100006619096);

The Demonstrating Application and Research of Clinical Diagnosis and Treatment Technology in Beijing (Z191100006619097);

Beijing Hospitals Authority Youth Programme (QML20201702);

Talent Cultivation plan of “Climbing the Peak” of Beijing Municipal Hospital Administration (DFL20221503);

High-level Public Health Technical Personnel Construction Project (Subject leaders-02-13)

More Information
  • 摘要:   目的  探讨DEAD-box解旋酶3X-连锁(DDX3X)在免疫介导性肝损伤(ILI)中的作用,并阐明其通过调控内质网应激(ERS)依赖性凋亡通路的作用机制及其与乙型肝炎临床进展的相关性。  方法  采用刀豆蛋白A(ConA)尾静脉注射建立小鼠ILI模型;对肝细胞特异性DDX3X敲除小鼠(DDX3XΔHep)和DDX3X-flox小鼠(DDX3Xfl/fl)分别尾静脉注射PBS(对照组)和不同浓度的ConA,通过Log-rank生存分析、血清天冬氨酸氨基转移酶(AST)及丙氨酸氨基转移酶(ALT)检测、肝组织苏木精-伊红(HE)染色评估肝损伤严重程度;采用实时荧光定量PCR(qRT-PCR)和蛋白质印迹法(Western Blot)检测肝组织中葡萄糖调节蛋白78(GRP78)、CCAAT/增强子结合蛋白同源蛋白(CHOP)及DDX3X的表达;通过腹腔注射4-苯基丁酸(4-PBA,100 mg/kg)抑制ERS;收集北京佑安医院2019—2023年健康对照、慢性乙型肝炎及HBV相关肝衰竭(HBV-LF)患者血清样本各30例,肝组织样本各6例,通过酶联免疫吸附分析检测血清DDX3X水平,qRT-PCR/Western Blot分析肝组织靶标表达。计量资料多组间比较采用单因素方差分析,进一步两两比较使用LSD-t检验。采用Kaplan-Meier法绘制生存曲线。  结果  相较于正常对照组,ConA诱导肝损伤后小鼠肝脏DDX3X表达显著升高(P<0.05)。在致死剂量ConA处理后,DDX3XΔHep小鼠72 h生存率为55%,显著高于DDX3Xfl/fl对照组的20%(P<0.05),血清ALT和AST的水平亦同步显著降低(P值均<0.000 1),ERS标志物GRP78与CHOP表达同步下调(P<0.05)。在ConA诱导的小鼠肝损伤中,与PBS预处理组相比,4-PBA预处理抑制ERS不仅减轻了ConA诱导的肝损伤(ALT和AST降低,P值均<0.001),亦使肝脏DDX3X的mRNA与蛋白表达降低(P值均<0.01)。临床样本分析结果中,慢性乙型肝炎及HBV-LF患者肝组织DDX3X的mRNA和蛋白表达均高于健康对照(P值均<0.01),HBV-LF患者血清DDX3X水平显著升高(P<0.000 1)。  结论  DDX3X通过调控ERS依赖性凋亡通路(GRP78/CHOP)加重ILI,其表达与乙型肝炎疾病进展相关,可作为潜在治疗靶点。

     

  • 注: ConA,刀豆蛋白A;DDX3X,DEAD-box解旋酶3X-连锁;ALT,丙氨酸氨基转移酶;AST,天冬氨酸氨基转移酶;ERS,内质网应激;PBS,磷酸盐缓冲溶液;4-PBA,4-苯基丁酸;CHOP,CCAAT增强子结合蛋白同源蛋白;GRP78,葡萄糖调节蛋白78;CHB,慢性乙型肝炎;HBV-LF,乙型肝炎病毒相关肝衰竭。

    图  1  ERS介导DDX3X促进ConA诱导的小鼠ILI的作用研究流程图

    Figure  1.  Study flowchart of the role of ERS in mediating DDX3X-promoted immune-mediated liver injury induced by ConA in mice

    注: a,qRT-PCR检测DDX3X的mRNA水平;b,通过ImageJ测定Western Blot图像灰度值,并进行定量;c,Western Blot检测DDX3X的蛋白表达水平;d,肝组织病理学结果(HE染色,×10),黑色箭头处为损伤区域。*P<0.05,**P<0.01,****P<0.000 1。DDX3X,DEAD-box解旋酶3X-连锁;HPRT,次黄嘌呤磷酸核糖基转移酶;ConA,刀豆蛋白A;β-actin,β-肌动蛋白。

    图  2  DDX3X在ConA诱导的肝损伤期间的表达情况

    Figure  2.  Expression of DDX3X in the liver during liver injury induced by ConA

    注: a,DDX3Xfl/fl和DDX3XΔHep小鼠用ConA(40 mg/kg)处理72 h生存曲线;b,DDX3Xfl/fl和DDX3XΔHep小鼠用ConA(25 mg/kg)处理8 h后ALT、AST水平;c,DDX3Xfl/fl和DDX3XΔHep小鼠用ConA(40 mg/kg)处理8 h后ALT、AST水平;d,肝组织病理学结果(HE染色,×10),黑色箭头处为损伤区域。****P<0.000 1。ALT,丙氨酸氨基转移酶;AST,天冬氨酸氨基转移酶;DDX3X,DEAD-box解旋酶3X-连锁;DDX3Xfl/fl,DDX3X基因的野生型等位基因型小鼠;DDX3XΔHep,肝细胞特异性DDX3X敲除小鼠;ConA,刀豆蛋白A。

    图  3  肝细胞特异性敲除DDX3X可改善ConA诱导的小鼠肝损伤

    Figure  3.  Hepatocellular specific knockout of DDX3X can improve liver injury induced by ConA in mice

    注: a,GRP78和CHOP的mRNA水平;b,Western Blot检测结果;c,GRP78和CHOP的蛋白表达水平。*P<0.05,**P<0.01,***P<0.001,****P<0.000 1。GRP78,葡萄糖调节蛋白78;HPRT,次黄嘌呤磷酸核糖基转移酶;DDX3X,DEAD-box解旋酶3X-连锁;CHOP,CCAAT增强子结合蛋白同源蛋白;β-actin,β-肌动蛋白;ConA,刀豆蛋白;DDX3Xfl/fl,DDX3X基因的野生型等位基因型小鼠;DDX3XΔHep,肝细胞特异性DDX3X敲除小鼠。

    图  4  肝细胞特异性敲除DDX3X减少ERS相关凋亡标志物的表达

    Figure  4.  Hepatocellular specific knockout of DDX3X reduces the expression of ERS-related apoptotic markers

    注: a,血清ALT和AST水平;b,肝组织病理学结果(HE染色,×10),黑色箭头处为损伤区域;c,GRP78、CHOP、DDX3X的mRNA水平;d,Western Blot检测结果;e,GRP78、CHOP、DDX3X的蛋白表达水平。**P<0.01,***P<0.001,****P<0.000 1。ALT,丙氨酸氨基转移酶;AST,天冬氨酸氨基转移酶;4-PBA,4-苯基丁酸;PBS,磷酸盐缓冲溶液;ConA,刀豆蛋白A;GRP78,葡萄糖调节蛋白78;HPRT,次黄嘌呤磷酸核糖基转移酶;CHOP,CCAAT增强子结合蛋白同源蛋白;DDX3X,DEAD-box解旋酶3X-连锁;β-actin,β-肌动蛋白。

    图  5  抑制ERS可下调ConA诱导的小鼠肝损伤中DDX3X的表达

    Figure  5.  Inhibition of ERS significantly reduced the expression of DDX3X in ConA-induced liver injury in mice

    注: a,GRP78、CHOP和DDX3X的mRNA水平;b,Western Blot检测结果;c,GRP78、CHOP和DDX3X的蛋白表达水平;d,血清DDX3X水平。**P<0.01,***P<0.001,****P<0.000 1。GRP78,葡萄糖调节蛋白78;CHOP,CCAAT增强子结合蛋白同源蛋白;DDX3X,DEAD-box解旋酶3X-连锁。

    图  6  DDX3X在ILI患者中的表达情况

    Figure  6.  Expression of DDX3X in patients with immune-mediated liver injury

    表  1  引物序列

    Table  1.   Primer sequence

    基因 正向(5′-3′) 反向(5′-3′)
    HPRT(小鼠) AGTCCCAGCGTCGTGATTAG GCCTCCCATCTCCTTCATGA
    DDX3X(小鼠) GGCCGTGGAGATAGAAGTGG TGCACTGCCAATTCTCTCGT
    GRP78(小鼠) CTTTGATCAGCGGGTCATGG AGCTCTTCAAATTTGGCCCG
    CHOP(小鼠) TCACTACTCTTGACCCTGCG ACTGACCACTCTGTTTCCGT
    HPRT(人) TTCCTCCTCCTGAGCAGTCA ATCCAACACTTCGTGGGGTC
    DDX3X(人) GGGTGTCAAACTTCAACCGC TCCAGTCACCGGCATAGAGA
    GRP78(人) TAGCGTATGGTGCTGCTGTC TTTGTCAGGGGTCTTTCACC
    CHOP(人) TGGAAGCCTGGTATGAGGAC TGTGACCTCTGCTGGTTCTG

