树突状细胞在自身免疫性肝病和自身免疫性胰腺炎中的作用
DOI: 10.12449/JCH250928
The role of dendritic cells in autoimmune liver diseases and autoimmune pancreatitis
-
摘要: 树突状细胞(DC)作为免疫系统的关键调控细胞,在自身免疫性疾病的发病机制中发挥着重要作用。本文综述了DC在自身免疫性肝病(包括自身免疫性肝炎、原发性胆汁性胆管炎、原发性硬化性胆管炎)和自身免疫性胰腺炎中的作用机制与研究进展;通过总结DC在上述疾病中的功能及异质性,揭示其在免疫耐受失衡和慢性炎症中的关键作用。相关研究成果为深入解析DC在自身免疫性肝病和自身免疫性胰腺炎中的作用提供了重要依据,并为精准治疗策略的研发奠定了基础。Abstract: Dendritic cells (DCs), as key regulatory cells in the immune system, play a significant role in the pathogenesis of autoimmune diseases. This article reviews the mechanism of action of DCs and related research advances in autoimmune liver diseases (including autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis) and autoimmune pancreatitis. By summarizing the functions and heterogeneity of DCs in these diseases, this article reveals the crucial role of DCs in the imbalance of immune tolerance and chronic inflammation. Related research findings provide an important basis for a deep understanding of the role of DCs in autoimmune liver diseases and autoimmune pancreatitis and lay a foundation for the development of precise treatment strategies.
-
Key words:
- Autoimmune Diseases /
- Dendritic Cells /
- Immune Tolerance
-
表 1 不同类型的DC的特点与功能
Table 1. Characteristics and functions of different dendritic cell subtypes
特点与功能 cDC pDC MoDC 来源 髓系细胞系 髓系细胞系,发育路径不同于cDC 外周血单核细胞为炎症条件下分
化而来分布部位 外周组织(如皮肤、黏膜),淋
巴结,脾脏外周血、淋巴结、脾脏 外周血、炎症部位 主要功能 抗原摄取、加工和呈递,激活初始
T细胞大量分泌Ⅰ型IFN(IFN-α/β)、抗
病毒免疫参与炎症反应 表面标志物 CD11c、CD141、XCR1、CD1c、
CD172aCD123、CD303、CD304 CD14、CD1a/CD1c 免疫应答中的作用 在免疫启动阶段发挥关键作用,
连接先天免疫和适应性免疫在抗病毒免疫中快速响应,通过
产生IFN抑制病毒复制,调节免疫
细胞的活性在炎症反应中参与免疫细胞的募
集和激活,调节局部免疫微环境注:XCR1,X C motif趋化因子受体。
表 2 不同类型的DC在AILD和AIP中的表型与功能
Table 2. Phenotypes and functions of dendritic cell subtypes in AILD and AIP
疾病 DC亚类 表型特征 功能与分子机制 AIH cDC 自噬活性增强,MHC-Ⅱ、CD80、CD86表达上调 自噬相关基因表达异常(LC3-Ⅱ升高、p62降低),抗原呈递能力
增强,促炎因子(IL-12、IFN-γ)分泌增加MoDC lncRNA、circRNA表达谱改变 调控DC的免疫功能和炎症反应影响疾病进展 PBC cDC1 集中在门静脉区域,可能通过呈递线粒体抗原激活CD8+T细胞 PSC cDC2 分泌IL-1β、CXCL2和CCL2等因子,上调与炎症、
抗原呈递和模式识别相关的基因驱动Th17的分化和扩增,促进炎症 AIP pDC 分泌IFN-α和IL-33 加快胰腺慢性炎症和纤维化进程,肠道菌群失调和高脂饮食可
激活pDCcDC 分泌IFN-α/β和CXCL9/10等趋化因子 吸引CXCR3+ T细胞进入胰腺,此类T细胞分泌CCL25,招募表达
CCR9的pDC进入胰腺,pDC在胰腺中成为IFN-α的主要来源,与
CXCR3+ T细胞相互作用,从而形成正反馈环路注:MHC-Ⅱ,主要组织相容性复合体Ⅱ类;lncRNA,长链非编码RNA;circRNA,环状RNA;CXCR,CXC模式趋化因子受体。
-
[1] YANG WJ. Pathological diagnosis of autoimmune hepatitis[J]. J Clin Hepatol, 2024, 40( 6): 1082- 1087. DOI: 10.12449/JCH240603.杨文君. 自身免疫性肝炎的病理学诊断[J]. 临床肝胆病杂志, 2024, 40( 6): 1082- 1087. DOI: 10.12449/JCH240603. [2] Chinese Society of Hepatology, Chinese Medical Association. Guidelines on the diagnosis and management of primary sclerosing cholangitis(2021)[J]. J Clin Hepatol, 2022, 38( 1): 50- 61. DOI: 10.3969/j.issn.1001-5256.2022.01.009.中华医学会肝病学分会. 原发性硬化性胆管炎诊断及治疗指南(2021)[J]. 临床肝胆病杂志, 2022, 38( 1): 50- 61. DOI: 10.3969/j.issn.1001-5256.2022.01.009. [3] LI YB, XU WT, DONG LY, et al. Research progress in the diagnosis and treatment of IgG4-related autoimmune pancreatitis[J]. Chin J Med Offic, 2024, 52( 10): 1094- 1096, 1100. DOI: 10.16680/j.1671-3826.2024.10.28.李怡冰, 许文涛, 董丽琰, 等. IgG4相关自身免疫性胰腺炎诊疗研究进展[J]. 临床军医杂志, 2024, 52( 10): 1094- 1096, 1100. DOI: 10.16680/j.1671-3826.2024.10.28. [4] PEARCE EJ, EVERTS B. Dendritic cell metabolism[J]. Nat Rev Immunol, 2015, 15( 1): 18- 29. DOI: 10.1038/nri3771. [5] COLLIN M, BIGLEY V. Human dendritic cell subsets: An update[J]. Immunology, 2018, 154( 1): 3- 20. DOI: 10.1111/imm.12888. [6] KONDO M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors[J]. Immunol Rev, 2010, 238( 1): 37- 46. DOI: 10.1111/j.1600-065X.2010.00963.x. [7] MANZ MG, TRAVER D, MIYAMOTO T, et al. Dendritic cell potentials of early lymphoid and myeloid progenitors[J]. Blood, 2001, 97( 11): 3333- 3341. DOI: 10.1182/blood.v97.11.3333. [8] YANG ZQ, LI MH. Research progress on the role of tolerogenic dendritic cells in immune tolerance of liver transplantation[J]. Organ Transpl, 2024, 15( 4): 575- 580. DOI: 10.3969/j.issn.1674-7445.2024039.杨志琦, 李明皓. 耐受性树突状细胞在肝移植免疫耐受中的作用研究进展[J]. 器官移植, 2024, 15( 4): 575- 580. DOI: 10.3969/j.issn.1674-7445.2024039. [9] KUSHWAH R, HU J. Complexity of dendritic cell subsets and their function in the host immune system[J]. Immunology, 2011, 133( 4): 409- 419. DOI: 10.1111/j.1365-2567.2011.03457.x. [10] SEGURA E. Human dendritic cell subsets: An updated view of their ontogeny and functional specialization[J]. Eur J Immunol, 2022, 52( 11): 1759- 1767. DOI: 10.1002/eji.202149632. [11] BAO MS, LIU YJ. Regulation of TLR7/9 signaling in plasmacytoid dendritic cells[J]. Protein Cell, 2013, 4( 1): 40- 52. DOI: 10.1007/s13238-012-2104-8. [12] NGO C, GARREC C, TOMASELLO E, et al. The role of plasmacytoid dendritic cells(pDCs) in immunity during viral infections and beyond[J]. Cell Mol Immunol, 2024, 21( 9): 1008- 1035. DOI: 10.1038/s41423-024-01167-5. [13] HIASA M, ABE M, NAKANO A, et al. GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-α converting enzyme(TACE)[J]. Blood, 2009, 114( 20): 4517- 4526. DOI: 10.1182/blood-2009-04-215020. [14] FEI MJ, BHATIA S, ORISS TB, et al. TNF-alpha from inflammatory dendritic cells(DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection[J]. Proc Natl Acad Sci U S A, 2011, 108( 13): 5360- 5365. DOI: 10.1073/pnas.1015476108. [15] MULLER-BERGHAUS J, OLSON WC, MOULTON RA, et al. IL-12 production by human monocyte-derived dendritic cells: Looking at the single cell[J]. J Immunother, 2005, 28( 4): 306- 313. DOI: 10.1097/01.cji.0000163594.74533.10. [16] LIU J, ZHANG XM, CHENG YJ, et al. Dendritic cell migration in inflammation and immunity[J]. Cell Mol Immunol, 2021, 18( 11): 2461- 2471. DOI: 10.1038/s41423-021-00726-4. [17] FAN XL, MEN RT, HUANG C, et al. Critical roles of conventional dendritic cells in autoimmune hepatitis via autophagy regulation[J]. Cell Death Dis, 2020, 11( 1): 23. DOI: 10.1038/s41419-019-2217-6. [18] TAN KG, XIE XH, SHI WW, et al. Deficiency of canonical Wnt/β- catenin signalling in hepatic dendritic cells triggers autoimmune hepatitis[J]. Liver Int, 2020, 40( 1): 131- 140. DOI: 10.1111/liv.14246. [19] IKEDA A, AOKI N, KIDO M, et al. Progression of autoimmune hepatitis is mediated by IL-18-producing dendritic cells and hepatic CXCL9 expression in mice[J]. Hepatology, 2014, 60( 1): 224- 236. DOI: 10.1002/hep.27087. [20] XIANG M, LIU TT, TAN WY, et al. Effects of kinsenoside, a potential immunosuppressive drug for autoimmune hepatitis, on dendritic cells/CD8+ T cells communication in mice[J]. Hepatology, 2016, 64( 6): 2135- 2150. DOI: 10.1002/hep.28825. [21] ZHANG QY, LUO Y, ZHENG QX, et al. Itaconate attenuates autoimmune hepatitis via PI3K/AKT/mTOR pathway-mediated inhibition of dendritic cell maturation and autophagy[J]. Heliyon, 2023, 9( 7): e17551. DOI: 10.1016/j.heliyon.2023.e17551. [22] YANG F, FAN XL, LIU YF, et al. Long noncoding RNA and circular RNA expression profiles of monocyte-derived dendritic cells in autoimmune hepatitis[J]. Front Pharmacol, 2021, 12: 792138. DOI: 10.3389/fphar.2021.792138. [23] REUVENI D, ASSI S, GORE Y, et al. Conventional type 1 dendritic cells are essential for the development of primary biliary cholangitis[J]. Liver Int, 2024, 44( 8): 2063- 2074. DOI: 10.1111/liv.15961. [24] KAWATA K, KOBAYASHI Y, GERSHWIN ME, et al. The immunophysiology and apoptosis of biliary epithelial cells: Primary biliary cirrhosis and primary sclerosing cholangitis[J]. Clin Rev Allergy Immunol, 2012, 43( 3): 230- 241. DOI: 10.1007/s12016-012-8324-0. [25] YOU ZR, WANG QX, BIAN ZL, et al. The immunopathology of liver granulomas in primary biliary cirrhosis[J]. J Autoimmun, 2012, 39( 3): 216- 221. DOI: 10.1016/j.jaut.2012.05.022. [26] MA WT, CHEN DK. Immunological abnormalities in patients with primary biliary cholangitis[J]. Clin Sci(Lond), 2019, 133( 6): 741- 760. DOI: 10.1042/CS20181123. [27] RAVICHANDRAN G, NEUMANN K, BERKHOUT LK, et al. Interferon-γ-dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice[J]. J Hepatol, 2019, 71( 4): 773- 782. DOI: 10.1016/j.jhep.2019.05.023. [28] WU P, XIE SN, CAI YS, et al. Causality of immune cells on primary sclerosing cholangitis: A bidirectional two-sample Mendelian randomization study[J]. Front Immunol, 2024, 15: 1395513. DOI: 10.3389/fimmu.2024.1395513. [29] ZHANG J, WANG HW, LIU JQ, et al. ANXA1 is identified as a key gene associated with high risk and T cell infiltration in primary sclerosing cholangitis[J]. Hum Genomics, 2023, 17( 1): 86. DOI: 10.1186/s40246-023-00534-z. [30] MÜLLER AL, CASAR C, PRETI M, et al. Inflammatory type 2 conventional dendritic cells contribute to murine and human cholangitis[J]. J Hepatol, 2022, 77( 6): 1532- 1544. DOI: 10.1016/j.jhep.2022.06.025. [31] WATANABE T, YAMASHITA K, ARAI Y, et al. Chronic fibro-inflammatory responses in autoimmune pancreatitis depend on IFN-α and IL-33 produced by plasmacytoid dendritic cells[J]. J Immunol, 2017, 198( 10): 3886- 3896. DOI: 10.4049/jimmunol.1700060. [32] MINAGA K, WATANABE T, ARAI Y, et al. Activation of interferon regulatory factor 7 in plasmacytoid dendritic cells promotes experimental autoimmune pancreatitis[J]. J Gastroenterol, 2020, 55( 5): 565- 576. DOI: 10.1007/s00535-020-01662-2. [33] KAMATA K, WATANABE T, MINAGA K, et al. Intestinal dysbiosis mediates experimental autoimmune pancreatitis via activation of plasmacytoid dendritic cells[J]. Int Immunol, 2019, 31( 12): 795- 809. DOI: 10.1093/intimm/dxz050. [34] BOOMERSHINE CS, CHAMBERLAIN A, KENDALL P, et al. Autoimmune pancreatitis results from loss of TGFbeta signalling in S100A4-positive dendritic cells[J]. Gut, 2009, 58( 9): 1267- 1274. DOI: 10.1136/gut.2008.170779. [35] OMARU N, OTSUKA Y, HARA A, et al. Microbe-associated molecular patterns derived from fungi and bacteria promote IgG4 antibody production in patients with type 1 autoimmune pancreatitis[J]. Cytokine, 2024, 183: 156748. DOI: 10.1016/j.cyto.2024.156748. [36] HARA A, WATANABE T, MINAGA K, et al. A positive cytokine/chemokine feedback loop establishes plasmacytoid DC-driven autoimmune pancreatitis in IgG4-related disease[J]. JCI Insight, 2024, 9( 20): e167910. DOI: 10.1172/jci.insight.167910. [37] SEKAI I, MINAGA K, HARA A, et al. High-fat diet aggravates experimental autoimmune pancreatitis through the activation of type I interferon signaling pathways[J]. Biochem Biophys Res Commun, 2022, 637: 189- 195. DOI: 10.1016/j.bbrc.2022.11.030. [38] WEHR P, PURVIS H, LAW SC, et al. Dendritic cells, T cells and their interaction in rheumatoid arthritis[J]. Clin Exp Immunol, 2019, 196( 1): 12- 27. DOI: 10.1111/cei.13256. [39] GANGULY D, HAAK S, SISIRAK V, et al. The role of dendritic cells in autoimmunity[J]. Nat Rev Immunol, 2013, 13( 8): 566- 577. DOI: 10.1038/nri3477. [40] REN KF, FU QW, DENG YX, et al. Advances in multi-omics research of systemic lupus erythematosus[J]. Trauma Crit Care Med, 2025, 13( 2): 152- 156. DOI: 10.16048/j.issn.2095-5561.2025.02.16.任凯芳, 傅全威, 邓玉霞, 等. 系统性红斑狼疮的多组学研究进展[J]. 创伤与急危重病医学, 2025, 13( 2): 152- 156. DOI: 10.16048/j.issn.2095-5561.2025.02.16. [41] VANHERWEGEN AS, EELEN G, FERREIRA GB, et al. Vitamin D controls the capacity of human dendritic cells to induce functional regulatory T cells by regulation of glucose metabolism[J]. J Steroid Biochem Mol Biol, 2019, 187: 134- 145. DOI: 10.1016/j.jsbmb.2018.11.011. [42] SMITH N, RODERO MP, BEKADDOUR N, et al. Control of TLR7-mediated type I IFN signaling in pDCs through CXCR4 engagement-a new target for lupus treatment[J]. Sci Adv, 2019, 5( 7): eaav9019. DOI: 10.1126/sciadv.aav9019. [43] MANSILLA MJ, HILKENS CMU, MARTÍNEZ-CÁCERES EM. Challenges in tolerogenic dendritic cell therapy for autoimmune diseases: The route of administration[J]. Immunother Adv, 2023, 3( 1): ltad012. DOI: 10.1093/immadv/ltad012. [44] CHEN BY, ZHU L, YANG SZ, et al. Unraveling the heterogeneity and ontogeny of dendritic cells using single-cell RNA sequencing[J]. Front Immunol, 2021, 12: 711329. DOI: 10.3389/fimmu.2021.711329. -

PDF下载 ( 1063 KB)
下载:
