中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“二次打击”在酒精性肝病动物模型中的应用

刘萌思 谢艳迪

引用本文:
Citation:

“二次打击”在酒精性肝病动物模型中的应用

DOI: 10.12449/JCH250932
基金项目: 

国家自然科学基金 (82000557)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:刘萌思负责设计论文框架,起草论文,绘制图表;谢艳迪负责论文修改,拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    谢艳迪, xieyandee@163.com (ORCID: 0000-0001-5002-341X)

Application of the “two-hit” hypothesis in animal models of alcoholic liver disease

Research funding: 

National Natural Science Foundation of China (82000557)

More Information
    Corresponding author: XIE Yandi, xieyandee@163.com (ORCID: 0000-0001-5002-341X)
  • 摘要: 酒精性肝病(ALD)严重威胁全球饮酒者的健康,构建合适的ALD动物模型是开展疾病相关研究的重要基础。由于啮齿动物与人类在生理和病理生理方面存在差异,单纯饲喂酒精难以诱导出与人类疾病表现高度吻合的模型,因此“二次打击”(即联合采用酒精与另一种肝损伤因素以诱导预期肝损伤状态)得到广泛应用。本文将“二次打击”中较为常用且有效的方案划分为特殊饮食、化学物质、基因工程等3大类,并进一步细分为高脂饮食、高铁饮食、四氯化碳、脂多糖和基因工程5个部分进行综述。这5类“二次打击”模型虽各有优劣,但已能较完整地覆盖ALD疾病谱。未来ALD动物模型的开发可更多聚焦于缩小动物与人类酒精性肝损伤的病理生理差异,以及模拟更为复杂的人类饮酒模式等方向。

     

  • 表  1  ALD啮齿动物“二次打击”模型的建模方法及应用效果

    Table  1.   Modeling method and application effect of "second-hit" model in rodents with ALD

    项目 高脂饮食 高铁饮食 CCl4 LPS 基因工程
    建模方法
    动物类型 C57BL/6J小鼠 雄性Sprague-Dawley
    大鼠;
    雄性Wistar大鼠;
    C57BL/6J小鼠
    BALB/c小鼠;
    C57BL/6小鼠
    雄性Sprague-Dawley大鼠;
    雄性Wistar大鼠;
    雌性C57BL/6小鼠
    C57BL/6小鼠;
    SV129小鼠;
    GR floxed小鼠
    时间(周) 7~24 8~26 1~10 4 3~8
    剂量 0.04~0.87 mg/mL 剂量差异较大,与
    给药方式有关
    0.5~2 mg/kg体质量
    酒精摄入 灌胃;
    Ad libitum
    Lieber-Decarli液体
    饮食
    灌胃;
    Ad libitum
    NIAAA模型;
    Lieber-DeCarli液体饮食
    NIAAA模型;
    灌胃;Ad libitum
    应用效果
    病理表现 肝脂肪变;肝炎;
    细胞周纤维化
    肝脂肪变;肝纤维化;
    微小结节性肝硬化
    肝脂肪变;
    肝炎;
    肝纤维化
    肝脂肪变;肝炎;局灶性
    坏死及胶原沉积
    与涉及的具体基因相关
    适用疾病 脂肪肝 肝纤维化 肝纤维化 肝炎 与涉及的具体基因相关
    优点 更生活化地模拟
    酒精性肝损伤;
    更灵活地诱导不
    同程度的ALD
    能引起较严重的
    损伤,如肝硬化
    建模时间成本低;
    能引起较严重的
    损伤,如肝纤维化
    更贴合人类ALD病理生理
    机制;实验动物死亡率低;
    建模时间成本低
    直接、明确地通过某种
    机制致病;能更自由地
    诱导各类疾病
    缺点 建模时间较长 建模方法较复杂;不
    太贴合人类ALD的
    病理生理机制
    可能增加实验动
    物死亡率
    无法造成严重的肝损伤 更加昂贵、复杂;
    存在脱靶、转基因细胞
    发育不良等风险
    下载: 导出CSV
  • [1] BRANDON-WARNER E, SCHRUM LW, SCHMIDT CM, et al. Rodent models of alcoholic liver disease: of mice and men[J]. Alcohol, 2012, 46( 8): 715- 725. DOI: 10.1016/j.alcohol.2012.08.004.
    [2] TSUKAMOTO H, MACHIDA K, DYNNYK A, et al.“Second hit” models of alcoholic liver disease[J]. Semin Liver Dis, 2009, 29( 2): 178- 187. DOI: 10.1055/s-0029-1214373.
    [3] GÄBELE E, DOSTERT K, DORN C, et al. A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis[J]. Alcohol Clin Exp Res, 2011, 35( 7): 1361- 1367. DOI: 10.1111/j.1530-0277.2011.01472.x.
    [4] ZHANG XQ, XU CF, YU CH, et al. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20( 7): 1768- 1776. DOI: 10.3748/wjg.v20.i7.1768.
    [5] HWANG S, REN TY, GAO B. Obesity and binge alcohol intake are deadly combination to induce steatohepatitis: A model of high-fat diet and binge ethanol intake[J]. Clin Mol Hepatol, 2020, 26( 4): 586- 594. DOI: 10.3350/cmh.2020.0100.
    [6] BISHEHSARI F, MAGNO E, SWANSON G, et al. Alcohol and gut-derived inflammation[J]. Alcohol Res, 2017, 38( 2): 163- 171.
    [7] KIRPICH IA, MILLER ME, CAVE MC, et al. Alcoholic liver disease: Update on the role of dietary fat[J]. Biomolecules, 2016, 6( 1): 1. DOI: 10.3390/biom6010001.
    [8] CHEN P, TORRALBA M, TAN J, et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice[J]. Gastroenterology, 2015, 148( 1): 203- 214.e16. DOI: 10.1053/j.gastro.2014.09.014.
    [9] CHEN YL, PENG HC, WANG XD, et al. Dietary saturated fatty acids reduce hepatic lipid accumulation but induce fibrotic change in alcohol-fed rats[J]. Hepatobiliary Surg Nutr, 2015, 4( 3): 172- 183. DOI: 10.3978/j.issn.2304-3881.2015.01.04.
    [10] KIRPICH IA, PETROSINO J, AJAMI N, et al. Saturated and unsaturated dietary fats differentially modulate ethanol-induced changes in gut microbiome and metabolome in a mouse model of alcoholic liver disease[J]. Am J Pathol, 2016, 186( 4): 765- 776. DOI: 10.1016/j.ajpath.2015.11.017.
    [11] SENGUPTA M, ABUIRQEBA S, KAMERIC A, et al. A two-hit model of alcoholic liver disease that exhibits rapid, severe fibrosis[J]. PLoS One, 2021, 16( 3): e0249316. DOI: 10.1371/journal.pone.0249316.
    [12] SCHONFELD M, O’NEIL M, VILLAR MT, et al. A Western diet with alcohol in drinking water recapitulates features of alcohol-associated liver disease in mice[J]. Alcohol Clin Exp Res, 2021, 45( 10): 1980- 1993. DOI: 10.1111/acer.14700.
    [13] PARKER R, KIM SJ, GAO B. Alcohol, adipose tissue and liver disease: Mechanistic links and clinical considerations[J]. Nat Rev Gastroenterol Hepatol, 2018, 15( 1): 50- 59. DOI: 10.1038/nrgastro.2017.116.
    [14] GAO B, XU MJ, BERTOLA A, et al. Animal models of alcoholic liver disease: Pathogenesis and clinical relevance[J]. Gene Expr, 2017, 17( 3): 173- 186. DOI: 10.3727/105221617X695519.
    [15] HARRISON-FINDIK DD, KLEIN E, CRIST C, et al. Iron-mediated regulation of liver hepcidin expression in rats and mice is abolished by alcohol[J]. Hepatology, 2007, 46( 6): 1979- 1985. DOI: 10.1002/hep.21895.
    [16] OHTAKE T, SAITO H, HOSOKI Y, et al. Hepcidin is down-regulated in alcohol loading[J]. Alcoholism Clin Exp Res, 2007, 31( S1): S2- S8. DOI: 10.1111/j.1530-0277.2006.00279.x
    [17] BRIDLEK, CHEUNGTK, MURPHYT, et al. Hepcidin is down-regulated in alcoholic liver injury: Implications for the pathogenesis of alcoholic liver disease[J]. Alcohol Clin Exp Res, 2006, 30( 1): 106- 112. DOI: 10.1111/j.1530-0277.2006.00002.x.
    [18] SIKORSKA K, STALKE P, ROMANOWSKI T, et al. Liver steatosis correlates with iron overload but not with HFE gene mutations in chronic hepatitis C[J]. Hepatobiliary Pancreat Dis Int, 2013, 12( 4): 377- 384. DOI: 10.1016/s1499-3872(13)60059-4.
    [19] OLYNYK J, HALL P, REED W, et al. A long-term study of the interaction between iron and alcohol in an animal model of iron overload[J]. J Hepatol, 1995, 22( 6): 671- 676. DOI: 10.1016/0168-8278(95)80222-3.
    [20] TSUKAMOTO H, HORNE W, KAMIMURA S, et al. Experimental liver cirrhosis induced by alcohol and iron[J]. J Clin Invest, 1995, 96( 1): 620- 630. DOI: 10.1172/JCI118077.
    [21] NISHIMAKI-MOGAMI T, SUZUKI K, TAKAHASHI A. The role of phosphatidylethanolamine methylation in the secretion of very low density lipoproteins by cultured rat hepatocytes: Rapid inhibition of phosphatidylethanolamine methylation by bezafibrate increases the density of apolipoprotein B48-containing lipoproteins[J]. Biochim Biophys Acta, 1996, 1304( 1): 21- 31. DOI: 10.1016/s0005-2760(96)00100-2.
    [22] GRUEBELE A, ZAWASKI K, KAPLAN D, et al. Cytochrome P4502E1- and cytochrome P4502B1/2B2-catalyzed carbon tetrachloride metabolism: Effects on signal transduction as demonstrated by altered immediate-early(c-Fos and c-Jun) gene expression and nuclear AP-1 and NF-kappa B transcription factor levels[J]. Drug Metab Dispos, 1996, 24( 1): 15- 22.
    [23] SCHOLTEN D, TREBICKA J, LIEDTKE C, et al. The carbon tetrachloride model in mice[J]. Lab Anim, 2015, 49( S1): 4- 11. DOI: 10.1177/002367-7215571192.
    [24] DOMENICALI M, CARACENI P, GIANNONE F, et al. A novel model of CCl4-induced cirrhosis with ascites in the mouse[J]. J Hepatol, 2009, 51( 6): 991- 999. DOI: 10.1016/j.jhep.2009.09.008.
    [25] LIEDTKE C, LUEDDE T, SAUERBRUCH T, et al. Experimental liver fibrosis research: Update on animal models, legal issues and translational aspects[J]. Fibrogenesis Tissue Repair, 2013, 6( 1): 19. DOI: 10.1186/1755-1536-6-19.
    [26] FACCIOLI LAP, DIAS ML, PARANHOS BA, et al. Liver cirrhosis: An overview of experimental models in rodents[J]. Life Sci, 2022, 301: 120615. DOI: 10.1016/j.lfs.2022.120615.
    [27] BOSMA A, BROUWER A, SEIFERT WF, et al. Synergism between ethanol and carbon tetrachloride in the generation of liver fibrosis[J]. J Pathol, 1988, 156( 1): 15- 21. DOI: 10.1002/path.1711560106.
    [28] WEBER LWD, BOLL M, STAMPFL A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model[J]. Crit Rev Toxicol, 2003, 33( 2): 105- 136. DOI: 10.1080/713611034.
    [29] COHEN JI, NAGY LE. Pathogenesis of alcoholic liver disease: Interactions between parenchymal and non-parenchymal cells[J]. J Dig Dis, 2011, 12( 1): 3- 9. DOI: 10.1111/j.1751-2980.2010.00468.x.
    [30] GUHA M, MACKMAN N. LPS induction of gene expression in human monocytes[J]. Cell Signal, 2001, 13( 2): 85- 94. DOI: 10.1016/s0898-6568(00)00149-2.
    [31] GAO B, BATALLER R. Alcoholic liver disease: Pathogenesis and new therapeutic targets[J]. Gastroenterology, 2011, 141( 5): 1572- 1585. DOI: 10.1053/j.gastro.2011.09.002.
    [32] ZIMA T, KALOUSOVÁ M. Oxidative stress and signal transduction pathways in alcoholic liver disease[J]. Alcohol Clin Exp Res, 2005, 29( 11 Suppl): 110S- 115S. DOI: 10.1097/01.alc.0000189288.30358.4b.
    [33] REYES-GORDILLO K, SHAH R, ARELLANES-ROBLEDO J, et al. Akt1 and Akt2 isoforms play distinct roles in regulating the development of inflammation and fibrosis associated with alcoholic liver disease[J]. Cells, 2019, 8( 11): 1337. DOI: 10.3390/cells8111337.
    [34] PENNINGTON HL, HALL PM, WILCE PA, et al. Ethanol feeding enhances inflammatory cytokine expression in lipopolysaccharide-induced hepatitis[J]. J Gastroenterol Hepatol, 1997, 12( 4): 305- 313. DOI: 10.1111/j.1440-1746.1997.tb00426.x.
    [35] de la M HALL P, LIEBER CS, DECARLI LM, et al. Models of alcoholic liver disease in rodents: a critical evaluation[J]. Alcohol Clin Exp Res, 2001, 25(5 Suppl ISBRA): 254S- 261S. DOI: 10.1097/00000374-200105-051-00041.
    [36] XU JS, XU Y, LI YY, et al. Carboxylesterase 1 is regulated by hepatocyte nuclear factor 4α and protects against alcohol- and MCD diet-induced liver injury[J]. Sci Rep, 2016, 6: 24277. DOI: 10.1038/srep24277.
    [37] XU MJ, CAI Y, WANG H, et al. Fat-specific protein 27/CIDEC promotes development of alcoholic steatohepatitis in mice and humans[J]. Gastroenterology, 2015, 149( 4): 1030- 1041. e 6. DOI: 10.1053/j.gastro.2015.06.009.
    [38] LU YK, WU DF, WANG XD, et al. Chronic alcohol-induced liver injury and oxidant stress are decreased in cytochrome P4502E1 knockout mice and restored in humanized cytochrome P4502E1 knock-in mice[J]. Free Radic Biol Med, 2010, 49( 9): 1406- 1416. DOI: 10.1016/j.freeradbiomed.2010.07.026.
    [39] BUTURA A, NILSSON K, MORGAN K, et al. The impact of CYP2E1 on the development of alcoholic liver disease as studied in a transgenic mouse model[J]. J Hepatol, 2009, 50( 3): 572- 583. DOI: 10.1016/j.jhep.2008.10.020.
    [40] Hepatology Branch of the Chinese Medical Association. Guidelines for the prevention and treatment of metabolism-related(non-alcoholic) fatty liver disease(2024 edition)[J]. J Prac Hepatol, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163.

    中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 实用肝脏病杂志, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163.
    [41] TACKE F, HORN P, WONG VW, et al. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease(MASLD)[J]. J Hepatol, 2024, 81( 3): 492- 542. DOI: 10.1016/j.jhep.2024.04.031.
  • 加载中
表(1)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  37
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-04
  • 录用日期:  2025-03-21
  • 出版日期:  2025-09-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回