    注:HPRT,次黄嘌呤磷酸核糖基转移酶;DDX3X,DEAD-box解旋酶3X-连锁;GRP78,葡萄糖调节蛋白78;CHOP,CCAAT增强子结合蛋白同源蛋白。

    下载: 导出CSV
  • [1] ROBINSON MW, HARMON C, O’FARRELLY C. Liver immunology and its role in inflammation and homeostasis[J]. Cell Mol Immunol, 2016, 13( 3): 267- 276. DOI: 10.1038/cmi.2016.3.
    [2] HOOFNAGLE JH, BJÖRNSSON ES. Drug-induced liver injury-types and phenotypes[J]. N Engl J Med, 2019, 381( 3): 264- 273. DOI: 10.1056/NEJMra1816149.
    [3] LONGHI MS, MA Y, MIELI-VERGANI G, et al. Aetiopathogenesis of autoimmune hepatitis[J]. J Autoimmun, 2010, 34( 1): 7- 14. DOI: 10.1016/j.jaut.2009.08.010.
    [4] ADAMS DH, JU C, RAMAIAH SK, et al. Mechanisms of immune-mediated liver injury[J]. Toxicol Sci, 2010, 115( 2): 307- 321. DOI: 10.1093/toxsci/kfq009.
    [5] NABEKURA T, MATSUO S, SHIBUYA A. Concanavalin-A-induced acute liver injury in mice[J]. Curr Protoc, 2024, 4( 8): e1117. DOI: 10.1002/cpz1.1117.
    [6] TIEGS G, HENTSCHEL J, WENDEL A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A[J]. J Clin Invest, 1992, 90( 1): 196- 203. DOI: 10.1172/JCI115836.
    [7] CUI Y, QIAO FJ, QIU JH, et al. Effect of ganoderic acid A on a mouse model of concanavalin A-induced acute immune liver injury and its mechanism[J]. J Clin Hepatol, 2024, 40( 12): 2415- 2423. DOI: 10.12449/JCH241211.

    崔怡, 乔凤杰, 邱嘉昊, 等. 灵芝酸A对刀豆球蛋白A诱导的急性免疫性肝损伤小鼠模型的影响及其作用机制[J]. 临床肝胆病杂志, 2024, 40( 12): 2415- 2423. DOI: 10.12449/JCH241211.
    [8] HETZ C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond[J]. Nat Rev Mol Cell Biol, 2012, 13( 2): 89- 102. DOI: 10.1038/nrm3270.
    [9] OAKES SA, PAPA FR. The role of endoplasmic reticulum stress in human pathology[J]. Annu Rev Pathol, 2015, 10: 173- 194. DOI: 10.1146/annurev-pathol-012513-104649.
    [10] LEBEAUPIN C, VALLÉE D, HAZARI Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 69( 4): 927- 947. DOI: 10.1016/j.jhep.2018.06.008.
    [11] YAN CY, HU WT, TU JQ, et al. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease[J]. J Transl Med, 2023, 21( 1): 300. DOI: 10.1186/s12967-023-04166-8.
    [12] HU TY, WANG JY, LI WX, et al. Endoplasmic reticulum stress in hepatitis B virus and hepatitis C virus infection[J]. Viruses, 2022, 14( 12): 2630. DOI: 10.3390/v14122630.
    [13] PU SS, PAN YY, ZHANG Q, et al. Endoplasmic reticulum stress and mitochondrial stress in drug-induced liver injury[J]. Molecules, 2023, 28( 7): 3160. DOI: 10.3390/molecules28073160.
    [14] MALHI H, KAUFMAN RJ. Endoplasmic reticulum stress in liver disease[J]. J Hepatol, 2011, 54( 4): 795- 809. DOI: 10.1016/j.jhep.2010.11.005.
    [15] JIANG JL, ZHOU YY, ZHONG WW, et al. Uridine diphosphate glucuronosyltransferase 1A1 prevents the progression of liver injury[J]. World J Gastroenterol, 2024, 30( 9): 1189- 1212. DOI: 10.3748/wjg.v30.i9.1189.
    [16] de BISSCHOP G, AMEUR M, ULRYCK N, et al. HIV-1 gRNA, a biological substrate, uncovers the potency of DDX3X biochemical activity[J]. Biochimie, 2019, 164: 83- 94. DOI: 10.1016/j.biochi.2019.03.008.
    [17] AJAMIAN L, ABEL K, RAO S, et al. HIV-1 recruits UPF1 but excludes UPF2 to promote nucleocytoplasmic export of the genomic RNA[J]. Biomolecules, 2015, 5( 4): 2808- 2839. DOI: 10.3390/biom5042808.
    [18] SAIKRUANG W, YAN PING L ANG, ABE H, et al. The RNA helicase DDX3 promotes IFNB transcription via enhancing IRF-3/p300 holo complex binding to the IFNB promoter[J]. Sci Rep, 2022, 12( 1): 3967. DOI: 10.1038/s41598-022-07876-z.
    [19] LI QS, PÈNE V, KRISHNAMURTHY S, et al. Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly[J]. Nat Med, 2013, 19( 6): 722- 729. DOI: 10.1038/nm.3190.
    [20] RYAN CS, SCHRÖDER M. The human DEAD-box helicase DDX3X as a regulator of mRNA translation[J]. Front Cell Dev Biol, 2022, 10: 1033684. DOI: 10.3389/fcell.2022.1033684.
    [21] HEATON SM, GORRY PR, BORG NA. DExD/H-box helicases in HIV-1 replication and their inhibition[J]. Trends Microbiol, 2023, 31( 4): 393- 404. DOI: 10.1016/j.tim.2022.11.001.
    [22] FOX D, MAN SM. DDX3X: Stressing the NLRP3 inflammasome[J]. Cell Res, 2019, 29( 12): 969- 970. DOI: 10.1038/s41422-019-0250-8.
    [23] LUO TT, YANG SZ, ZHAO TM, et al. Hepatocyte DDX3X protects against drug-induced acute liver injury via controlling stress granule formation and oxidative stress[J]. Cell Death Dis, 2023, 14( 7): 400. DOI: 10.1038/s41419-023-05913-x.
    [24] PAN ZZ, XU L, ZHANG XY, et al. Construction and identification of Ddx3x conditional liver knockout mouse model based on CRISPR/Cas9 combined with Cre-LoxP method[J]. Chin J Gastroenterol Hepatol, 2024, 33( 10): 1275- 1280. DOI: 10.3969/j.issn.1006-5709.2024.10.002.

    潘桢桢, 徐玲, 张向颖, 等. 基于CRISPR/Cas9联合Cre-LoxP方法的Ddx3x肝脏条件性敲除小鼠模型的构建与鉴定[J]. 胃肠病学和肝病学杂志, 2024, 33( 10): 1275- 1280. DOI: 10.3969/j.issn.1006-5709.2024.10.002.
    [25] SAMIR P, KESAVARDHANA S, PATMORE DM, et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome[J]. Nature, 2019, 573( 7775): 590- 594. DOI: 10.1038/s41586-019-1551-2.
    [26] KIM SY, KYAW YY, CHEONG J. Functional interaction of endoplasmic reticulum stress and hepatitis B virus in the pathogenesis of liver diseases[J]. World J Gastroenterol, 2017, 23( 43): 7657- 7665. DOI: 10.3748/wjg.v23.i43.7657.
    [27] SUBRAMANIAN K, PAUL S, LIBBY A, et al. HERV1-env induces unfolded protein response activation in autoimmune liver disease: A potential mechanism for regulatory T cell dysfunction[J]. J Immunol, 2023, 210( 6): 732- 744. DOI: 10.4049/jimmunol.2100186.
    [28] OYADOMARI S, MORI M. Roles of CHOP/GADD153 in endoplasmic reticulum stress[J]. Cell Death Differ, 2004, 11( 4): 381- 389. DOI: 10.1038/sj.cdd.4401373.
    [29] ADJIBADE P, GRENIER ST-SAUVEUR V, BERGEMAN J, et al. DDX3 regulates endoplasmic reticulum stress-induced ATF4 expression[J]. Sci Rep, 2017, 7( 1): 13832. DOI: 10.1038/s41598-017-14262-7.
    [30] HAN J, BACK SH, HUR J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death[J]. Nat Cell Biol, 2013, 15( 5): 481- 490. DOI: 10.1038/ncb2738.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-22
  • 录用日期:  2025-09-18
  • 出版日期:  2026-01-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回