线粒体动力学失衡在不同肝病中的作用
DOI: 10.12449/JCH250934
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:闵远骞负责撰写论文及图片整理;李姗负责课题设计及修改论文;刘湘花、杨艺负责文献检索及整理;禄保平负责拟定写作思路及最后定稿。
-
摘要: 线粒体在肝细胞中含量丰富,在肝脏正常运转过程中发挥着重要作用。线粒体分裂/融合是维持线粒体动态平衡的两个生物过程,其还与细胞功能变化及疾病发生发展有密切联系,平衡线粒体分裂/融合在多种疾病的治疗中具有关键意义。近年来研究发现,异常的线粒体分裂/融合在脂肪肝、肝炎、肝纤维化和肝癌4个肝病发展阶段中作用显著,以调控这种异常为基础的治疗靶点不断被发现。本文通过对线粒体分裂/融合在肝病进程中不同阶段作用的综述,进一步展示了慢性肝病中线粒体分裂/融合机制的作用,也为更多以线粒体分裂/融合为基础,治疗、缓解甚至逆转肝病发展的思路提供科学依据。Abstract: Mitochondria are abundant in hepatocytes and play an important role in the normal operation of the liver. Mitochondrial division/fusion is two biological processes that maintain the dynamic balance of mitochondria, and it is closely associated with the change of cell function and the development and progression of diseases. Balance of mitochondrial division/fusion is of key significance in the treatment of many diseases. Recent studies have shown that abnormal mitochondrial division/fusion plays a significant role in fatty liver disease, hepatitis, liver fibrosis, and liver cancer, which are the four stages of the progression of liver diseases, and the therapeutic targets based on the regulation of such abnormalities are constantly being identified. By reviewing the role of mitochondrial division/fusion in different stages of liver disease, this article further demonstrates the role of mitochondrial division/fusion mechanism in chronic liver diseases and also provides a scientific basis for more ideas on the treatment, remission or even reversal of liver disease progression based on mitochondrial division/fusion.
-
Key words:
- Mitochondria /
- Fatty Liver /
- Hepatic Fibrosis /
- Carcinoma, Hepatocellular
-
[1] da DALT L, MOREGOLA A, SVECLA M, et al. The inhibition of inner mitochondrial fusion in hepatocytes reduces non-alcoholic fatty liver and improves metabolic profile during obesity by modulating bile acid conjugation[J]. Cardiovasc Res, 2024, 119( 18): 2917- 2929. DOI: 10.1093/cvr/cvad169. [2] SHAN SL, LIU ZX, LI LL, et al. Calpain-mediated cleavage of mitochondrial fusion/fission proteins in acetaminophen-induced mice liver injury[J]. Hum Exp Toxicol, 2022, 41: 9603271221108321. DOI: 10.1177/09603271221108321. [3] NARGUND AM, PELLEGRINO MW, FIORESE CJ, et al. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation[J]. Science, 2012, 337( 6094): 587- 590. DOI: 10.1126/science.1223560. [4] KLEELE T, REY T, WINTER J, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis[J]. Nature, 2021, 593( 7859): 435- 439. DOI: 10.1038/s41586-021-03510-6. [5] WANG BR, XIAO XY, HUANG FW, et al. Syntaxin-17-dependent mitochondrial dynamics is essential for protection against oxidative-stress-induced apoptosis[J]. Antioxidants(Basel), 2019, 8( 11): 522. DOI: 10.3390/antiox8110522. [6] ZHOU L, ZHANG L, ZHANG Y, et al. PINK1 deficiency ameliorates cisplatin-induced acute kidney injury in rats[J]. Front Physiol, 2019, 10: 1225. DOI: 10.3389/fphys.2019.01225. [7] SIMULA L, CAMPANELLA M, CAMPELLO S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation[J]. Pharmacol Res, 2019, 146: 104317. DOI: 10.1016/j.phrs.2019.104317. [8] OSELLAME LD, SINGH AP, STROUD DA, et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission[J]. J Cell Sci, 2016, 129( 11): 2170- 2181. DOI: 10.1242/jcs.185165. [9] OTERA H, MIYATA N, KUGE O, et al. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling[J]. J Cell Biol, 2016, 212( 5): 531- 544. DOI: 10.1083/jcb.201508099. [10] ATKINS K, DASGUPTA A, CHEN KH, et al. The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: Implications for human disease[J]. Clin Sci, 2016, 130( 21): 1861- 1874. DOI: 10.1042/cs20160030. [11] DEL DOTTO V, FOGAZZA M, CARELLI V, et al. Eight human OPA1 isoforms, long and short: What are they for?[J]. Biochim Biophys Acta Bioenerg, 2018, 1859( 4): 263- 269. DOI: 10.1016/j.bbabio.2018.01.005. [12] GAO S, HU JJ. Mitochondrial fusion: The machineries in and out[J]. Trends Cell Biol, 2021, 31( 1): 62- 74. DOI: 10.1016/j.tcb.2020.09.008. [13] CAO YL, MENG SX, CHEN Y, et al. MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion[J]. Nature, 2017, 542( 7641): 372- 376. DOI: 10.1038/nature21077. [14] ZHANG M, BENER MB, JIANG ZL, et al. Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve[J]. Cell Death Dis, 2019, 10( 8): 560. DOI: 10.1038/s41419-019-1799-3. [15] LI YJ, CAO YL, FENG JX, et al. Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset[J]. Nat Commun, 2019, 10( 1): 4914. DOI: 10.1038/s41467-019-12912-0. [16] OLICHON A, GUILLOU E, DELETTRE C, et al. Mitochondrial dynamics and disease, OPA1[J]. Biochim Biophys Acta BBA Mol Cell Res, 2006, 1763( 5-6): 500- 509. DOI: 10.1016/j.bbamcr.2006.04.003. [17] ZHANG DY, ZHANG Y, MA J, et al. Cryo-EM structures of S-OPA1 reveal its interactions with membrane and changes upon nucleotide binding[J]. eLife, 2020, 9: e50294. DOI: 10.7554/eLife.50294. [18] BURRA P, BECCHETTI C, GERMANI G. NAFLD and liver transplantation: Disease burden, current management and future challenges[J]. JHEP Rep, 2020, 2( 6): 100192. DOI: 10.1016/j.jhepr.2020.100192. [19] WANDERS RJA, VISSER G, FERDINANDUSSE S, et al. Mitochondrial fatty acid oxidation disorders: Laboratory diagnosis, pathogenesis, and the complicated route to treatment[J]. J Lipid Atheroscler, 2020, 9( 3): 313- 333. DOI: 10.12997/jla.2020.9.3.313. [20] LAMANILAO GG, DOGAN M, PATEL PS, et al. Key hepatoprotective roles of mitochondria in liver regeneration[J]. Am J Physiol Gastrointest Liver Physiol, 2023, 324( 3): G207- G218. DOI: 10.1152/ajpgi.00220.2022. [21] GOEDEKE L, PENG L, MONTALVO-ROMERAL V, et al. Controlled-release mitochondrial protonophore(CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates[J]. Sci Transl Med, 2019, 11( 512): eaay0284. DOI: 10.1126/scitranslmed.aay0284. [22] BOLAND ML, LAKER RC, MATHER K, et al. Resolution of NASH and hepatic fibrosis by the GLP-1R/GcgR dual-agonist Cotadutide via modulating mitochondrial function and lipogenesis[J]. Nat Metab, 2020, 2( 5): 413- 431. DOI: 10.1038/s42255-020-0209-6. [23] WANG LX, ISHIHARA T, IBAYASHI Y, et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration[J]. Diabetologia, 2015, 58( 10): 2371- 2380. DOI: 10.1007/s00125-015-3704-7. [24] GALLOWAY CA, LEE H, BROOKES PS, et al. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307( 6): G632- G641. DOI: 10.1152/ajpgi.00182.2014. [25] ARIYOSHI K, NISHIYAMA K, KATO Y, et al. Inhibition of Drp1-filamin protein complex prevents hepatic lipid droplet accumulation by increasing mitochondria-lipid droplet contact[J]. Int J Mol Sci, 2024, 25( 10): 5446. DOI: 10.3390/ijms25105446. [26] KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab, 2015, 21( 5): 739- 746. DOI: 10.1016/j.cmet.2015.04.004. [27] SATAPATI S, KUCEJOVA B, DUARTE JAG, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver[J]. J Clin Invest, 2016, 126( 4): 1605. DOI: 10.1172/JCI86695. [28] ZOU YT, ZHANG SY, YANG J, et al. Protective effects of astaxanthin on ochratoxin A-induced liver injury: Effects of endoplasmic reticulum stress and mitochondrial fission-fusion balance[J]. Toxins(Basel), 2024, 16( 2): 68. DOI: 10.3390/toxins16020068. [29] MA XW, DING WX. Reply: Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation[J]. Hepatology, 2023, 78( 4): E82- E83. DOI: 10.1097/HEP.0000000000000541. [30] HERNÁNDEZ-ALVAREZ MI, SEBASTIÁN D, VIVES S, et al. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease[J]. Cell, 2019, 177( 4): 881- 895. e 17. DOI: 10.1016/j.cell.2019.04.010. [31] BACH D, PICH S, SORIANO FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity[J]. J Biol Chem, 2003, 278( 19): 17190- 17197. DOI: 10.1074/jbc.M212754200. [32] HERNÁNDEZ-ALVAREZ MI, THABIT H, BURNS N, et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1α/Mitofusin-2 regulatory pathway in response to physical activity[J]. Diabetes Care, 2010, 33( 3): 645- 651. DOI: 10.2337/dc09-1305. [33] KIM SJ, SYED GH, SIDDIQUI A. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy[J]. PLoS Pathog, 2013, 9( 3): e1003285. DOI: 10.1371/journal.ppat.1003285. [34] KIM SJ, SYED GH, KHAN M, et al. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence[J]. Proc Natl Acad Sci USA, 2014, 111( 17): 6413- 6418. DOI: 10.1073/pnas.1321114111. [35] WANG L, WALTER P. Msp1/ATAD1 in protein quality control and regulation of synaptic activities[J]. Annu Rev Cell Dev Biol, 2020, 36: 141- 164. DOI: 10.1146/annurev-cellbio-031220-015840. [36] ZHOU Q, YANG YH, XU ZX, et al. ATAD1 inhibits hepatitis C virus infection by removing the viral TA-protein NS5B from mitochondria[J]. EMBO Rep, 2023, 24( 11): e56614. DOI: 10.15252/embr.202256614. [37] KIM SJ, KHAN M, QUAN J, et al. Hepatitis B virus disrupts mitochondrial dynamics: Induces fission and mitophagy to attenuate apoptosis[J]. PLoS Pathog, 2013, 9( 12): e1003722. DOI: 10.1371/journal.ppat.1003722. [38] SCHOLLMEIER A, BASIC M, GLITSCHER M, et al. The impact of HBx protein on mitochondrial dynamics and associated signaling pathways strongly depends on the hepatitis B virus genotype[J]. J Virol, 2024, 98( 5): e0042424. DOI: 10.1128/jvi.00424-24. [39] QUE RY, SHEN YT, REN JL, et al. Estrogen receptor-β-dependent effects of saikosaponin-d on the suppression of oxidative stress-induced rat hepatic stellate cell activation[J]. Int J Mol Med, 2018, 41( 3): 1357- 1364. DOI: 10.3892/ijmm.2017.3349. [40] CUI JS, LI Z, ZHUANG SJ, et al. Melatonin alleviates inflammation-induced apoptosis in human umbilical vein endothelial cells via suppression of Ca2+-XO-ROS-Drp1-mitochondrial fission axis by activation of AMPK/SERCA2a pathway[J]. Cell Stress Chaperones, 2018, 23( 2): 281- 293. DOI: 10.1007/s12192-017-0841-6. [41] LUO JT, SHEN S. Lipoic acid alleviates schistosomiasis-induced liver fibrosis by upregulating Drp1 phosphorylation[J]. Acta Trop, 2020, 206: 105449. DOI: 10.1016/j.actatropica.2020.105449. [42] ZHANG LZ, ZHANG YH, CHANG XX, et al. Imbalance in mitochondrial dynamics induced by low PGC-1α expression contributes to hepatocyte EMT and liver fibrosis[J]. Cell Death Dis, 2020, 11( 4): 226. DOI: 10.1038/s41419-020-2429-9. [43] ZHOU YN, LONG D, ZHAO Y, et al. Oxidative stress-mediated mitochondrial fission promotes hepatic stellate cell activation via stimulating oxidative phosphorylation[J]. Cell Death Dis, 2022, 13( 8): 689. DOI: 10.1038/s41419-022-05088-x. [44] SMITH-CORTINEZ N, van EUNEN K, HEEGSMA J, et al. Simultaneous induction of glycolysis and oxidative phosphorylation during activation of hepatic stellate cells reveals novel mitochondrial targets to treat liver fibrosis[J]. Cells, 2020, 9( 11): 2456. DOI: 10.3390/cells9112456. [45] ZHU HZ, SHAN YQ, GE K, et al. Specific overexpression of mitofusin-2 in hepatic stellate cells ameliorates liver fibrosis in mice model[J]. Hum Gene Ther, 2020, 31( 1-2): 103- 109. DOI: 10.1089/hum.2019.153. [46] DASGUPTA A, CHEN KH, MUNK RB, et al. Mechanism of activation-induced downregulation of mitofusin 2 in human peripheral blood T cells[J]. J Immunol, 2015, 195( 12): 5780- 5786. DOI: 10.4049/jimmunol.1501023. [47] CHEN G, LIU N, ZHOU A, et al. The role of hypertension-related gene in aortic vascular smooth muscle cells from mice and rats[J]. Chin Med J(Engl), 2001, 114( 8): 833- 836. [48] WANG Y, JIANG XY, LIU L, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis[J]. World J Gastroenterol, 2008, 14( 33): 5186- 5191. DOI: 10.3748/wjg.14.5186. [49] JIA L, YANG Y, SUN F, et al. Mitochondrial quality control in liver fibrosis: Epigenetic hallmarks and therapeutic strategies[J]. Cell Signal, 2024, 115: 111035. DOI: 10.1016/j.cellsig.2024.111035. [50] TANG ML, YANG M, WU GY, et al. Epigenetic induction of mitochondrial fission is required for maintenance of liver cancer-initiating cells[J]. Cancer Res, 2021, 81( 14): 3835- 3848. DOI: 10.1158/0008-5472.CAN-21-0436. [51] ZHENG XH, QIAN YB, FU BQ, et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance[J]. Nat Immunol, 2019, 20( 12): 1656- 1667. DOI: 10.1038/s41590-019-0511-1. [52] LI SF, HAN SX, ZHANG Q, et al. FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion[J]. Nat Commun, 2022, 13( 1): 3486. DOI: 10.1038/s41467-022-31187-6. [53] WANG X, LIU Y, SUN J, et al. Mitofusin-2 acts as biomarker for predicting poor prognosis in hepatitis B virus related hepatocellular carcinoma[J]. Infect Agent Cancer, 2018, 13: 36. DOI: 10.1186/s13027-018-0212-7. [54] ABDEL-HAMID NM, ABASS SA, ELDOMANY RA, et al. Dual regulating of mitochondrial fusion and Timp-3 by leflunomide and diallyl disulfide combination suppresses diethylnitrosamine-induced hepatocellular tumorigenesis in rats[J]. Life Sci, 2022, 294: 120369. DOI: 10.1016/j.lfs.2022.120369. -

PDF下载 ( 1127 KB)
下载:
