三维肝细胞模型在药物性肝损伤中的应用
DOI: 10.12449/JCH250933
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:李子婷负责资料分析,撰写和修改论文;张珂参与收集数据;赵锋和马银玲负责拟定写作思路,指导撰写文章并最后定稿。
-
摘要: 药物性肝损伤(DILI)是药物研发失败和已批准药物退出市场的主要原因,因此对准确预测肝毒性体外检测方法的需求日益迫切。然而,肝细胞的二维细胞培养体系由于无法准确模拟和重现体内肝细胞的真实环境及微生态系统,不适合长期服用药物的毒性研究。鉴于此,在药物开发和活性化合物安全性评价中,亟需具备更高预测性的肝脏模型来评估药物的肝毒性。本文综述了体外DILI肝细胞三维培养系统的构建和应用,为其在DILI分析中的有效实施提供参考。
-
关键词:
- 化学性与药物性肝损伤 /
- 模型, 生物学 /
- 细胞培养技术
Abstract: Drug-induced liver injury (DILI) is the main cause of failures in drug development and the withdrawal of approved drugs from the market, and therefore, there is an increasing demand for accurate prediction and in vitro testing. However, the two-dimensional cell culture system of hepatocytes is not suitable for the toxicity study of long-term drug use due to the fact that it cannot accurately simulate and reproduce the real environment and micro-ecosystem of hepatocytes in vivo. In view of this, there is an urgent need for liver models with higher predictability to assess the hepatotoxicity of drugs in drug development and the safety evaluation of active compounds. This article reviews the construction and application of three-dimensional in vitro hepatocyte culture systems for DILI, in order to provide a reference for their effective implementation in DILI analysis. -
[1] Professional Committee for Prevention and Treatment of Drug-Induced Liver Injury, China Association of Biotechnology; Drug-Induced Liver Disease Group, Branch Hepatology, Chinese Medical Association. Chinese guideline for diagnosis and management of drug-induced liver injury(2023 version)[J]. Chin J Gastroenterol, 2023, 28( 7): 397- 431.中国医药生物技术协会药物性肝损伤防治技术专业委员会, 中华医学会肝病学分会药物性肝病学组. 中国药物性肝损伤诊治指南(2023年版)[J]. 胃肠病学, 2023, 28( 7): 397- 431. [2] GARCIA-CORTES M, ROBLES-DIAZ M, STEPHENS C, et al. Drug induced liver injury: An update[J]. Arch Toxicol, 2020, 94( 10): 3381- 3407. DOI: 10.1007/s00204-020-02885-1. [3] LI XY, TANG JT, MAO YM. Incidence and risk factors of drug-induced liver injury[J]. Liver Int, 2022, 42( 9): 1999- 2014. DOI: 10.1111/liv.15262. [4] WANG LY, JIANG MJ, GAO PJ. Association between human leukocyte antigen gene polymorphism and drug-induced liver injury[J]. J Clin Hepatol, 2021, 37( 2): 475- 479. DOI: 10.3969/j.issn.1001-5256.2021.02.048.王露媛, 姜敏杰, 高普均. HLA基因多态性与药物性肝损伤的关系[J]. 临床肝胆病杂志, 2021, 37( 2): 475- 479. DOI: 10.3969/j.issn.1001-5256.2021.02.048. [5] NUDISCHER R, RENGGLI K, HIERLEMANN A, et al. Characterization of a long-term mouse primary liver 3D tissue model recapitulating innate-immune responses and drug-induced liver toxicity[J]. PLoS One, 2020, 15( 7): e0235745. DOI: 10.1371/journal.pone.0235745. [6] XU JC, PAN DG, LIAO W, et al. Application of 3D hepatic plate-like liver model for statin-induced hepatotoxicity evaluation[J]. Front Bioeng Biotechnol, 2022, 10: 826093. DOI: 10.3389/fbioe.2022.826093. [7] ZHOU YT, SHEN JX, LAUSCHKE VM. Comprehensive evaluation of organotypic and microphysiological liver models for prediction of drug-induced liver injury[J]. Front Pharmacol, 2019, 10: 1093. DOI: 10.3389/fphar.2019.01093. [8] MIRAHMAD M, SABOURIAN R, MAHDAVI M, et al. In vitro cell-based models of drug-induced hepatotoxicity screening: Progress and limitation[J]. Drug Metab Rev, 2022, 54( 2): 161- 193. DOI: 10.1080/036025-32.2022.2064487. [9] KOSTADINOVA R, BOESS F, APPLEGATE D, et al. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity[J]. Toxicol Appl Pharmacol, 2013, 268( 1): 1- 16. DOI: 10.1016/j.taap.2013.01.012. [10] ALLISON R, GURAKA A, SHAWA IT, et al. Drug induced liver injury-a 2023 update[J]. J Toxicol Environ Health B Crit Rev, 2023, 26( 8): 442- 467. DOI: 10.1080/10937404.2023.2261848. [11] BJÖRNSSON HK, BJÖRNSSON ES. Drug-induced liver injury: Pathogenesis, epidemiology, clinical features, and practical management[J]. Eur J Intern Med, 2022, 97: 26- 31. DOI: 10.1016/j.ejim.2021.10.035. [12] Chinese Medical Association, Chinese Medical Association Press, Drug-Induced Liver Disease Group, Hepatology Branch of Chinese Medical Association, et al. Chinese guideline for diagnosis and management of drug-induced liver injury in primary care(2024)[J]. Chin J Gen Pract, 2024, 23( 8): 813- 830. DOI: 10.3760/cma.j.cn114798-20240408-00225.中华医学会, 中华医学会杂志社, 中华医学会肝病分会药物性肝病学组, 等. 中国药物性肝损伤基层诊疗与管理指南(2024年)[J]. 中华全科医师杂志, 2024, 23( 8): 813- 830. DOI: 10.3760/cma.j.cn114798-20240408-00225. [13] WANG Y, LI S, LIU CH. Immunological mechanism of drug-induced liver injury[J]. J Clin Hepatol, 2024, 40( 12): 2538- 2542. DOI: 10.12449/JCH-241227.王宇, 李爽, 刘成海. 药物性肝损伤的免疫学机制[J]. 临床肝胆病杂志, 2024, 40( 12): 2538- 2542. DOI: 10.12449/JCH241227. [14] CHIPANGURA JK, NTAMO Y, MOHR B, et al. A review of challenges and prospects of 3D cell-based culture models used for studying drug induced liver injury during early phases of drug development[J]. Hum Exp Toxicol, 2023, 42: 9603271221147884. DOI: 10.1177/09603271221-147884. [15] JENSEN C, TENG Y. Is it time to start transitioning from 2D to 3D cell culture?[J]. Front Mol Biosci, 2020, 7: 33. DOI: 10.3389/fmolb.2020.00033. [16] SUAREZ-MARTINEZ E, SUAZO-SANCHEZ I, CELIS-ROMERO M, et al. 3D and organoid culture in research: Physiology, hereditary genetic diseases and cancer[J]. Cell Biosci, 2022, 12( 1): 39. DOI: 10.1186/s13578-022-00775-w. [17] KAMMERER S. Three-dimensional liver culture systems to maintain primary hepatic properties for toxicological analysis in vitro[J]. Int J Mol Sci, 2021, 22( 19): 10214. DOI: 10.3390/ijms221910214. [18] PANWAR A, DAS P, TAN LP. 3D hepatic organoid-based advancements in LIVER tissue engineering[J]. Bioengineering(Basel), 2021, 8( 11): 185. DOI: 10.3390/bioengineering8110185. [19] DENG J, WEI WB, CHEN ZZ, et al. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: A review[J]. Micromachines(Basel), 2019, 10( 10): 676. DOI: 10.3390/mi10100676. [20] MESSINA A, LUCE E, HUSSEIN M, et al. Pluripotent-stem-cell-derived hepatic cells: Hepatocytes and organoids for liver therapy and regeneration[J]. Cells, 2020, 9( 2): 420. DOI: 10.3390/cells9020420. [21] JÄRVINEN E, HAMMER HS, PÖTZ O, et al. 3D spheroid primary human hepatocytes for prediction of cytochrome P450 and drug transporter induction[J]. Clin Pharmacol Ther, 2023, 113( 6): 1284- 1294. DOI: 10.1002/cpt.2887. [22] MA YP, HU L, TANG JH, et al. Three-dimensional cell co-culture liver models and their applications in pharmaceutical research[J]. Int J Mol Sci, 2023, 24( 7): 6248. DOI: 10.3390/ijms24076248. [23] WANG J, SUN MY, LIU W, et al. Stem cell-based therapies for liver diseases: An overview and update[J]. Tissue Eng Regen Med, 2019, 16( 2): 107- 118. DOI: 10.1007/s13770-019-00178-y. [24] DONATO MT, TOLOSA L. Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury[J]. Differentiation, 2019, 106: 15- 22. DOI: 10.1016/j.diff.2019.02.004. [25] GUO KD, van den BEUCKEN T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques[J]. Cell Biosci, 2024, 14( 1): 134. DOI: 10.1186/s13578-024-01317-2. [26] ZHUANG XM, SHEN GL, XIAO WB, et al. Assessment of the roles of P-glycoprotein and cytochrome P450 in triptolide-induced liver toxicity in sandwich-cultured rat hepatocyte model[J]. Drug Metab Dispos, 2013, 41( 12): 2158- 2165. DOI: 10.1124/dmd.113.054056. [27] JACKSON JP, FREEMAN KM, FRILEY WW, et al. Prediction of clinically relevant herb-drug clearance interactions using sandwich-cultured human hepatocytes: Schisandra spp. case study[J]. Drug Metab Dispos, 2017, 45( 9): 1019- 1026. DOI: 10.1124/dmd.117.075408. [28] Di ZEO-SÁNCHEZ DE, SEGOVIA-ZAFRA A, MATILLA-CABELLO G, et al. Modeling drug-induced liver injury: Current status and future prospects[J]. Expert Opin Drug Metab Toxicol, 2022, 18( 9): 555- 573. DOI: 10.1080/17425255.2022.2122810. [29] ASHRAF MN, ASGHAR MW, RONG Y, et al. Advanced in vitro HepaRG culture systems for xenobiotic metabolism and toxicity characterization[J]. Eur J Drug Metab Pharmacokinet, 2019, 44( 4): 437- 458. DOI: 10.1007/s13318-018-0533-3. [30] CHOI JM, OH SJ, LEE JY, et al. Prediction of drug-induced liver injury in HepG2 cells cultured with human liver microsomes[J]. Chem Res Toxicol, 2015, 28( 5): 872- 885. DOI: 10.1021/tx500504n. [31] XU JY, ODA S, YOKOI T. Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury[J]. Toxicol In Vitro, 2018, 48: 286- 301. DOI: 10.1016/j.tiv.2018.01.019. [32] BROOKS A, LIANG XW, ZHANG YL, et al. Liver organoid as a 3D in vitro model for drug validation and toxicity assessment[J]. Pharmacol Res, 2021, 169: 105608. DOI: 10.1016/j.phrs.2021.105608. [33] SZKOLNICKA D, FARNWORTH SL, LUCENDO-VILLARIN B, et al. Deriving functional hepatocytes from pluripotent stem cells[J]. Curr Protoc Stem Cell Biol, 2014, 30: 1G.5.1- 1 G.5.12. DOI: 10.1002/9780470151-808.sc01g05s30. [34] HO TC, CHANG CC, CHAN HP, et al. Hydrogels: Properties and applications in biomedicine[J]. Molecules, 2022, 27( 9): 2902. DOI: 10.3390/molecules27092902. [35] LI GX, ZHAO XL, LI CX, et al. Research progress in 3D culture methods for dental mesenchymal stem cells and their applications in regeneration and disease treatment[J]. J Jilin Univ(Med Edit), 2024, 50( 2): 564- 571. DOI: 10.13481/j.1671-587X.20240233.李国鑫, 赵小琳, 李晨曦, 等. DMSCs三维培养方法及其在组织再生和疾病治疗中应用的研究进展[J]. 吉林大学学报(医学版), 2024, 50( 2): 564- 571. DOI: 10.13481/j.1671-587X.20240233. [36] HE T, QIAO SD, MA C, et al. FEK self-assembled peptide hydrogels facilitate primary hepatocytes culture and pharmacokinetics screening[J]. J Biomed Mater Res B Appl Biomater, 2022, 110( 9): 2015- 2027. DOI: 10.1002/jbm.b.35056. [37] GORI M, GIANNITELLI SM, TORRE M, et al. Biofabrication of hepatic constructs by 3D bioprinting of a cell-laden thermogel: An effective tool to assess drug-induced hepatotoxic response[J]. Adv Healthc Mater, 2020, 9( 21): e2001163. DOI: 10.1002/adhm.202001163. [38] CHO CY, CHIANG TH, HSIEH LH, et al. Development of a novel hanging drop platform for engineering controllable 3D microenvironments[J]. Front Cell Dev Biol, 2020, 8: 327. DOI: 10.3389/fcell.2020.00327. [39] FILIPPI M, BUCHNER T, YASA O, et al. Microfluidic tissue engineering and bio-actuation[J]. Adv Mater, 2022, 34( 23): e2108427. DOI: 10.1002/adma.202108427. [40] LI QS, TONG ZD, MAO HJ. Microfluidic based organ-on-chips and biomedical application[J]. Biosensors(Basel), 2023, 13( 4): 436. DOI: 10.3390/bios13040436. [41] FU JJ, LYU XH, WANG LX, et al. Cutting and bonding parafilm® to fast prototyping flexible hanging drop chips for 3D spheroid cultures[J]. Cell Mol Bioeng, 2020, 14( 2): 187- 199. DOI: 10.1007/s12195-020-00660-x. [42] HUANG SW, TZENG SC, CHEN JK, et al. A dynamic hanging-drop system for mesenchymal stem cell culture[J]. Int J Mol Sci, 2020, 21( 12): 4298. DOI: 10.3390/ijms21124298. [43] PANEK M, GRABACKA M, PIERZCHALSKA M. The formation of intestinal organoids in a hanging drop culture[J]. Cytotechnology, 2018, 70( 3): 1085- 1095. DOI: 10.1007/s10616-018-0194-8. [44] PARK J, KIM H, PARK JK. Microfluidic channel-integrated hanging drop array chip operated by pushbuttons for spheroid culture and analysis[J]. Analyst, 2020, 145( 21): 6974- 6980. DOI: 10.1039/d0an01091j. [45] MUELLER D, KRÄMER L, HOFFMANN E, et al. 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies[J]. Toxicol In Vitro, 2014, 28( 1): 104- 112. DOI: 10.1016/j.tiv.2013.06.024. [46] CARDOSO BD, CASTANHEIRA EMS, LANCEROS-MÉNDEZ S, et al. Recent advances on cell culture platforms for in vitro drug screening and cell therapies: From conventional to microfluidic strategies[J]. Adv Healthc Mater, 2023, 12( 18): e2202936. DOI: 10.1002/adhm.202202936. [47] LEGENDRE A, JACQUES S, DUMONT F, et al. Investigation of the hepatotoxicity of flutamide: Pro-survival/apoptotic and necrotic switch in primary rat hepatocytes characterized by metabolic and transcriptomic profiles in microfluidic liver biochips[J]. Toxicol In Vitro, 2014, 28( 5): 1075- 1087. DOI: 10.1016/j.tiv.2014.04.008. [48] LAUSCHKE VM, HENDRIKS DFG, BELL CC, et al. Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates[J]. Chem Res Toxicol, 2016, 29( 12): 1936- 1955. DOI: 10.1021/acs.chemrestox.6b00150. [49] SUN GC, LI HY, CHEN J, et al. Research progress and application of organoids in biomedicine[J]. Clin J Med Offic, 2023, 51( 11): 1206- 1210. DOI: 10.16680/j.1671-3826.2023.11.28.孙广晨, 李宏宇, 陈江, 等. 类器官在生物医学中研究进展及应用[J]. 