中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树突状细胞在自身免疫性肝病和自身免疫性胰腺炎中的作用

席文丰 柏小寅 杨爱明

引用本文:
Citation:

树突状细胞在自身免疫性肝病和自身免疫性胰腺炎中的作用

DOI: 10.12449/JCH250928
基金项目: 

国家自然科学基金 (82470700);

中国医学科学院医学与健康科技创新工程 (2023-I2M-2-002);

中国医学科学院临床与转化医学研究专项 (2024-I2M-CT-B-016)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:席文丰负责文献检索,撰写文章;柏小寅负责设计论文框架和修改论文;杨爱明负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    柏小寅, baixiaoyin@pumch.cn (ORCID: 0000-0002-9092-7592)

    杨爱明, yangam2020@126.com (ORCID: 0000-0002-2907-7904)

The role of dendritic cells in autoimmune liver diseases and autoimmune pancreatitis

Research funding: 

National Natural Science Foundation of China (82470700);

Chinese Academy of Medical Science Innovation Fund for Medical Sciences (2023-I2M-2-002);

Special Project of Clinical and Translational Medicine Research, Chinese Academy of Medical Sciences (2024-I2M-CT-B-016)

More Information
  • 摘要: 树突状细胞(DC)作为免疫系统的关键调控细胞,在自身免疫性疾病的发病机制中发挥着重要作用。本文综述了DC在自身免疫性肝病(包括自身免疫性肝炎、原发性胆汁性胆管炎、原发性硬化性胆管炎)和自身免疫性胰腺炎中的作用机制与研究进展;通过总结DC在上述疾病中的功能及异质性,揭示其在免疫耐受失衡和慢性炎症中的关键作用。相关研究成果为深入解析DC在自身免疫性肝病和自身免疫性胰腺炎中的作用提供了重要依据,并为精准治疗策略的研发奠定了基础。

     

  • 图  1  DC在AILD和AIP中的主要致病机制

    Figure  1.  The main pathogenic mechanisms of dendritic cells in AILDs and AIP

    表  1  不同类型的DC的特点与功能

    Table  1.   Characteristics and functions of different dendritic cell subtypes

    特点与功能 cDC pDC MoDC
    来源 髓系细胞系 髓系细胞系,发育路径不同于cDC 外周血单核细胞为炎症条件下分
    化而来
    分布部位 外周组织(如皮肤、黏膜),淋
    巴结,脾脏
    外周血、淋巴结、脾脏 外周血、炎症部位
    主要功能 抗原摄取、加工和呈递,激活初始
    T细胞
    大量分泌Ⅰ型IFN(IFN-α/β)、抗
    病毒免疫
    参与炎症反应
    表面标志物 CD11c、CD141、XCR1、CD1c、
    CD172a
    CD123、CD303、CD304 CD14、CD1a/CD1c
    免疫应答中的作用 在免疫启动阶段发挥关键作用,
    连接先天免疫和适应性免疫
    在抗病毒免疫中快速响应,通过
    产生IFN抑制病毒复制,调节免疫
    细胞的活性
    在炎症反应中参与免疫细胞的募
    集和激活,调节局部免疫微环境

    注:XCR1,X C motif趋化因子受体。

    下载: 导出CSV

    表  2  不同类型的DC在AILD和AIP中的表型与功能

    Table  2.   Phenotypes and functions of dendritic cell subtypes in AILD and AIP

    疾病 DC亚类 表型特征 功能与分子机制
    AIH cDC 自噬活性增强,MHC-Ⅱ、CD80、CD86表达上调 自噬相关基因表达异常(LC3-Ⅱ升高、p62降低),抗原呈递能力
    增强,促炎因子(IL-12、IFN-γ)分泌增加
    MoDC lncRNA、circRNA表达谱改变 调控DC的免疫功能和炎症反应影响疾病进展
    PBC cDC1 集中在门静脉区域,可能通过呈递线粒体抗原激活CD8+T细胞
    PSC cDC2 分泌IL-1β、CXCL2和CCL2等因子,上调与炎症、
    抗原呈递和模式识别相关的基因
    驱动Th17的分化和扩增,促进炎症
    AIP pDC 分泌IFN-α和IL-33 加快胰腺慢性炎症和纤维化进程,肠道菌群失调和高脂饮食可
    激活pDC
    cDC 分泌IFN-α/β和CXCL9/10等趋化因子 吸引CXCR3+ T细胞进入胰腺,此类T细胞分泌CCL25,招募表达
    CCR9的pDC进入胰腺,pDC在胰腺中成为IFN-α的主要来源,与
    CXCR3+ T细胞相互作用,从而形成正反馈环路

    注:MHC-Ⅱ,主要组织相容性复合体Ⅱ类;lncRNA,长链非编码RNA;circRNA,环状RNA;CXCR,CXC模式趋化因子受体。

    下载: 导出CSV
  • [1] YANG WJ. Pathological diagnosis of autoimmune hepatitis[J]. J Clin Hepatol, 2024, 40( 6): 1082- 1087. DOI: 10.12449/JCH240603.

    杨文君. 自身免疫性肝炎的病理学诊断[J]. 临床肝胆病杂志, 2024, 40( 6): 1082- 1087. DOI: 10.12449/JCH240603.
    [2] Chinese Society of Hepatology, Chinese Medical Association. Guidelines on the diagnosis and management of primary sclerosing cholangitis(2021)[J]. J Clin Hepatol, 2022, 38( 1): 50- 61. DOI: 10.3969/j.issn.1001-5256.2022.01.009.

    中华医学会肝病学分会. 原发性硬化性胆管炎诊断及治疗指南(2021)[J]. 临床肝胆病杂志, 2022, 38( 1): 50- 61. DOI: 10.3969/j.issn.1001-5256.2022.01.009.
    [3] LI YB, XU WT, DONG LY, et al. Research progress in the diagnosis and treatment of IgG4-related autoimmune pancreatitis[J]. Chin J Med Offic, 2024, 52( 10): 1094- 1096, 1100. DOI: 10.16680/j.1671-3826.2024.10.28.

    李怡冰, 许文涛, 董丽琰, 等. IgG4相关自身免疫性胰腺炎诊疗研究进展[J]. 临床军医杂志, 2024, 52( 10): 1094- 1096, 1100. DOI: 10.16680/j.1671-3826.2024.10.28.
    [4] PEARCE EJ, EVERTS B. Dendritic cell metabolism[J]. Nat Rev Immunol, 2015, 15( 1): 18- 29. DOI: 10.1038/nri3771.
    [5] COLLIN M, BIGLEY V. Human dendritic cell subsets: An update[J]. Immunology, 2018, 154( 1): 3- 20. DOI: 10.1111/imm.12888.
    [6] KONDO M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors[J]. Immunol Rev, 2010, 238( 1): 37- 46. DOI: 10.1111/j.1600-065X.2010.00963.x.
    [7] MANZ MG, TRAVER D, MIYAMOTO T, et al. Dendritic cell potentials of early lymphoid and myeloid progenitors[J]. Blood, 2001, 97( 11): 3333- 3341. DOI: 10.1182/blood.v97.11.3333.
    [8] YANG ZQ, LI MH. Research progress on the role of tolerogenic dendritic cells in immune tolerance of liver transplantation[J]. Organ Transpl, 2024, 15( 4): 575- 580. DOI: 10.3969/j.issn.1674-7445.2024039.

    杨志琦, 李明皓. 耐受性树突状细胞在肝移植免疫耐受中的作用研究进展[J]. 器官移植, 2024, 15( 4): 575- 580. DOI: 10.3969/j.issn.1674-7445.2024039.
    [9] KUSHWAH R, HU J. Complexity of dendritic cell subsets and their function in the host immune system[J]. Immunology, 2011, 133( 4): 409- 419. DOI: 10.1111/j.1365-2567.2011.03457.x.
    [10] SEGURA E. Human dendritic cell subsets: An updated view of their ontogeny and functional specialization[J]. Eur J Immunol, 2022, 52( 11): 1759- 1767. DOI: 10.1002/eji.202149632.
    [11] BAO MS, LIU YJ. Regulation of TLR7/9 signaling in plasmacytoid dendritic cells[J]. Protein Cell, 2013, 4( 1): 40- 52. DOI: 10.1007/s13238-012-2104-8.
    [12] NGO C, GARREC C, TOMASELLO E, et al. The role of plasmacytoid dendritic cells(pDCs) in immunity during viral infections and beyond[J]. Cell Mol Immunol, 2024, 21( 9): 1008- 1035. DOI: 10.1038/s41423-024-01167-5.
    [13] HIASA M, ABE M, NAKANO A, et al. GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-α converting enzyme(TACE)[J]. Blood, 2009, 114( 20): 4517- 4526. DOI: 10.1182/blood-2009-04-215020.
    [14] FEI MJ, BHATIA S, ORISS TB, et al. TNF-alpha from inflammatory dendritic cells(DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection[J]. Proc Natl Acad Sci U S A, 2011, 108( 13): 5360- 5365. DOI: 10.1073/pnas.1015476108.
    [15] MULLER-BERGHAUS J, OLSON WC, MOULTON RA, et al. IL-12 production by human monocyte-derived dendritic cells: Looking at the single cell[J]. J Immunother, 2005, 28( 4): 306- 313. DOI: 10.1097/01.cji.0000163594.74533.10.
    [16] LIU J, ZHANG XM, CHENG YJ, et al. Dendritic cell migration in inflammation and immunity[J]. Cell Mol Immunol, 2021, 18( 11): 2461- 2471. DOI: 10.1038/s41423-021-00726-4.
    [17] FAN XL, MEN RT, HUANG C, et al. Critical roles of conventional dendritic cells in autoimmune hepatitis via autophagy regulation[J]. Cell Death Dis, 2020, 11( 1): 23. DOI: 10.1038/s41419-019-2217-6.
    [18] TAN KG, XIE XH, SHI WW, et al. Deficiency of canonical Wnt/β- catenin signalling in hepatic dendritic cells triggers autoimmune hepatitis[J]. Liver Int, 2020, 40( 1): 131- 140. DOI: 10.1111/liv.14246.
    [19] IKEDA A, AOKI N, KIDO M, et al. Progression of autoimmune hepatitis is mediated by IL-18-producing dendritic cells and hepatic CXCL9 expression in mice[J]. Hepatology, 2014, 60( 1): 224- 236. DOI: 10.1002/hep.27087.
    [20] XIANG M, LIU TT, TAN WY, et al. Effects of kinsenoside, a potential immunosuppressive drug for autoimmune hepatitis, on dendritic cells/CD8+ T cells communication in mice[J]. Hepatology, 2016, 64( 6): 2135- 2150. DOI: 10.1002/hep.28825.
    [21] ZHANG QY, LUO Y, ZHENG QX, et al. Itaconate attenuates autoimmune hepatitis via PI3K/AKT/mTOR pathway-mediated inhibition of dendritic cell maturation and autophagy[J]. Heliyon, 2023, 9( 7): e17551. DOI: 10.1016/j.heliyon.2023.e17551.
    [22] YANG F, FAN XL, LIU YF, et al. Long noncoding RNA and circular RNA expression profiles of monocyte-derived dendritic cells in autoimmune hepatitis[J]. Front Pharmacol, 2021, 12: 792138. DOI: 10.3389/fphar.2021.792138.
    [23] REUVENI D, ASSI S, GORE Y, et al. Conventional type 1 dendritic cells are essential for the development of primary biliary cholangitis[J]. Liver Int, 2024, 44( 8): 2063- 2074. DOI: 10.1111/liv.15961.
    [24] KAWATA K, KOBAYASHI Y, GERSHWIN ME, et al. The immunophysiology and apoptosis of biliary epithelial cells: Primary biliary cirrhosis and primary sclerosing cholangitis[J]. Clin Rev Allergy Immunol, 2012, 43( 3): 230- 241. DOI: 10.1007/s12016-012-8324-0.
    [25] YOU ZR, WANG QX, BIAN ZL, et al. The immunopathology of liver granulomas in primary biliary cirrhosis[J]. J Autoimmun, 2012, 39( 3): 216- 221. DOI: 10.1016/j.jaut.2012.05.022.
    [26] MA WT, CHEN DK. Immunological abnormalities in patients with primary biliary cholangitis[J]. Clin Sci(Lond), 2019, 133( 6): 741- 760. DOI: 10.1042/CS20181123.
    [27] RAVICHANDRAN G, NEUMANN K, BERKHOUT LK, et al. Interferon-γ-dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice[J]. J Hepatol, 2019, 71( 4): 773- 782. DOI: 10.1016/j.jhep.2019.05.023.
    [28] WU P, XIE SN, CAI YS, et al. Causality of immune cells on primary sclerosing cholangitis: A bidirectional two-sample Mendelian randomization study[J]. Front Immunol, 2024, 15: 1395513. DOI: 10.3389/fimmu.2024.1395513.
    [29] ZHANG J, WANG HW, LIU JQ, et al. ANXA1 is identified as a key gene associated with high risk and T cell infiltration in primary sclerosing cholangitis[J]. Hum Genomics, 2023, 17( 1): 86. DOI: 10.1186/s40246-023-00534-z.
    [30] MÜLLER AL, CASAR C, PRETI M, et al. Inflammatory type 2 conventional dendritic cells contribute to murine and human cholangitis[J]. J Hepatol, 2022, 77( 6): 1532- 1544. DOI: 10.1016/j.jhep.2022.06.025.
    [31] WATANABE T, YAMASHITA K, ARAI Y, et al. Chronic fibro-inflammatory responses in autoimmune pancreatitis depend on IFN-α and IL-33 produced by plasmacytoid dendritic cells[J]. J Immunol, 2017, 198( 10): 3886- 3896. DOI: 10.4049/jimmunol.1700060.
    [32] MINAGA K, WATANABE T, ARAI Y, et al. Activation of interferon regulatory factor 7 in plasmacytoid dendritic cells promotes experimental autoimmune pancreatitis[J]. J Gastroenterol, 2020, 55( 5): 565- 576. DOI: 10.1007/s00535-020-01662-2.
    [33] KAMATA K, WATANABE T, MINAGA K, et al. Intestinal dysbiosis mediates experimental autoimmune pancreatitis via activation of plasmacytoid dendritic cells[J]. Int Immunol, 2019, 31( 12): 795- 809. DOI: 10.1093/intimm/dxz050.
    [34] BOOMERSHINE CS, CHAMBERLAIN A, KENDALL P, et al. Autoimmune pancreatitis results from loss of TGFbeta signalling in S100A4-positive dendritic cells[J]. Gut, 2009, 58( 9): 1267- 1274. DOI: 10.1136/gut.2008.170779.
    [35] OMARU N, OTSUKA Y, HARA A, et al. Microbe-associated molecular patterns derived from fungi and bacteria promote IgG4 antibody production in patients with type 1 autoimmune pancreatitis[J]. Cytokine, 2024, 183: 156748. DOI: 10.1016/j.cyto.2024.156748.
    [36] HARA A, WATANABE T, MINAGA K, et al. A positive cytokine/chemokine feedback loop establishes plasmacytoid DC-driven autoimmune pancreatitis in IgG4-related disease[J]. JCI Insight, 2024, 9( 20): e167910. DOI: 10.1172/jci.insight.167910.
    [37] SEKAI I, MINAGA K, HARA A, et al. High-fat diet aggravates experimental autoimmune pancreatitis through the activation of type I interferon signaling pathways[J]. Biochem Biophys Res Commun, 2022, 637: 189- 195. DOI: 10.1016/j.bbrc.2022.11.030.
    [38] WEHR P, PURVIS H, LAW SC, et al. Dendritic cells, T cells and their interaction in rheumatoid arthritis[J]. Clin Exp Immunol, 2019, 196( 1): 12- 27. DOI: 10.1111/cei.13256.
    [39] GANGULY D, HAAK S, SISIRAK V, et al. The role of dendritic cells in autoimmunity[J]. Nat Rev Immunol, 2013, 13( 8): 566- 577. DOI: 10.1038/nri3477.
    [40] REN KF, FU QW, DENG YX, et al. Advances in multi-omics research of systemic lupus erythematosus[J]. Trauma Crit Care Med, 2025, 13( 2): 152- 156. DOI: 10.16048/j.issn.2095-5561.2025.02.16.

    任凯芳, 傅全威, 邓玉霞, 等. 系统性红斑狼疮的多组学研究进展[J]. 创伤与急危重病医学, 2025, 13( 2): 152- 156. DOI: 10.16048/j.issn.2095-5561.2025.02.16.
    [41] VANHERWEGEN AS, EELEN G, FERREIRA GB, et al. Vitamin D controls the capacity of human dendritic cells to induce functional regulatory T cells by regulation of glucose metabolism[J]. J Steroid Biochem Mol Biol, 2019, 187: 134- 145. DOI: 10.1016/j.jsbmb.2018.11.011.
    [42] SMITH N, RODERO MP, BEKADDOUR N, et al. Control of TLR7-mediated type I IFN signaling in pDCs through CXCR4 engagement-a new target for lupus treatment[J]. Sci Adv, 2019, 5( 7): eaav9019. DOI: 10.1126/sciadv.aav9019.
    [43] MANSILLA MJ, HILKENS CMU, MARTÍNEZ-CÁCERES EM. Challenges in tolerogenic dendritic cell therapy for autoimmune diseases: The route of administration[J]. Immunother Adv, 2023, 3( 1): ltad012. DOI: 10.1093/immadv/ltad012.
    [44] CHEN BY, ZHU L, YANG SZ, et al. Unraveling the heterogeneity and ontogeny of dendritic cells using single-cell RNA sequencing[J]. Front Immunol, 2021, 12: 711329. DOI: 10.3389/fimmu.2021.711329.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  22
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-13
  • 录用日期:  2025-03-12
  • 出版日期:  2025-09-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回