中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线粒体动力学失衡在不同肝病中的作用

闵远骞 李姗 刘湘花 杨艺 禄保平

引用本文:
Citation:

线粒体动力学失衡在不同肝病中的作用

DOI: 10.12449/JCH250934
基金项目: 

国家自然科学基金面上项目 (82474681);

河南省中医药科学研究专项 (2022ZY1167);

河南省高等学校青年骨干教师培养计划 (2021GGJS084);

河南省重点学科项目 (Teaching and Research[2023]414)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:闵远骞负责撰写论文及图片整理;李姗负责课题设计及修改论文;刘湘花、杨艺负责文献检索及整理;禄保平负责拟定写作思路及最后定稿。
详细信息
    通信作者:

    禄保平, lbp1921@sohu.com (ORCID: 0000-0002-3707-2185)

Role of mitochondrial division/fusion in different liver diseases

Research funding: 

National Natural Science Foundation of China (General Program) (82474681);

The Special Research Project of Traditional Chinese Medicine in Henan Province (2022ZY1167);

The Training Program for Young Scholars in Universities of Henan Province (2021GGJS084);

Key Discipline Project of Henan Province (Teaching and Research[2023]414)

More Information
    Corresponding author: LU Baoping, lbp1921@sohu.com (ORCID: 0000-0002-3707-2185)
  • 摘要: 线粒体在肝细胞中含量丰富,在肝脏正常运转过程中发挥着重要作用。线粒体分裂/融合是维持线粒体动态平衡的两个生物过程,其还与细胞功能变化及疾病发生发展有密切联系,平衡线粒体分裂/融合在多种疾病的治疗中具有关键意义。近年来研究发现,异常的线粒体分裂/融合在脂肪肝、肝炎、肝纤维化和肝癌4个肝病发展阶段中作用显著,以调控这种异常为基础的治疗靶点不断被发现。本文通过对线粒体分裂/融合在肝病进程中不同阶段作用的综述,进一步展示了慢性肝病中线粒体分裂/融合机制的作用,也为更多以线粒体分裂/融合为基础,治疗、缓解甚至逆转肝病发展的思路提供科学依据。

     

  • 图  1  线粒体分裂/融合机制变化

    Figure  1.  Changes in mitochondrial division/fusion mechanisms

    图  2  调控线粒体分裂/融合对慢性肝病不同阶段的影响

    Figure  2.  Regulating the effects of mitochondrial division/fusion on different stages of chronic liver disease

  • [1] da DALT L, MOREGOLA A, SVECLA M, et al. The inhibition of inner mitochondrial fusion in hepatocytes reduces non-alcoholic fatty liver and improves metabolic profile during obesity by modulating bile acid conjugation[J]. Cardiovasc Res, 2024, 119( 18): 2917- 2929. DOI: 10.1093/cvr/cvad169.
    [2] SHAN SL, LIU ZX, LI LL, et al. Calpain-mediated cleavage of mitochondrial fusion/fission proteins in acetaminophen-induced mice liver injury[J]. Hum Exp Toxicol, 2022, 41: 9603271221108321. DOI: 10.1177/09603271221108321.
    [3] NARGUND AM, PELLEGRINO MW, FIORESE CJ, et al. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation[J]. Science, 2012, 337( 6094): 587- 590. DOI: 10.1126/science.1223560.
    [4] KLEELE T, REY T, WINTER J, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis[J]. Nature, 2021, 593( 7859): 435- 439. DOI: 10.1038/s41586-021-03510-6.
    [5] WANG BR, XIAO XY, HUANG FW, et al. Syntaxin-17-dependent mitochondrial dynamics is essential for protection against oxidative-stress-induced apoptosis[J]. Antioxidants(Basel), 2019, 8( 11): 522. DOI: 10.3390/antiox8110522.
    [6] ZHOU L, ZHANG L, ZHANG Y, et al. PINK1 deficiency ameliorates cisplatin-induced acute kidney injury in rats[J]. Front Physiol, 2019, 10: 1225. DOI: 10.3389/fphys.2019.01225.
    [7] SIMULA L, CAMPANELLA M, CAMPELLO S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation[J]. Pharmacol Res, 2019, 146: 104317. DOI: 10.1016/j.phrs.2019.104317.
    [8] OSELLAME LD, SINGH AP, STROUD DA, et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission[J]. J Cell Sci, 2016, 129( 11): 2170- 2181. DOI: 10.1242/jcs.185165.
    [9] OTERA H, MIYATA N, KUGE O, et al. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling[J]. J Cell Biol, 2016, 212( 5): 531- 544. DOI: 10.1083/jcb.201508099.
    [10] ATKINS K, DASGUPTA A, CHEN KH, et al. The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: Implications for human disease[J]. Clin Sci, 2016, 130( 21): 1861- 1874. DOI: 10.1042/cs20160030.
    [11] DEL DOTTO V, FOGAZZA M, CARELLI V, et al. Eight human OPA1 isoforms, long and short: What are they for?[J]. Biochim Biophys Acta Bioenerg, 2018, 1859( 4): 263- 269. DOI: 10.1016/j.bbabio.2018.01.005.
    [12] GAO S, HU JJ. Mitochondrial fusion: The machineries in and out[J]. Trends Cell Biol, 2021, 31( 1): 62- 74. DOI: 10.1016/j.tcb.2020.09.008.
    [13] CAO YL, MENG SX, CHEN Y, et al. MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion[J]. Nature, 2017, 542( 7641): 372- 376. DOI: 10.1038/nature21077.
    [14] ZHANG M, BENER MB, JIANG ZL, et al. Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve[J]. Cell Death Dis, 2019, 10( 8): 560. DOI: 10.1038/s41419-019-1799-3.
    [15] LI YJ, CAO YL, FENG JX, et al. Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset[J]. Nat Commun, 2019, 10( 1): 4914. DOI: 10.1038/s41467-019-12912-0.
    [16] OLICHON A, GUILLOU E, DELETTRE C, et al. Mitochondrial dynamics and disease, OPA1[J]. Biochim Biophys Acta BBA Mol Cell Res, 2006, 1763( 5-6): 500- 509. DOI: 10.1016/j.bbamcr.2006.04.003.
    [17] ZHANG DY, ZHANG Y, MA J, et al. Cryo-EM structures of S-OPA1 reveal its interactions with membrane and changes upon nucleotide binding[J]. eLife, 2020, 9: e50294. DOI: 10.7554/eLife.50294.
    [18] BURRA P, BECCHETTI C, GERMANI G. NAFLD and liver transplantation: Disease burden, current management and future challenges[J]. JHEP Rep, 2020, 2( 6): 100192. DOI: 10.1016/j.jhepr.2020.100192.
    [19] WANDERS RJA, VISSER G, FERDINANDUSSE S, et al. Mitochondrial fatty acid oxidation disorders: Laboratory diagnosis, pathogenesis, and the complicated route to treatment[J]. J Lipid Atheroscler, 2020, 9( 3): 313- 333. DOI: 10.12997/jla.2020.9.3.313.
    [20] LAMANILAO GG, DOGAN M, PATEL PS, et al. Key hepatoprotective roles of mitochondria in liver regeneration[J]. Am J Physiol Gastrointest Liver Physiol, 2023, 324( 3): G207- G218. DOI: 10.1152/ajpgi.00220.2022.
    [21] GOEDEKE L, PENG L, MONTALVO-ROMERAL V, et al. Controlled-release mitochondrial protonophore(CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates[J]. Sci Transl Med, 2019, 11( 512): eaay0284. DOI: 10.1126/scitranslmed.aay0284.
    [22] BOLAND ML, LAKER RC, MATHER K, et al. Resolution of NASH and hepatic fibrosis by the GLP-1R/GcgR dual-agonist Cotadutide via modulating mitochondrial function and lipogenesis[J]. Nat Metab, 2020, 2( 5): 413- 431. DOI: 10.1038/s42255-020-0209-6.
    [23] WANG LX, ISHIHARA T, IBAYASHI Y, et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration[J]. Diabetologia, 2015, 58( 10): 2371- 2380. DOI: 10.1007/s00125-015-3704-7.
    [24] GALLOWAY CA, LEE H, BROOKES PS, et al. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307( 6): G632- G641. DOI: 10.1152/ajpgi.00182.2014.
    [25] ARIYOSHI K, NISHIYAMA K, KATO Y, et al. Inhibition of Drp1-filamin protein complex prevents hepatic lipid droplet accumulation by increasing mitochondria-lipid droplet contact[J]. Int J Mol Sci, 2024, 25( 10): 5446. DOI: 10.3390/ijms25105446.
    [26] KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab, 2015, 21( 5): 739- 746. DOI: 10.1016/j.cmet.2015.04.004.
    [27] SATAPATI S, KUCEJOVA B, DUARTE JAG, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver[J]. J Clin Invest, 2016, 126( 4): 1605. DOI: 10.1172/JCI86695.
    [28] ZOU YT, ZHANG SY, YANG J, et al. Protective effects of astaxanthin on ochratoxin A-induced liver injury: Effects of endoplasmic reticulum stress and mitochondrial fission-fusion balance[J]. Toxins(Basel), 2024, 16( 2): 68. DOI: 10.3390/toxins16020068.
    [29] MA XW, DING WX. Reply: Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation[J]. Hepatology, 2023, 78( 4): E82- E83. DOI: 10.1097/HEP.0000000000000541.
    [30] HERNÁNDEZ-ALVAREZ MI, SEBASTIÁN D, VIVES S, et al. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease[J]. Cell, 2019, 177( 4): 881- 895. e 17. DOI: 10.1016/j.cell.2019.04.010.
    [31] BACH D, PICH S, SORIANO FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity[J]. J Biol Chem, 2003, 278( 19): 17190- 17197. DOI: 10.1074/jbc.M212754200.
    [32] HERNÁNDEZ-ALVAREZ MI, THABIT H, BURNS N, et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1α/Mitofusin-2 regulatory pathway in response to physical activity[J]. Diabetes Care, 2010, 33( 3): 645- 651. DOI: 10.2337/dc09-1305.
    [33] KIM SJ, SYED GH, SIDDIQUI A. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy[J]. PLoS Pathog, 2013, 9( 3): e1003285. DOI: 10.1371/journal.ppat.1003285.
    [34] KIM SJ, SYED GH, KHAN M, et al. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence[J]. Proc Natl Acad Sci USA, 2014, 111( 17): 6413- 6418. DOI: 10.1073/pnas.1321114111.
    [35] WANG L, WALTER P. Msp1/ATAD1 in protein quality control and regulation of synaptic activities[J]. Annu Rev Cell Dev Biol, 2020, 36: 141- 164. DOI: 10.1146/annurev-cellbio-031220-015840.
    [36] ZHOU Q, YANG YH, XU ZX, et al. ATAD1 inhibits hepatitis C virus infection by removing the viral TA-protein NS5B from mitochondria[J]. EMBO Rep, 2023, 24( 11): e56614. DOI: 10.15252/embr.202256614.
    [37] KIM SJ, KHAN M, QUAN J, et al. Hepatitis B virus disrupts mitochondrial dynamics: Induces fission and mitophagy to attenuate apoptosis[J]. PLoS Pathog, 2013, 9( 12): e1003722. DOI: 10.1371/journal.ppat.1003722.
    [38] SCHOLLMEIER A, BASIC M, GLITSCHER M, et al. The impact of HBx protein on mitochondrial dynamics and associated signaling pathways strongly depends on the hepatitis B virus genotype[J]. J Virol, 2024, 98( 5): e0042424. DOI: 10.1128/jvi.00424-24.
    [39] QUE RY, SHEN YT, REN JL, et al. Estrogen receptor-β-dependent effects of saikosaponin-d on the suppression of oxidative stress-induced rat hepatic stellate cell activation[J]. Int J Mol Med, 2018, 41( 3): 1357- 1364. DOI: 10.3892/ijmm.2017.3349.
    [40] CUI JS, LI Z, ZHUANG SJ, et al. Melatonin alleviates inflammation-induced apoptosis in human umbilical vein endothelial cells via suppression of Ca2+-XO-ROS-Drp1-mitochondrial fission axis by activation of AMPK/SERCA2a pathway[J]. Cell Stress Chaperones, 2018, 23( 2): 281- 293. DOI: 10.1007/s12192-017-0841-6.
    [41] LUO JT, SHEN S. Lipoic acid alleviates schistosomiasis-induced liver fibrosis by upregulating Drp1 phosphorylation[J]. Acta Trop, 2020, 206: 105449. DOI: 10.1016/j.actatropica.2020.105449.
    [42] ZHANG LZ, ZHANG YH, CHANG XX, et al. Imbalance in mitochondrial dynamics induced by low PGC-1α expression contributes to hepatocyte EMT and liver fibrosis[J]. Cell Death Dis, 2020, 11( 4): 226. DOI: 10.1038/s41419-020-2429-9.
    [43] ZHOU YN, LONG D, ZHAO Y, et al. Oxidative stress-mediated mitochondrial fission promotes hepatic stellate cell activation via stimulating oxidative phosphorylation[J]. Cell Death Dis, 2022, 13( 8): 689. DOI: 10.1038/s41419-022-05088-x.
    [44] SMITH-CORTINEZ N, van EUNEN K, HEEGSMA J, et al. Simultaneous induction of glycolysis and oxidative phosphorylation during activation of hepatic stellate cells reveals novel mitochondrial targets to treat liver fibrosis[J]. Cells, 2020, 9( 11): 2456. DOI: 10.3390/cells9112456.
    [45] ZHU HZ, SHAN YQ, GE K, et al. Specific overexpression of mitofusin-2 in hepatic stellate cells ameliorates liver fibrosis in mice model[J]. Hum Gene Ther, 2020, 31( 1-2): 103- 109. DOI: 10.1089/hum.2019.153.
    [46] DASGUPTA A, CHEN KH, MUNK RB, et al. Mechanism of activation-induced downregulation of mitofusin 2 in human peripheral blood T cells[J]. J Immunol, 2015, 195( 12): 5780- 5786. DOI: 10.4049/jimmunol.1501023.
    [47] CHEN G, LIU N, ZHOU A, et al. The role of hypertension-related gene in aortic vascular smooth muscle cells from mice and rats[J]. Chin Med J(Engl), 2001, 114( 8): 833- 836.
    [48] WANG Y, JIANG XY, LIU L, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis[J]. World J Gastroenterol, 2008, 14( 33): 5186- 5191. DOI: 10.3748/wjg.14.5186.
    [49] JIA L, YANG Y, SUN F, et al. Mitochondrial quality control in liver fibrosis: Epigenetic hallmarks and therapeutic strategies[J]. Cell Signal, 2024, 115: 111035. DOI: 10.1016/j.cellsig.2024.111035.
    [50] TANG ML, YANG M, WU GY, et al. Epigenetic induction of mitochondrial fission is required for maintenance of liver cancer-initiating cells[J]. Cancer Res, 2021, 81( 14): 3835- 3848. DOI: 10.1158/0008-5472.CAN-21-0436.
    [51] ZHENG XH, QIAN YB, FU BQ, et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance[J]. Nat Immunol, 2019, 20( 12): 1656- 1667. DOI: 10.1038/s41590-019-0511-1.
    [52] LI SF, HAN SX, ZHANG Q, et al. FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion[J]. Nat Commun, 2022, 13( 1): 3486. DOI: 10.1038/s41467-022-31187-6.
    [53] WANG X, LIU Y, SUN J, et al. Mitofusin-2 acts as biomarker for predicting poor prognosis in hepatitis B virus related hepatocellular carcinoma[J]. Infect Agent Cancer, 2018, 13: 36. DOI: 10.1186/s13027-018-0212-7.
    [54] ABDEL-HAMID NM, ABASS SA, ELDOMANY RA, et al. Dual regulating of mitochondrial fusion and Timp-3 by leflunomide and diallyl disulfide combination suppresses diethylnitrosamine-induced hepatocellular tumorigenesis in rats[J]. Life Sci, 2022, 294: 120369. DOI: 10.1016/j.lfs.2022.120369.
  • 加载中
图(2)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  31
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-02
  • 录用日期:  2024-09-28
  • 出版日期:  2025-09-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回