中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微小RNA-544对脓毒症肝损伤小鼠模型的调控作用及其机制

官松美 黄培悟 龚小保 林康强 段世刚

引用本文:
Citation:

微小RNA-544对脓毒症肝损伤小鼠模型的调控作用及其机制

DOI: 10.12449/JCH250922
基金项目: 

湛江市科技发展专项 (2021A05101);

湛江市科技发展专项 (2022A01147);

广东医科大学附属第二医院高层次人才启动项目 (21H03);

广东医科大学附属第二医院高层次人才启动项目 (23H02)

伦理学声明:本研究方案于2021年3月20日经由西南大学实验动物伦理委员会审批,批号:IACUC-20210320-02,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:段世刚负责研究构思与设计;黄培悟、龚小保负责实验操作和数据收集;林康强负责对结果分析与解释;段世刚、官松美负责文章撰写。
详细信息
    通信作者:

    林康强, lkq1008@foxmail.com (ORCID: 0000-0002-6313-8336)

    段世刚, 980233908@qq.com (ORCID: 0000-0002-4786-1612)

Regulatory effect of microRNA-544 on liver injury in mice with sepsis and its mechanism

Research funding: 

Zhanjiang Science and Technology Development Special Projects (2021A05101);

Zhanjiang Science and Technology Development Special Projects (2022A01147);

High-level Talent Start-up Project of the Second Affiliated Hospital of Guangdong Medical University (21H03);

High-level Talent Start-up Project of the Second Affiliated Hospital of Guangdong Medical University (23H02)

More Information
  • 摘要:   目的  本研究旨在探讨微小RNA(miRNA)-544在脂多糖(LPS)诱导的脓毒症小鼠肝损伤中的作用及其潜在机制,为脓毒症肝损伤的治疗提供新靶点。  方法  选取40只C57BL/6J小鼠,随机分为对照组(腹腔注射生理盐水)、模型组(腹腔注射LPS,5 mg/kg)、激动剂组(腹腔注射LPS+miR-544抑制剂,5 mg/kg)和miR-544抑制剂组(腹腔注射LPS+miR-544激动剂,5 mg/kg),每组10只。采用全自动生化仪检测血清和肝组织中ALT、AST和TBil水平;Western Blot检测肝脏中单核细胞趋化蛋白1(MCP-1)、CD16/32以及NF-κB信号通路相关蛋白表达,实时定量聚合酶链式反应(qRT-PCR)和酶联免疫吸附测定法(ELISA)检测血清中TNF-α、IL-6、IL-1β的表达。计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。  结果  与对照组相比,LPS诱导的脓毒症模型组小鼠血清和肝组织中miR-544表达水平显著降低(P值均<0.01),肝脏出现明显炎性细胞浸润、中央静脉充血等病理改变,肝损伤指标(ALT、AST、TBil)在血清和肝组织中均显著升高(P值均<0.001),炎性因子(MCP-1、CD16/32、TNF-α、IL-6、IL-1β)表达水平均显著升高(P值均<0.01),NF-κB通路关键蛋白(p-IKK、p-I-κB-α、p-p65)磷酸化水平均显著升高(P值均<0.01)。与模型组相比,miR-544抑制剂组血清和肝组织中miR-544表达水平均显著降低(P值均<0.01),肝脏病理学进一步加重,同时,肝损伤指标和炎性因子(ALT、AST、TBil、MCP-1、CD16/32、TNF-α、IL-6、IL-1β)水平均显著升高(P值均<0.05),NF-κB通路关键蛋白(p-IKK、p-IκB-α、p-p65)磷酸化水平均显著升高(P值均<0.01),而miR-544 激动剂组血清和肝组织中miR-544水平均显著升高(P值均<0.01),肝脏病理学显著减轻,肝损伤指标和炎性因子(ALT、AST、TBil、MCP-1、CD16/32、TNF-α、IL-6、IL-1β)水平均显著降低(P值均<0.05),NF-κB通路关键蛋白(p-IKK、p-I-κB-α、p-p65)磷酸化水平均显著降低(P值均<0.05)。  结论  miR-544可通过抑制炎症相关蛋白表达及NF-κB信号通路激活,减轻LPS诱导的脓毒症小鼠肝损伤。

     

  • 注: a,LPS诱导脓毒症小鼠的血清中miR-544的表达;b,LPS诱导脓毒症小鼠的肝脏中miR-544的表达;c,LPS处理的脓毒症小鼠存活率情况;d,LPS处理的脓毒症小鼠肝组织HE染色(×200)。

    图  1  LPS诱导的脓毒症小鼠血清和肝组织中的miR-544表达水平

    Figure  1.  Underexpression of miR-544 in LPS-induced sepsis

    注: a,血清肝功能指标;b,肝组织肝功能指标。

    图  2  miR-544对LPS诱导的脓毒症小鼠肝功能的影响

    Figure  2.  Effects of miR-544 on liver function in mice with LPS-induced sepsis

    注: a,MCP-1和CD16/32蛋白免疫印迹分析;b,MCP-1蛋白免疫印迹分析的量化分析;c,CD16/32蛋白免疫印迹量化分析;d,MCP-1免疫组化分析(ECL,×100);e,CD16/32免疫组化分析(ECL,×100)。

    图  3  miR-544对LPS诱导的脓毒症小鼠肝脏炎症的影响

    Figure  3.  Effect of miR-544 on hepatic inflammation in LPS-induced sepsis

    注: a,血清促炎因子;b,肝组织促炎因子。

    图  4  miR-544对LPS诱导的脓毒症小鼠血清和肝组织中炎症因子的影响

    Figure  4.  Effect of miR-544 on inflammatory factors in LPS-induced sepsis

    图  5  miR-544抑制脓毒症小鼠肝组织中NF-κB信号的激活

    Figure  5.  miR-544 inhibits activation of NF-κB signaling in uremic liver

    表  1  用于qRT-PCR分析的引物

    Table  1.   Primers for qRT-PCR analysis

    底物 正向引物(5′-3′) 反向引物(5′-3′)
    miR-544 ACACTCCAGCTGGGATTCTG TGGTGTCGTGTGAGTCG
    IL-1β ATGGCAACTGTTCCTGAACTCAACT CAGGACAGGTATAGATTCTTTCCTTT
    IL-6 GCTATGAAGTTCCTCTCTGC CTAGGTTTGCCGAGTAGATC
    TNF-α CCAGACCCTCACACTCAGAT AACACCCATTCCCTTCACAG
    GAPDH ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA
    下载: 导出CSV
  • [1] CAO LP, LI ZH, YANG ZZ, et al. Ferulic acid positively modulates the inflammatory response to septic liver injury through the GSK-3β/NF-κB/CREB pathway[J]. Life Sci, 2021, 277: 119584. DOI: 10.1016/j.lfs.2021.119584.
    [2] ABDELNASER M, ALAAELDIN R, ATTYA ME, et al. Hepatoprotective potential of gabapentin in cecal ligation and puncture-induced sepsis; targeting oxidative stress, apoptosis, and NF-κB/MAPK signaling pathways[J]. Life Sci, 2023, 320: 121562. DOI: 10.1016/j.lfs.2023.121562.
    [3] HAO CP, LI QH, ZHANG CC, et al. Analysis of the current status and influencing factors of quality of life of sepsis survivors in intensive care units[J]. Chin J Crit Care Med, 2024, 36( 1): 23- 27. DOI: 10.3760/cma.j.issn.2095-4350.2024.01.004.

    郝翠平, 李秋华, 张翠翠, 等. 重症监护病房脓毒症存活者生活质量现状及其影响因素分析[J]. 中华危重病急救医学, 2024, 36( 1): 23- 27. DOI: 10.3760/cma.j.issn.2095-4350.2024.01.004.
    [4] XU DZ, ZHANG SX, WANG K, et al. Value of the serum levels of Clusterin and sphingosine 1-phosphate in assessing the prognosis of sepsis patients with acute liver injury[J]. J Clin Hepatol, 2023, 39( 12): 2867- 2872. DOI: 10.3969/j.issn.1001-5256.2023.12.018.

    徐大洲, 张树贤, 王坤, 等. 血清簇集蛋白、1-磷酸鞘氨醇水平对脓毒症急性肝损伤患者的预后价值[J]. 临床肝胆病杂志, 2023, 39( 12): 2867- 2872. DOI: 10.3969/j.issn.1001-5256.2023.12.018.
    [5] HERRÁN-MONGE R, MURIEL-BOMBÍN A, GARCÍA-GARCÍA MM, et al. Epidemiology and changes in mortality of sepsis after the implementation of surviving sepsis campaign guidelines[J]. J Intensive Care Med, 2019, 34( 9): 740- 750. DOI: 10.1177/0885066617711882.
    [6] BIEBELBERG B, RHEE C, CHEN T, et al. Heterogeneity of sepsis presentations and mortality rates[J]. Ann Intern Med, 2024, 177( 7): 985- 987. DOI: 10.7326/M24-0400.
    [7] CHEN LF, LU Q, DENG FM, et al. miR-103a-3p could attenuate sepsis-induced liver injury by targeting HMGB1[J]. Inflammation, 2020, 43( 6): 2075- 2086. DOI: 10.1007/s10753-020-01275-0.
    [8] MITRA R, ADAMS CM, JIANG W, et al. Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival[J]. Nat Commun, 2020, 11( 1): 968. DOI: 10.1038/s41467-020-14713-2.
    [9] SZILÁGYI B, FEJES Z, PÓLISKA S, et al. Reduced miR-26b expression in megakaryocytes and platelets contributes to elevated level of platelet activation status in sepsis[J]. Int J Mol Sci, 2020, 21( 3): 866. DOI: 10.3390/ijms21030866.
    [10] CHEN WW, MA XY, ZHANG P, et al. miR-212-3p inhibits LPS-induced inflammatory response through targeting HMGB1 in murine macrophages[J]. Exp Cell Res, 2017, 350( 2): 318- 326. DOI: 10.1016/j.yexcr.2016.12.008.
    [11] WANG P, ZHANG X, LI FL, et al. miR-130b attenuates vascular inflammation via negatively regulating tumor progression locus 2(Tpl2) expression[J]. Int Immunopharmacol, 2017, 51: 9- 16. DOI: 10.1016/j.intimp.2017.07.020.
    [12] ROY SG. Regulation of autophagy by miRNAs in human diseases[J]. Nucleus(Calcutta), 2021, 64( 3): 317- 329. DOI: 10.1007/s13237-021-00378-9.
    [13] SONG WC, MU HL, WU J, et al. miR-544 regulates dairy goat male germline stem cell self-renewal via targeting PLZF[J]. J Cell Biochem, 2015, 116( 10): 2155- 2165. DOI: 10.1002/jcb.25172.
    [14] MO XM, LI HH, LIU M, et al. Downregulation of GSK3β by miR-544a to maintain self-renewal ability of lung caner stem cells[J]. Oncol Lett, 2014, 8( 4): 1731- 1734. DOI: 10.3892/ol.2014.2387.
    [15] SUN T, LIU Y, LIU LY, et al. microRNA-544 attenuates diabetic renal injury via suppressing glomerulosclerosis and inflammation by targeting FASN[J]. Gene, 2020, 723: 143986. DOI: 10.1016/j.gene.2019.143986.
    [16] LI CG, LI X, ZHAO BC, et al. Exosomes derived from miR-544-modified mesenchymal stem cells promote recovery after spinal cord injury[J]. Arch Physiol Biochem, 2020, 126( 4): 369- 375. DOI: 10.1080/13813455.2019.1691601.
    [17] GRONDMAN I, PIRVU A, RIZA A, et al. Biomarkers of inflammation and the etiology of sepsis[J]. Biochem Soc Trans, 2020, 48( 1): 1- 14. DOI: 10.1042/BST20190029.
    [18] DONG XJ, LIU QX, ZHENG Q, et al. Alterations of B cells in immunosuppressive phase of septic shock patients[J]. Crit Care Med, 2020, 48( 6): 815- 821. DOI: 10.1097/CCM.0000000000004309.
    [19] LI H, CHEN Q, HAN XD. The role and mechanism of liver in the occurrence and development of sepsis[J]. Med J Commun, 2020, 34( 1): 11- 14. DOI: 10.19767/j.cnki.32-1412.2020.01.004.

    李晗, 陈强, 韩旭东. 肝脏在脓毒症发生发展中的作用及机制[J]. 交通医学, 2020, 34( 1): 11- 14. DOI: 10.19767/j.cnki.32-1412.2020.01.004.
    [20] LONG SR, LIU RD, KUMAR DV, et al. Immune protection of a helminth protein in the DSS-induced colitis model in mice[J]. Front Immunol, 2021, 12: 664998. DOI: 10.3389/fimmu.2021.664998.
    [21] WU YJ, WANG QH, LI M, et al. SLAMF7 regulates the inflammatory response in macrophages during polymicrobial sepsis[J]. J Clin Invest, 2023, 133( 6): e150224. DOI: 10.1172/JCI150224.
    [22] LIU D, HUANG SY, SUN JH, et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options[J]. Mil Med Res, 2022, 9( 1): 56. DOI: 10.1186/s40779-022-00422-y.
    [23] TONG X, TIAN L, XU JF, et al. Effect of Jinzhi on the expression of serum inflammatory factors in sepsis mice[J]. J Emerg Tradit Chin Med, 2023, 32( 6): 954- 957. DOI: 10.3969/j.issn.1004-745X.2023.06.004.

    童昕, 田良, 许建峰, 等. 金汁对脓毒症小鼠血清炎症因子表达的影响[J]. 中国中医急症, 2023, 32( 6): 954- 957. DOI: 10.3969/j.issn.1004-745X.2023.06.004.
    [24] DAS UN. Infection, inflammation, and immunity in sepsis[J]. Biomolecules, 2023, 13( 9): 1332. DOI: 10.3390/biom13091332.
    [25] CHEN XS, WANG SH, LIU CY, et al. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling[J]. Pharmacol Res, 2022, 185: 106473. DOI: 10.1016/j.phrs.2022.106473.
    [26] JIA XH, LI XL, DONG FX, et al. Palmatine ameliorates CLP-induced sepsis via inhibition of NF-κB signaling pathway[J]. Cent South Pharm, 2023, 21( 3): 557- 561. DOI: 10.7539/j.issn.1672-2981.2023.03.001.

    贾鑫航, 李晓玲, 董方昕, 等. 巴马汀通过抑制NF-κB信号通路改善CLP诱导的脓毒症[J]. 中南药学, 2023, 21( 3): 557- 561. DOI: 10.7539/j.issn.1672-2981.2023.03.001.
    [27] GONG XB, YANG Y, HUANG LG, et al. Antioxidation, anti-inflammation and anti-apoptosis by paeonol in LPS/d-GalN-induced acute liver failure in mice[J]. Int Immunopharmacol, 2017, 46: 124- 132. DOI: 10.1016/j.intimp.2017.03.003.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  42
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-22
  • 录用日期:  2025-06-06
  • 出版日期:  2025-09-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回