临床军医杂志, 2023, 51( 11): 1206- 1210. DOI: 10.16680/j.1671-3826.2023.11.28. [50] NUCIFORO S, HEIM MH. Organoids to model liver disease[J]. JHEP Rep, 2020, 3( 1): 100198. DOI: 10.1016/j.jhepr.2020.100198. [51] HOU CL, SHA WQ, XU ZZ, et al. Culture and establishment of self-renewing human liver 3D organoids with high uric acid for screening antihyperuricemic functional compounds[J]. Food Chem, 2022, 374: 131634. DOI: 10.1016/j.foodchem.2021.131634. [52] SATO K, ZHANG WJ, SAFARIKIA S, et al. Organoids and spheroids as models for studying cholestatic liver injury and cholangiocarcinoma[J]. Hepatology, 2021, 74( 1): 491- 502. DOI: 10.1002/hep.31653. [53] CHOI SY, KIM TH, KIM MJ, et al. Validating well-functioning hepatic organoids for toxicity evaluation[J]. Toxics, 2024, 12( 5): 371. DOI: 10.3390/toxics12050371. [54] WU XS, JIANG DC, YANG Y, et al. Modeling drug-induced liver injury and screening for anti-hepatofibrotic compounds using human PSC-derived organoids[J]. Cell Regen, 2023, 12( 1): 6. DOI: 10.1186/s13619-022-00148-1. [55] JIN B, LIU YT, DU SD, et al. Current trends and research topics regarding liver 3D bioprinting: A bibliometric analysis research[J]. Front Cell Dev Biol, 2022, 10: 1047524. DOI: 10.3389/fcell.2022.1047524. [56] LI CC, JIANG ZR, YANG HY. Advances in 3D bioprinting technology for liver regeneration[J]. Hepatobiliary Surg Nutr, 2022, 11( 6): 917- 919. DOI: 10.21037/hbsn-22-531. [57] GUAGLIANO G, VOLPINI C, BRIATICO-VANGOSA F, et al. Toward 3D-bioprinted models of the liver to boost drug development[J]. Macromol Biosci, 2022, 22( 12): e2200264. DOI: 10.1002/mabi.202200264. [58] KNOWLTON S, TASOGLU S. A bioprinted liver-on-a-chip for drug screening applications[J]. Trends Biotechnol, 2016, 34( 9): 681- 682. DOI: 10.1016/j.tibtech.2016.05.014. [59] NGUYEN DG, FUNK J, ROBBINS JB, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro[J]. PLoS One, 2016, 11( 7): e0158674. DOI: 10.1371/journal.pone.0158674. [60] HELENA MACEDO M, BAIÃO A, PINTO S, et al. Mucus-producing 3D cell culture models[J]. Adv Drug Deliv Rev, 2021, 178: 113993. DOI: 10.1016/j.addr.2021.113993. [61] WANG HB, BROWN PC, CHOW ECY, et al. 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration[J]. Clin Transl Sci, 2021, 14( 5): 1659- 1680. DOI: 10.1111/cts.13066. [62] COX CR, LYNCH S, GOLDRING C, et al. Current perspective: 3D spheroid models utilizing human-based cells for investigating metabolism-dependent drug-induced liver injury[J]. Front Med Technol, 2020, 2: 611913. DOI: 10.3389/fmedt.2020.611913. [63] DUVAL K, GROVER H, HAN LH, et al. Modeling physiological events in 2D vs. 3D cell culture[J]. Physiology(Bethesda), 2017, 32( 4): 266- 277. DOI: 10.1152/physiol.00036.2016. [64] De LEÓN SE, PUPOVAC A, MCARTHUR SL. Three-Dimensional(3D) cell culture monitoring: Opportunities and challenges for impedance spectroscopy[J]. Biotechnol Bioeng, 2020, 117( 4): 1230- 1240. DOI: 10.1002/bit.27270. [65] LANGHANS SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning[J]. Front Pharmacol, 2018, 9: 6. DOI: 10.3389/fphar.2018.00006. [66] BOOIJ TH, PRICE LS, DANEN EHJ. 3D cell-based assays for drug screens: Challenges in imaging, image analysis, and high-content analysis[J]. SLAS Discov, 2019, 24( 6): 615- 627. DOI: 10.1177/2472555219-830087. -
本文二维码
计量
- 文章访问数: 134
- HTML全文浏览量: 29
- PDF下载量: 9
- 被引次数: 0

PDF下载 ( 691 KB)
下载:
