肠道菌群稳态在肝细胞癌发生发展中的作用及相关靶向干预策略
DOI: 10.12449/JCH250930
The role of gut microbiota homeostasis in the occurrence and development of hepatocellular carcinoma and targeted intervention strategies
-
摘要: 肝细胞癌(HCC)作为全球第六大常见恶性肿瘤,其隐匿性发病特征和高死亡率对人类健康构成严重威胁。本文综述肠道菌群(GM)稳态在HCC发生发展中的分子机制与干预策略,旨在为HCC的干预和治疗提供新思路。GM失调、肠渗漏、微生物相关分子模式、细菌易位及代谢产物等在HCC进展中发挥关键作用。GM失衡可能导致免疫逃逸,进而促进肿瘤细胞增殖和转移。本文详细论述GM与HCC的关系,深入分析GM在HCC发生发展中的作用机制,研究胆汁酸相关代谢产物、短链脂肪酸相关代谢产物及其他代谢产物在HCC中的作用,并探讨靶向GM治疗HCC的策略,包括益生菌、益生元、抗生素和Toll样受体4拮抗剂的使用及粪便微生物群移植等方法。本文强调,维护肠道屏障完整和GM稳态在HCC防治中具有重要意义,为开发新的诊疗策略提供方向。Abstract: Hepatocellular carcinoma (HCC), as the sixth most common malignant tumor worldwide, poses a serious threat to human health due to its insidious onset and high mortality rate. This article reviews the molecular mechanisms and intervention strategies of gut microbiota (GM) homeostasis in the development and progression of HCC, in order to provide new ideas for the intervention and treatment of HCC. Studies have shown that GM dysbiosis, intestinal leakage, microbial-associated molecular pattern, bacterial translocation, and metabolic products play key roles in the progression of HCC. GM imbalance may lead to immune escape, thereby promoting tumor cell proliferation and metastasis. This article elaborates on the association between GM and HCC, deeply analyzes the mechanism of action of GM in the development and progression of HCC, investigates the role of bile acid-related metabolites, short-chain fatty acid-related metabolites, and other metabolites in HCC, and explores the strategies for targeting GM in the treatment of HCC, including probiotics, prebiotics, antibiotics, Toll-like receptor 4 antagonists, and fecal microbiota transplantation. This article emphasizes that maintaining the integrity of the intestinal barrier and GM homeostasis is of great significance in the prevention and treatment of HCC, which provides a direction for developing new diagnosis and treatment strategies.
-
Key words:
- Carcinoma, Hepatocellular /
- Gastrointestinal Microbiome /
- Therapeutics
-
表 1 不同代谢产物在HCC中的机制及作用
Table 1. The mechanism and role of different metabolites in HCC
代谢产物 机制 作用 参考文献 吲哚-3-乙酸 通过诱导血红素加氧酶1的表达以及直接清除自由基发挥作用 减轻RAW264.7巨噬细胞中的炎
症反应和自由基产生[39] 在非酒精性脂肪性肝病的研究中,IAA通过缓解肝脏脂肪生成、
氧化应激和炎症反应发挥作用减轻小鼠的肝损伤 [40] 吲哚丙酸 在非酒精性脂肪性肝病的研究中,增强线粒体氧化磷酸化作用 改善线粒体呼吸缺陷 [41] 多氨 与mTOR和RAS等致癌信号通路存在交叉作用 可能成为癌症治疗的潜在靶点 [42] 精氨酸 精氨酸耗竭 诱导HCC细胞死亡 [43] 通过RNA结合基序蛋白39控制代谢基因的表达 促进肿瘤形成 [44] L-精氨酸和5-FU联合应用可通过iNOS/NO/AKT途径抑制有氧
糖酵解酶,从而抑制糖代谢抑制HCC细胞的糖代谢 [45] 亚精胺 激活微管相关蛋白1S介导的自噬,缓解自噬中的癌细胞缺陷 预防肝纤维化和HCC [46] 通过在mRNA和蛋白水平上减少细胞外基质蛋白水平以及
增加HSC中脂滴数量发挥作用抑制HSC的活化 [47] 甲烷 通过激活PI3K/AKT/GSK-3β信号通路上调IL-10的表达 抑制NF-κB和MAPK信号通路 [48] 硫化氢 调节3-巯基丙酮酸硫转移酶酶的表达 双向调节HCC进展 [49] -
[1] ZHANG R, AI JY, WANG JK, et al. NCAPG promotes the proliferation of hepatocellular carcinoma through the CKII-dependent regulation of PTEN[J]. J Transl Med, 2022, 20( 1): 325. DOI: 10.1186/s12967-022-03519-z. [2] WANG HH, ZHANG SB, LI T, et al. MicroRNA-146a promotes proliferation, migration, and invasion of HepG2 via regulating FLAP[J]. Cancer Cell Int, 2022, 22( 1): 149. DOI: 10.1186/s12935-022-02568-0. [3] LIN HS, HUANG YL, WANG YS, et al. Identification of novel anti-liver cancer small molecules with better therapeutic index than sorafenib via zebrafish drug screening platform[J]. Cancers(Basel), 2019, 11( 6): 739. DOI: 10.3390/cancers11060739. [4] ZHAO YJ, XIE L, ZHANG YT, et al. Pyroptosis: A new bridge connecting the gut microbiota and liver diseases[J]. J Clin Hepatol, 2024, 40( 9): 1908- 1915. DOI: 10.12449/JCH240930.赵奕杰, 谢露, 张亚亭, 等. 细胞焦亡: 连接肠道菌群与肝脏疾病的新桥梁[J]. 临床肝胆病杂志, 2024, 40( 9): 1908- 1915. DOI: 10.12449/JCH240930. [5] CAUSSY C, TRIPATHI A, HUMPHREY G, et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease[J]. Nat Commun, 2019, 10( 1): 1406. DOI: 10.1038/s41467-019-09455-9. [6] YANG X, GAO XC, LIU J, et al. Effect of EPEC endotoxin and bifidobacteria on intestinal barrier function through modulation of toll-like receptor 2 and toll-like receptor 4 expression in intestinal epithelial cell-18[J]. World J Gastroenterol, 2017, 23( 26): 4744- 4751. DOI: 10.3748/wjg.v23.i26.4744. [7] LIANG Q, ZHANG MN, HU YD, et al. Gut microbiome contributes to liver fibrosis impact on T cell receptor immune repertoire[J]. Front Microbiol, 2020, 11: 571847. DOI: 10.3389/fmicb.2020.571847. [8] WANG T, WANG Q, SONG LH, et al. The role of lipopolysaccharide in the occurrence and development of hepatocellular carcinoma[J]. J Clin Hepatol, 2023, 39( 7): 1734- 1739. DOI: 10.3969/j.issn.1001-5256.2023.07.032.王涛, 王权, 宋立华, 等. 脂多糖在肝癌发生发展中的作用[J]. 临床肝胆病杂志, 2023, 39( 7): 1734- 1739. DOI: 10.3969/j.issn.1001-5256.2023.07.032. [9] KAHN J, PREGARTNER G, SCHEMMER P. Effects of both pro- and synbiotics in liver surgery and transplantation with special focus on the gut-liver axis-a systematic review and meta-analysis[J]. Nutrients, 2020, 12( 8): 2461. DOI: 10.3390/nu12082461. [10] RAM AK, VAIRAPPAN B, SRINIVAS BH. Nimbolide inhibits tumor growth by restoring hepatic tight junction protein expression and reduced inflammation in an experimental hepatocarcinogenesis[J]. World J Gastroenterol, 2020, 26( 45): 7131- 7152. DOI: 10.3748/wjg.v26.i45.7131. [11] BIAN CF, WANG Y, YU A, et al. Gut microbiota changes and biological mechanism in hepatocellular carcinoma after transarterial chemoembolization treatment[J]. Front Oncol, 2022, 12: 1002589. DOI: 10.3389/fonc.2022.1002589. [12] HOU ZP, DING QY, LI YQ, et al. Intestinal epithelial β Klotho is a critical protective factor in alcohol-induced intestinal barrier dysfunction and liver injury[J]. EBioMedicine, 2022, 82: 104181. DOI: 10.1016/j.ebiom.2022.104181. [13] OMARU N, WATANABE T, KAMATA K, et al. Activation of NOD1 and NOD2 in the development of liver injury and cancer[J]. Front Immunol, 2022, 13: 1004439. DOI: 10.3389/fimmu.2022.1004439. [14] ISLAM MS, YU H, MIAO LY, et al. Hepatoprotective effect of the ethanol extract of Illicium henryi against acute liver injury in mice induced by lipopolysaccharide[J]. Antioxidants(Basel), 2019, 8( 10): 446. DOI: 10.3390/antiox8100446. [15] HOU ZP, LI YP, ZHAO L, et al. Lipopolysaccharide inhibits lipophagy in HepG2 cells via activating mTOR pathway[J]. Acta Physiol Sin, 2021, 73( 5): 813- 820. DOI: 10.13294/j.aps.2021.0022侯正平, 李艳平, 赵磊, 等. 脂多糖通过激活mTOR信号通路抑制HepG2细胞中的脂噬作用[J]. 生理学报, 2021, 73( 5): 813- 820. DOI: 10.13294/j.aps.2021.0022 [16] DAI BL, CAO HB, HU Y, et al. Role of NLRP3 inflammasome activation in HCC cell progression[J]. Heliyon, 2023, 9( 9): e19542. DOI: 10.1016/j.heliyon.2023.e19542. [17] KUBO T, NISHIMURA N, KAJI K, et al. Role of epiregulin on lipopolysaccharide-induced hepatocarcinogenesis as a mediator via EGFR signaling in the cancer microenvironment[J]. Int J Mol Sci, 2024, 25( 8): 4405. DOI: 10.3390/ijms25084405. [18] HORII T, ORIKAWA Y, OHIRA Y, et al. Peptidoglycan-like components in Z-100, extracted from Mycobacterium tuberculosis strain aoyama B, increase IL-12p40 via NOD2[J]. J Immunol Res, 2022, 2022: 3530937. DOI: 10.1155/2022/3530937. [19] YANG ZY, FENG J, XIAO L, et al. Tumor-derived peptidoglycan recognition protein 2 predicts survival and antitumor immune responses in hepatocellular carcinoma[J]. Hepatology, 2020, 71( 5): 1626- 1642. DOI: 10.1002/hep.30924. [20] SONG Y, LAU HC, ZHANG X, et al. Bile acids, gut microbiota, and therapeutic insights in hepatocellular carcinoma[J]. Cancer Biol Med, 2023, 21( 2): 144- 162. DOI: 10.20892/j.issn.2095-3941.2023.0394. [21] TRAN QT, SENDLER M, WIESE ML, et al. Systemic bile acids affect the severity of acute pancreatitis in mice depending on their hydrophobicity and the disease pathogenesis[J]. Int J Mol Sci, 2022, 23( 21): 13592. DOI: 10.3390/ijms232113592. [22] YAO T, FU LY, WU YH, et al. Christensenella minuta alleviates acetaminophen-induced hepatotoxicity by regulating phenylalanine metabolism[J]. Nutrients, 2024, 16( 14): 2314. DOI: 10.3390/nu16142314. [23] JIA D, WANG QW, QI YD, et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer[J]. Cell, 2024, 187( 7): 1651- 1665.e21. DOI: 10.1016/j.cell.2024.02.022. [24] ZHANG Y, ZHANG Y, SHI XJ, et al. Chenodeoxycholic acid enhances the effect of sorafenib in inhibiting HepG2 cell growth through EGFR/Stat3 pathway[J]. Front Oncol, 2022, 12: 836333. DOI: 10.3389/fonc.2022.836333. [25] HUANG JH, WANG J, CHAI XQ, et al. The intratumoral bacterial metataxonomic signature of hepatocellular carcinoma[J]. Microbiol Spectr, 2022, 10( 5): e0098322. DOI: 10.1128/spectrum.00983-22. [26] XUN Z, YAO XB, OU QS. Emerging roles of bile acids in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma[J]. Cell Mol Immunol, 2023, 20( 9): 1087- 1089. DOI: 10.1038/s41423-023-01026-9. [27] IRACHETA-VELLVE A, CALENDA CD, PETRASEK J, et al. FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice[J]. Hepatol Commun, 2018, 2( 11): 1379- 1391. DOI: 10.1002/hep4.1256. [28] KHAN MA HYE, SCHMIDT J, STAVNIICHUK A, et al. A dual farnesoid X receptor/soluble epoxide hydrolase modulator treats non-alcoholic steatohepatitis in mice[J]. Biochem Pharmacol, 2019, 166: 212- 221. DOI: 10.1016/j.bcp.2019.05.023. [29] RAJAPAKSE J, KHATIWADA S, AKON AC, et al. Unveiling the complex relationship between gut microbiota and liver cancer: Opportunities for novel therapeutic interventions[J]. Gut Microbes, 2023, 15( 2): 2240031. DOI: 10.1080/19490976.2023.2240031. [30] KEITEL V, STINDT J, HÄUSSINGER D. Bile acid-activated receptors: GPBAR1(TGR5) and other G protein-coupled receptors[J]. Handb Exp Pharmacol, 2019, 256: 19- 49. DOI: 10.1007/164_2019_230. [31] XIA JK, TANG N, WU XY, et al. Deregulated bile acids may drive hepatocellular carcinoma metastasis by inducing an immunosuppressive microenvironment[J]. Front Oncol, 2022, 12: 1033145. DOI: 10.3389/fonc.2022.1033145. [32] KANG YB, CAI Y, YANG Y. The gut microbiome and hepatocellular carcinoma: Implications for early diagnostic biomarkers and novel therapies[J]. Liver Cancer, 2021, 11( 2): 113- 125. DOI: 10.1159/000521358. [33] MARTÍN-GRAU C, DÍAZ-LÓPEZ A, APARICIO E, et al. Short-chain fatty acid reference ranges in pregnant women from a Mediterranean Region of northern Spain: ECLIPSES study[J]. Nutrients, 2022, 14( 18): 3798. DOI: 10.3390/nu14183798. [34] MCBREARTY N, ARZUMANYAN A, BICHENKOV E, et al. Short chain fatty acids delay he development of hepatocellular carcinoma in HBx transgenic mice[J]. Neoplasia, 2021, 23( 5): 529- 538. DOI: 10.1016/j.neo.2021.04.004. [35] HU CP, XU BQ, WANG XD, et al. Gut microbiota-derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC[J]. Hepatology, 2023, 77( 1): 48- 64. DOI: 10.1002/hep.32449. [36] JING GX, XU WQ, MA W, et al. Echinacea purpurea polysaccharide intervene in hepatocellular carcinoma via modulation of gut microbiota to inhibit TLR4/NF-κB pathway[J]. Int J Biol Macromol, 2024, 261( Pt 2): 129917. DOI: 10.1016/j.ijbiomac.2024.129917. [37] CHE YB, CHEN GY, GUO QQ, et al. Gut microbial metabolite butyrate improves anticancer therapy by regulating intracellular calcium homeostasis[J]. Hepatology, 2023, 78( 1): 88- 102. DOI: 10.1097/HEP.0000000000000047. [38] YU YL, SHEN XR, XIAO X, et al. Butyrate modification promotes intestinal absorption and hepatic cancer cells targeting of ferroptosis inducer loaded nanoparticle for enhanced hepatocellular carcinoma therapy[J]. Small, 2023, 19( 36): e2301149. DOI: 10.1002/smll.202301149. [39] JI Y, YIN WZ, LIANG Y, et al. Anti-inflammatory and anti-oxidative activity of indole-3-acetic acid involves induction of HO-1 and neutralization of free radicals in RAW264.7 cells[J]. Int J Mol Sci, 2020, 21( 5): 1579. DOI: 10.3390/ijms21051579. [40] JI Y, GAO Y, CHEN H, et al. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress[J]. Nutrients, 2019, 11( 9): 2062. DOI: 10.3390/nu11092062. [41] ZHANG C, FU QS, SHAO K, et al. Indole-3-acetic acid improves the hepatic mitochondrial respiration defects by PGC1a up-regulation[J]. Cell Signal, 2022, 99: 110442. DOI: 10.1016/j.cellsig.2022.110442. [42] NOVITA SARI I, SETIAWAN T, SEOCK KIM K, et al. Metabolism and function of polyamines in cancer progression[J]. Cancer Lett, 2021, 519: 91- 104. DOI: 10.1016/j.canlet.2021.06.020. [43] PRASAD YR, ANAKHA J, PANDE AH. Treating liver cancer through arginine depletion[J]. Drug Discov Today, 2024, 29( 4): 103940. DOI: 10.1016/j.drudis.2024.103940. [44] MOSSMANN D, MÜLLER C, PARK S, et al. Arginine reprograms metabolism in liver cancer via RBM39[J]. Cell, 2023, 186( 23): 5068- 5083.e23. DOI: 10.1016/j.cell.2023.09.011. [45] HU YL, XING YH, FAN GL, et al. L-arginine combination with 5-fluorouracil inhibit hepatocellular carcinoma cells through suppressing iNOS/NO/AKT-mediated glycolysis[J]. Front Pharmacol, 2024, 15: 1391636. DOI: 10.3389/fphar.2024.1391636. [46] LI WJ, YUE F, DAI Y, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation[J]. Cell Death Differ, 2019, 26( 8): 1379- 1395. DOI: 10.1038/s41418-018-0211-7. [47] SHI BY, WANG W, YE MT, et al. Spermidine suppresses the activation of hepatic stellate cells to cure liver fibrosis through autophagy activator MAP1S[J]. Liver Int, 2023, 43( 6): 1307- 1319. DOI: 10.1111/liv.15558. [48] PHILIPP TM, SCHELLER AS, KRAFCZYK N, et al. Methanethiol: A scent mark of dysregulated sulfur metabolism in cancer[J]. Antioxidants(Basel), 2023, 12( 9): 1780. DOI: 10.3390/antiox12091780. [49] ZHAO HJ, ZHANG YT, FU XD, et al. The double-edged sword role of hydrogen sulfide in hepatocellular carcinoma[J]. Front Pharmacol, 2023, 14: 1280308. DOI: 10.3389/fphar.2023.1280308. [50] MARKOWIAK-KOPEĆ P, ŚLIŻEWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients, 2020, 12( 4): 1107. DOI: 10.3390/nu12041107. [51] SONG Q, ZHANG X, LIU WX, et al. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma[J]. J Hepatol, 2023, 79( 6): 1352- 1365. DOI: 10.1016/j.jhep.2023.07.005. [52] ARAI N, MIURA K, AIZAWA K, et al. Probiotics suppress nonalcoholic steatohepatitis and carcinogenesis progression in hepatocyte-specific PTEN knockout mice[J]. Sci Rep, 2022, 12( 1): 16206. DOI: 10.1038/s41598-022-20296-3. [53] LAU HC, ZHANG X, JI FF, et al. Lactobacillus acidophilus suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma through producing valeric acid[J]. EBioMedicine, 2024, 100: 104952. DOI: 10.1016/j.ebiom.2023.104952. [54] YU JJ, ZHU P, SHI LL, et al. Bifidobacterium longum promotes postoperative liver function recovery in patients with hepatocellular carcinoma[J]. Cell Host Microbe, 2024, 32( 1): 131- 144. e 6. DOI: 10.1016/j.chom.2023.11.011. [55] TRIANTOS C, KALAFATELI M, ASSIMAKOPOULOS SF, et al. Endotoxin translocation and gut barrier dysfunction are related to variceal bleeding in patients with liver cirrhosis[J]. Front Med(Lausanne), 2022, 9: 836306. DOI: 10.3389/fmed.2022.836306. [56] SHI K, ZHANG Q, ZHANG Y, et al. Association between probiotic therapy and the risk of hepatocellular carcinoma in patients with hepatitis B-related cirrhosis[J]. Front Cell Infect Microbiol, 2023, 12: 1104399. DOI: 10.3389/fcimb.2022.1104399. [57] NI JJ, HUANG R, ZHOU HF, et al. Analysis of the relationship between the degree of dysbiosis in gut microbiota and prognosis at different stages of primary hepatocellular carcinoma[J]. Front Microbiol, 2019, 10: 1458. DOI: 10.3389/fmicb.2019.01458. [58] PATEL VC, LEE S, MCPHAIL MJW, et al. Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial[J]. J Hepatol, 2022, 76( 2): 332- 342. DOI: 10.1016/j.jhep.2021.09.010. [59] YANG WT, GUO GY, SUN C. Therapeutic potential of rifaximin in liver diseases[J]. Biomed Pharmacother, 2024, 178: 117283. DOI: 10.1016/j.biopha.2024.117283. [60] LOOMBA R, SANYAL AJ, KOWDLEY KV, et al. Factors associated with histologic response in adult patients with nonalcoholic steatohepatitis[J]. Gastroenterology, 2019, 156( 1): 88- 95. e 5. DOI: 10.1053/j.gastro.2018.09.021. [61] WANG AJ, WANG YY, LIANG X, et al. Research progress on mechanisms and therapeutic drugs of peroxi-some proliferator-activated receptor in treatment of cholestatic liver disease[J]. Chin J Clin Pharmacol Ther, 2023, 28( 7): 796- 808. DOI: 10.12092/j.issn.1009-2501.2023.07.011.王安婧, 王亚亚, 梁轩, 等. 基于PPAR治疗胆汁淤积性肝病的机制与药物研究进展[J]. 中国临床药理学与治疗学, 2023, 28( 7): 796- 808. DOI: 10.12092/j.issn.1009-2501.2023.07.011. [62] VARANASI SK, CHEN D, LIU YL, et al. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer[J]. Science, 2025, 387( 6730): 192- 201. DOI: 10.1126/science.adl4100. [63] SUN LL, CAI J, GONZALEZ FJ. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 5): 335- 347. DOI: 10.1038/s41575-020-00404-2. [64] BARUCH EN, YOUNGSTER I, BEN-BETZALEL G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients[J]. Science, 2021, 371( 6529): 602- 609. DOI: 10.1126/science.abb5920. [65] ENGELMANN C, SHEIKH M, SHARMA S, et al. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure[J]. J Hepatol, 2020, 73( 1): 102- 112. DOI: 10.1016/j.jhep.2020.01.011. -

PDF下载 ( 1037 KB)
下载:
