中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道菌群稳态在肝细胞癌发生发展中的作用及相关靶向干预策略

崔艳 焦俊喆 闫瑞娟 闫曙光 魏海梁 常占杰 张海博 李京涛

引用本文:
Citation:

肠道菌群稳态在肝细胞癌发生发展中的作用及相关靶向干预策略

DOI: 10.12449/JCH250930
基金项目: 

国家自然科学基金 (82174330);

国家自然科学基金 (82374418);

陕西省科技厅科研基金 (2024JC-YBMS-650);

陕西省科技厅科研基金 (2024SF-YBXM-528);

陕西省科技厅创新团队 (2022TD-55);

陕西省中医药管理局 (SZY-KJCYC-2023-049);

陕西省中医药管理局 (SZY-KJCYC-2023-087);

陕西省中医药管理局“双链融合”创新团队 (2022-SLRH-LJ-002)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:崔艳负责设计课题,分析资料,撰写论文;焦俊喆、闫瑞娟、闫曙光、魏海梁参与收集数据,修改论文;常占杰、张海博、李京涛负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    李京涛, lijingtao555@163.com (ORCID: 0000-0002-9286-2542)

The role of gut microbiota homeostasis in the occurrence and development of hepatocellular carcinoma and targeted intervention strategies

Research funding: 

National Natural Science Foundation of China (82174330);

National Natural Science Foundation of China (82374418);

Shaanxi Province Science and Technology Department Research Fund (2024JC-YBMS-650);

Shaanxi Province Science and Technology Department Research Fund (2024SF-YBXM-528);

Shaanxi Province Science and Technology Department Innovation Team (2022TD-55);

Shaanxi Province Traditional Chinese Medicine Administration (SZY-KJCYC-2023-049);

Shaanxi Province Traditional Chinese Medicine Administration (SZY-KJCYC-2023-087);

Shaanxi Province Traditional Chinese Medicine Administration “Dual Chain Integration” Innovation Team (2022-SLRH-LJ-002)

More Information
  • 摘要: 肝细胞癌(HCC)作为全球第六大常见恶性肿瘤,其隐匿性发病特征和高死亡率对人类健康构成严重威胁。本文综述肠道菌群(GM)稳态在HCC发生发展中的分子机制与干预策略,旨在为HCC的干预和治疗提供新思路。GM失调、肠渗漏、微生物相关分子模式、细菌易位及代谢产物等在HCC进展中发挥关键作用。GM失衡可能导致免疫逃逸,进而促进肿瘤细胞增殖和转移。本文详细论述GM与HCC的关系,深入分析GM在HCC发生发展中的作用机制,研究胆汁酸相关代谢产物、短链脂肪酸相关代谢产物及其他代谢产物在HCC中的作用,并探讨靶向GM治疗HCC的策略,包括益生菌、益生元、抗生素和Toll样受体4拮抗剂的使用及粪便微生物群移植等方法。本文强调,维护肠道屏障完整和GM稳态在HCC防治中具有重要意义,为开发新的诊疗策略提供方向。

     

  • 注: BA,胆汁酸;FMT,粪便微生物群移植;TLR4,Toll样受体4;GM,肠道菌群;MAMP,微生物相关分子模式;LPS,脂多糖;HSC,肝星状细胞;TME,肿瘤微环境;NF-κB,核因子κB;HCC,肝细胞癌;SCFA,短链脂肪酸;FXR,法尼醇X受体;TGR5,武田G蛋白偶联受体5。

    图  1  GM与HCC的关系

    Figure  1.  The relationship between GM and HCC

    表  1  不同代谢产物在HCC中的机制及作用

    Table  1.   The mechanism and role of different metabolites in HCC

    代谢产物 机制 作用 参考文献
    吲哚-3-乙酸 通过诱导血红素加氧酶1的表达以及直接清除自由基发挥作用 减轻RAW264.7巨噬细胞中的炎
    症反应和自由基产生
    39
    在非酒精性脂肪性肝病的研究中,IAA通过缓解肝脏脂肪生成、
    氧化应激和炎症反应发挥作用
    减轻小鼠的肝损伤 40
    吲哚丙酸 在非酒精性脂肪性肝病的研究中,增强线粒体氧化磷酸化作用 改善线粒体呼吸缺陷 41
    多氨 与mTOR和RAS等致癌信号通路存在交叉作用 可能成为癌症治疗的潜在靶点 42
    精氨酸 精氨酸耗竭 诱导HCC细胞死亡 43
    通过RNA结合基序蛋白39控制代谢基因的表达 促进肿瘤形成 44
    L-精氨酸和5-FU联合应用可通过iNOS/NO/AKT途径抑制有氧
    糖酵解酶,从而抑制糖代谢
    抑制HCC细胞的糖代谢 45
    亚精胺 激活微管相关蛋白1S介导的自噬,缓解自噬中的癌细胞缺陷 预防肝纤维化和HCC 46
    通过在mRNA和蛋白水平上减少细胞外基质蛋白水平以及
    增加HSC中脂滴数量发挥作用
    抑制HSC的活化 47
    甲烷 通过激活PI3K/AKT/GSK-3β信号通路上调IL-10的表达 抑制NF-κB和MAPK信号通路 48
    硫化氢 调节3-巯基丙酮酸硫转移酶酶的表达 双向调节HCC进展 49
    下载: 导出CSV
  • [1] ZHANG R, AI JY, WANG JK, et al. NCAPG promotes the proliferation of hepatocellular carcinoma through the CKII-dependent regulation of PTEN[J]. J Transl Med, 2022, 20( 1): 325. DOI: 10.1186/s12967-022-03519-z.
    [2] WANG HH, ZHANG SB, LI T, et al. MicroRNA-146a promotes proliferation, migration, and invasion of HepG2 via regulating FLAP[J]. Cancer Cell Int, 2022, 22( 1): 149. DOI: 10.1186/s12935-022-02568-0.
    [3] LIN HS, HUANG YL, WANG YS, et al. Identification of novel anti-liver cancer small molecules with better therapeutic index than sorafenib via zebrafish drug screening platform[J]. Cancers(Basel), 2019, 11( 6): 739. DOI: 10.3390/cancers11060739.
    [4] ZHAO YJ, XIE L, ZHANG YT, et al. Pyroptosis: A new bridge connecting the gut microbiota and liver diseases[J]. J Clin Hepatol, 2024, 40( 9): 1908- 1915. DOI: 10.12449/JCH240930.

    赵奕杰, 谢露, 张亚亭, 等. 细胞焦亡: 连接肠道菌群与肝脏疾病的新桥梁[J]. 临床肝胆病杂志, 2024, 40( 9): 1908- 1915. DOI: 10.12449/JCH240930.
    [5] CAUSSY C, TRIPATHI A, HUMPHREY G, et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease[J]. Nat Commun, 2019, 10( 1): 1406. DOI: 10.1038/s41467-019-09455-9.
    [6] YANG X, GAO XC, LIU J, et al. Effect of EPEC endotoxin and bifidobacteria on intestinal barrier function through modulation of toll-like receptor 2 and toll-like receptor 4 expression in intestinal epithelial cell-18[J]. World J Gastroenterol, 2017, 23( 26): 4744- 4751. DOI: 10.3748/wjg.v23.i26.4744.
    [7] LIANG Q, ZHANG MN, HU YD, et al. Gut microbiome contributes to liver fibrosis impact on T cell receptor immune repertoire[J]. Front Microbiol, 2020, 11: 571847. DOI: 10.3389/fmicb.2020.571847.
    [8] WANG T, WANG Q, SONG LH, et al. The role of lipopolysaccharide in the occurrence and development of hepatocellular carcinoma[J]. J Clin Hepatol, 2023, 39( 7): 1734- 1739. DOI: 10.3969/j.issn.1001-5256.2023.07.032.

    王涛, 王权, 宋立华, 等. 脂多糖在肝癌发生发展中的作用[J]. 临床肝胆病杂志, 2023, 39( 7): 1734- 1739. DOI: 10.3969/j.issn.1001-5256.2023.07.032.
    [9] KAHN J, PREGARTNER G, SCHEMMER P. Effects of both pro- and synbiotics in liver surgery and transplantation with special focus on the gut-liver axis-a systematic review and meta-analysis[J]. Nutrients, 2020, 12( 8): 2461. DOI: 10.3390/nu12082461.
    [10] RAM AK, VAIRAPPAN B, SRINIVAS BH. Nimbolide inhibits tumor growth by restoring hepatic tight junction protein expression and reduced inflammation in an experimental hepatocarcinogenesis[J]. World J Gastroenterol, 2020, 26( 45): 7131- 7152. DOI: 10.3748/wjg.v26.i45.7131.
    [11] BIAN CF, WANG Y, YU A, et al. Gut microbiota changes and biological mechanism in hepatocellular carcinoma after transarterial chemoembolization treatment[J]. Front Oncol, 2022, 12: 1002589. DOI: 10.3389/fonc.2022.1002589.
    [12] HOU ZP, DING QY, LI YQ, et al. Intestinal epithelial β Klotho is a critical protective factor in alcohol-induced intestinal barrier dysfunction and liver injury[J]. EBioMedicine, 2022, 82: 104181. DOI: 10.1016/j.ebiom.2022.104181.
    [13] OMARU N, WATANABE T, KAMATA K, et al. Activation of NOD1 and NOD2 in the development of liver injury and cancer[J]. Front Immunol, 2022, 13: 1004439. DOI: 10.3389/fimmu.2022.1004439.
    [14] ISLAM MS, YU H, MIAO LY, et al. Hepatoprotective effect of the ethanol extract of Illicium henryi against acute liver injury in mice induced by lipopolysaccharide[J]. Antioxidants(Basel), 2019, 8( 10): 446. DOI: 10.3390/antiox8100446.
    [15] HOU ZP, LI YP, ZHAO L, et al. Lipopolysaccharide inhibits lipophagy in HepG2 cells via activating mTOR pathway[J]. Acta Physiol Sin, 2021, 73( 5): 813- 820. DOI: 10.13294/j.aps.2021.0022

    侯正平, 李艳平, 赵磊, 等. 脂多糖通过激活mTOR信号通路抑制HepG2细胞中的脂噬作用[J]. 生理学报, 2021, 73( 5): 813- 820. DOI: 10.13294/j.aps.2021.0022
    [16] DAI BL, CAO HB, HU Y, et al. Role of NLRP3 inflammasome activation in HCC cell progression[J]. Heliyon, 2023, 9( 9): e19542. DOI: 10.1016/j.heliyon.2023.e19542.
    [17] KUBO T, NISHIMURA N, KAJI K, et al. Role of epiregulin on lipopolysaccharide-induced hepatocarcinogenesis as a mediator via EGFR signaling in the cancer microenvironment[J]. Int J Mol Sci, 2024, 25( 8): 4405. DOI: 10.3390/ijms25084405.
    [18] HORII T, ORIKAWA Y, OHIRA Y, et al. Peptidoglycan-like components in Z-100, extracted from Mycobacterium tuberculosis strain aoyama B, increase IL-12p40 via NOD2[J]. J Immunol Res, 2022, 2022: 3530937. DOI: 10.1155/2022/3530937.
    [19] YANG ZY, FENG J, XIAO L, et al. Tumor-derived peptidoglycan recognition protein 2 predicts survival and antitumor immune responses in hepatocellular carcinoma[J]. Hepatology, 2020, 71( 5): 1626- 1642. DOI: 10.1002/hep.30924.
    [20] SONG Y, LAU HC, ZHANG X, et al. Bile acids, gut microbiota, and therapeutic insights in hepatocellular carcinoma[J]. Cancer Biol Med, 2023, 21( 2): 144- 162. DOI: 10.20892/j.issn.2095-3941.2023.0394.
    [21] TRAN QT, SENDLER M, WIESE ML, et al. Systemic bile acids affect the severity of acute pancreatitis in mice depending on their hydrophobicity and the disease pathogenesis[J]. Int J Mol Sci, 2022, 23( 21): 13592. DOI: 10.3390/ijms232113592.
    [22] YAO T, FU LY, WU YH, et al. Christensenella minuta alleviates acetaminophen-induced hepatotoxicity by regulating phenylalanine metabolism[J]. Nutrients, 2024, 16( 14): 2314. DOI: 10.3390/nu16142314.
    [23] JIA D, WANG QW, QI YD, et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer[J]. Cell, 2024, 187( 7): 1651- 1665.e21. DOI: 10.1016/j.cell.2024.02.022.
    [24] ZHANG Y, ZHANG Y, SHI XJ, et al. Chenodeoxycholic acid enhances the effect of sorafenib in inhibiting HepG2 cell growth through EGFR/Stat3 pathway[J]. Front Oncol, 2022, 12: 836333. DOI: 10.3389/fonc.2022.836333.
    [25] HUANG JH, WANG J, CHAI XQ, et al. The intratumoral bacterial metataxonomic signature of hepatocellular carcinoma[J]. Microbiol Spectr, 2022, 10( 5): e0098322. DOI: 10.1128/spectrum.00983-22.
    [26] XUN Z, YAO XB, OU QS. Emerging roles of bile acids in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma[J]. Cell Mol Immunol, 2023, 20( 9): 1087- 1089. DOI: 10.1038/s41423-023-01026-9.
    [27] IRACHETA-VELLVE A, CALENDA CD, PETRASEK J, et al. FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice[J]. Hepatol Commun, 2018, 2( 11): 1379- 1391. DOI: 10.1002/hep4.1256.
    [28] KHAN MA HYE, SCHMIDT J, STAVNIICHUK A, et al. A dual farnesoid X receptor/soluble epoxide hydrolase modulator treats non-alcoholic steatohepatitis in mice[J]. Biochem Pharmacol, 2019, 166: 212- 221. DOI: 10.1016/j.bcp.2019.05.023.
    [29] RAJAPAKSE J, KHATIWADA S, AKON AC, et al. Unveiling the complex relationship between gut microbiota and liver cancer: Opportunities for novel therapeutic interventions[J]. Gut Microbes, 2023, 15( 2): 2240031. DOI: 10.1080/19490976.2023.2240031.
    [30] KEITEL V, STINDT J, HÄUSSINGER D. Bile acid-activated receptors: GPBAR1(TGR5) and other G protein-coupled receptors[J]. Handb Exp Pharmacol, 2019, 256: 19- 49. DOI: 10.1007/164_2019_230.
    [31] XIA JK, TANG N, WU XY, et al. Deregulated bile acids may drive hepatocellular carcinoma metastasis by inducing an immunosuppressive microenvironment[J]. Front Oncol, 2022, 12: 1033145. DOI: 10.3389/fonc.2022.1033145.
    [32] KANG YB, CAI Y, YANG Y. The gut microbiome and hepatocellular carcinoma: Implications for early diagnostic biomarkers and novel therapies[J]. Liver Cancer, 2021, 11( 2): 113- 125. DOI: 10.1159/000521358.
    [33] MARTÍN-GRAU C, DÍAZ-LÓPEZ A, APARICIO E, et al. Short-chain fatty acid reference ranges in pregnant women from a Mediterranean Region of northern Spain: ECLIPSES study[J]. Nutrients, 2022, 14( 18): 3798. DOI: 10.3390/nu14183798.
    [34] MCBREARTY N, ARZUMANYAN A, BICHENKOV E, et al. Short chain fatty acids delay he development of hepatocellular carcinoma in HBx transgenic mice[J]. Neoplasia, 2021, 23( 5): 529- 538. DOI: 10.1016/j.neo.2021.04.004.
    [35] HU CP, XU BQ, WANG XD, et al. Gut microbiota-derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC[J]. Hepatology, 2023, 77( 1): 48- 64. DOI: 10.1002/hep.32449.
    [36] JING GX, XU WQ, MA W, et al. Echinacea purpurea polysaccharide intervene in hepatocellular carcinoma via modulation of gut microbiota to inhibit TLR4/NF-κB pathway[J]. Int J Biol Macromol, 2024, 261( Pt 2): 129917. DOI: 10.1016/j.ijbiomac.2024.129917.
    [37] CHE YB, CHEN GY, GUO QQ, et al. Gut microbial metabolite butyrate improves anticancer therapy by regulating intracellular calcium homeostasis[J]. Hepatology, 2023, 78( 1): 88- 102. DOI: 10.1097/HEP.0000000000000047.
    [38] YU YL, SHEN XR, XIAO X, et al. Butyrate modification promotes intestinal absorption and hepatic cancer cells targeting of ferroptosis inducer loaded nanoparticle for enhanced hepatocellular carcinoma therapy[J]. Small, 2023, 19( 36): e2301149. DOI: 10.1002/smll.202301149.
    [39] JI Y, YIN WZ, LIANG Y, et al. Anti-inflammatory and anti-oxidative activity of indole-3-acetic acid involves induction of HO-1 and neutralization of free radicals in RAW264.7 cells[J]. Int J Mol Sci, 2020, 21( 5): 1579. DOI: 10.3390/ijms21051579.
    [40] JI Y, GAO Y, CHEN H, et al. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress[J]. Nutrients, 2019, 11( 9): 2062. DOI: 10.3390/nu11092062.
    [41] ZHANG C, FU QS, SHAO K, et al. Indole-3-acetic acid improves the hepatic mitochondrial respiration defects by PGC1a up-regulation[J]. Cell Signal, 2022, 99: 110442. DOI: 10.1016/j.cellsig.2022.110442.
    [42] NOVITA SARI I, SETIAWAN T, SEOCK KIM K, et al. Metabolism and function of polyamines in cancer progression[J]. Cancer Lett, 2021, 519: 91- 104. DOI: 10.1016/j.canlet.2021.06.020.
    [43] PRASAD YR, ANAKHA J, PANDE AH. Treating liver cancer through arginine depletion[J]. Drug Discov Today, 2024, 29( 4): 103940. DOI: 10.1016/j.drudis.2024.103940.
    [44] MOSSMANN D, MÜLLER C, PARK S, et al. Arginine reprograms metabolism in liver cancer via RBM39[J]. Cell, 2023, 186( 23): 5068- 5083.e23. DOI: 10.1016/j.cell.2023.09.011.
    [45] HU YL, XING YH, FAN GL, et al. L-arginine combination with 5-fluorouracil inhibit hepatocellular carcinoma cells through suppressing iNOS/NO/AKT-mediated glycolysis[J]. Front Pharmacol, 2024, 15: 1391636. DOI: 10.3389/fphar.2024.1391636.
    [46] LI WJ, YUE F, DAI Y, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation[J]. Cell Death Differ, 2019, 26( 8): 1379- 1395. DOI: 10.1038/s41418-018-0211-7.
    [47] SHI BY, WANG W, YE MT, et al. Spermidine suppresses the activation of hepatic stellate cells to cure liver fibrosis through autophagy activator MAP1S[J]. Liver Int, 2023, 43( 6): 1307- 1319. DOI: 10.1111/liv.15558.
    [48] PHILIPP TM, SCHELLER AS, KRAFCZYK N, et al. Methanethiol: A scent mark of dysregulated sulfur metabolism in cancer[J]. Antioxidants(Basel), 2023, 12( 9): 1780. DOI: 10.3390/antiox12091780.
    [49] ZHAO HJ, ZHANG YT, FU XD, et al. The double-edged sword role of hydrogen sulfide in hepatocellular carcinoma[J]. Front Pharmacol, 2023, 14: 1280308. DOI: 10.3389/fphar.2023.1280308.
    [50] MARKOWIAK-KOPEĆ P, ŚLIŻEWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients, 2020, 12( 4): 1107. DOI: 10.3390/nu12041107.
    [51] SONG Q, ZHANG X, LIU WX, et al. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma[J]. J Hepatol, 2023, 79( 6): 1352- 1365. DOI: 10.1016/j.jhep.2023.07.005.
    [52] ARAI N, MIURA K, AIZAWA K, et al. Probiotics suppress nonalcoholic steatohepatitis and carcinogenesis progression in hepatocyte-specific PTEN knockout mice[J]. Sci Rep, 2022, 12( 1): 16206. DOI: 10.1038/s41598-022-20296-3.
    [53] LAU HC, ZHANG X, JI FF, et al. Lactobacillus acidophilus suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma through producing valeric acid[J]. EBioMedicine, 2024, 100: 104952. DOI: 10.1016/j.ebiom.2023.104952.
    [54] YU JJ, ZHU P, SHI LL, et al. Bifidobacterium longum promotes postoperative liver function recovery in patients with hepatocellular carcinoma[J]. Cell Host Microbe, 2024, 32( 1): 131- 144. e 6. DOI: 10.1016/j.chom.2023.11.011.
    [55] TRIANTOS C, KALAFATELI M, ASSIMAKOPOULOS SF, et al. Endotoxin translocation and gut barrier dysfunction are related to variceal bleeding in patients with liver cirrhosis[J]. Front Med(Lausanne), 2022, 9: 836306. DOI: 10.3389/fmed.2022.836306.
    [56] SHI K, ZHANG Q, ZHANG Y, et al. Association between probiotic therapy and the risk of hepatocellular carcinoma in patients with hepatitis B-related cirrhosis[J]. Front Cell Infect Microbiol, 2023, 12: 1104399. DOI: 10.3389/fcimb.2022.1104399.
    [57] NI JJ, HUANG R, ZHOU HF, et al. Analysis of the relationship between the degree of dysbiosis in gut microbiota and prognosis at different stages of primary hepatocellular carcinoma[J]. Front Microbiol, 2019, 10: 1458. DOI: 10.3389/fmicb.2019.01458.
    [58] PATEL VC, LEE S, MCPHAIL MJW, et al. Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial[J]. J Hepatol, 2022, 76( 2): 332- 342. DOI: 10.1016/j.jhep.2021.09.010.
    [59] YANG WT, GUO GY, SUN C. Therapeutic potential of rifaximin in liver diseases[J]. Biomed Pharmacother, 2024, 178: 117283. DOI: 10.1016/j.biopha.2024.117283.
    [60] LOOMBA R, SANYAL AJ, KOWDLEY KV, et al. Factors associated with histologic response in adult patients with nonalcoholic steatohepatitis[J]. Gastroenterology, 2019, 156( 1): 88- 95. e 5. DOI: 10.1053/j.gastro.2018.09.021.
    [61] WANG AJ, WANG YY, LIANG X, et al. Research progress on mechanisms and therapeutic drugs of peroxi-some proliferator-activated receptor in treatment of cholestatic liver disease[J]. Chin J Clin Pharmacol Ther, 2023, 28( 7): 796- 808. DOI: 10.12092/j.issn.1009-2501.2023.07.011.

    王安婧, 王亚亚, 梁轩, 等. 基于PPAR治疗胆汁淤积性肝病的机制与药物研究进展[J]. 中国临床药理学与治疗学, 2023, 28( 7): 796- 808. DOI: 10.12092/j.issn.1009-2501.2023.07.011.
    [62] VARANASI SK, CHEN D, LIU YL, et al. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer[J]. Science, 2025, 387( 6730): 192- 201. DOI: 10.1126/science.adl4100.
    [63] SUN LL, CAI J, GONZALEZ FJ. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 5): 335- 347. DOI: 10.1038/s41575-020-00404-2.
    [64] BARUCH EN, YOUNGSTER I, BEN-BETZALEL G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients[J]. Science, 2021, 371( 6529): 602- 609. DOI: 10.1126/science.abb5920.
    [65] ENGELMANN C, SHEIKH M, SHARMA S, et al. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure[J]. J Hepatol, 2020, 73( 1): 102- 112. DOI: 10.1016/j.jhep.2020.01.011.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  44
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 录用日期:  2025-03-14
  • 出版日期:  2025-09-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回