生长激素促分泌素受体(GHSR)rs2922126基因多态性与非酒精性脂肪性肝病易感性的关系
DOI: 10.12449/JCH250915
Association of growth hormone secretagogue receptor rs2922126 gene polymorphism with susceptibility to non-alcoholic fatty liver disease
-
摘要:
目的 研究生长激素促分泌素受体(GHSR)rs2922126位点基因多态性与青岛地区汉族人群非酒精性脂肪性肝病(NAFLD)遗传易感性,为疾病诊疗提供诊疗依据。 方法 纳入2022年6月—2023年6月就诊于青岛市市立医院的220例经影像学确诊的NAFLD患者为NAFLD组,纳入167例同期健康人群为对照组。采集受试者空腹血液样本,检测相关生化指标,并提取全血DNA,采用聚合酶链反应及MALDI-TOF质谱仪进行基因分型测定。计数资料两组间比较采用χ2检验,计量资料两组间比较采用成组t检验或Mann-Whitney U检验;采用二元Logistic回归模型分析患病风险的关系。 结果 NAFLD组受试者年龄、BMI、空腹血糖(FBG)、TG、GGT、ALP、ALT、AST水平均显著高于对照组,而HDL水平明显低于对照组(P值均<0.05)。GHSR rs2922126基因型分布符合哈迪-温伯格定律,证明纳入的受试者具有群体代表性(NAFLD组:P=0.106;对照组:P=0.849)。GHSR rs2922126位点共AA、TA、TT三种基因型,在对照组及NAFLD组之间分布无显著差异(P=0.099);两组的等位基因频率分布亦无统计学差异(P=0.063)。在A等位基因的隐性模型中,两组间AA纯合子与TA+TT基因型频率分布差异具有统计学意义(χ2=4.609,P=0.032),回归模型分析显示,AA纯合子携带者相对TA+TT基因型携带者NAFLD的发病风险增加(OR=1.712, 95%CI: 1.045~2.807,P=0.033),校正年龄、性别、BMI后差异仍具有统计学意义(OR=2.156, 95%CI: 1.221~3.808,P=0.008)。在NAFLD患者组中,AA基因型携带者血清TC水平高于TT+TA携带者(Z=-1.99,P=0.046)。 结论 在青岛地区汉族人群中,GHSR rs2922126 AA基因型可能与NAFLD风险增高有关,携带GHSR rs2922126 AA基因型与NAFLD患者TC水平升高有关。 Abstract:Objective To investigate growth hormone secretagogue receptor (GHSR) rs2922126 gene polymorphisms and their association with genetic susceptibility to nonalcoholic fatty liver disease (NAFLD) in the Chinese Han population in Qingdao, China, and to provide a basis for diagnosis and treatment. Methods A total of 220 patients who were admitted to Qingdao Municipal Hospital from June 2022 to June 2023 and were diagnosed with NAFLD based on radiological examination were enrolled as NAFLD group, and 167 healthy individuals during the same period of time were enrolled as control group. Fasting blood samples were collected from all subjects, and related biochemical parameters were measured. Whole blood DNA was extracted, and polymerase chain reaction and MALDI-TOF mass spectrometer were used for genotyping. The chi-square test was used for comparison of categorical data between groups, and the independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between groups. The binary logistic regression analysis was used to investigate the risk of NAFLD. Results Compared with the control group, the NAFLD group had significantly higher age, body mass index (BMI), fasting plasma glucose, triglyceride, gamma-glutamyl transpeptidase, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase, as well as a significantly lower level of high-density lipoprotein (all P<0.05). The distribution of GHSR rs2922126 genotypes was consistent with the Hardy-Weinberg equilibrium, suggesting population representativeness in the subjects enrolled (NAFLD group: P=0.106; control group: P=0.849). There was no significant difference in the distribution of AA, TA, and TT genotypes at GHSR rs2922126 locus between the control group and the NAFLD group (P=0.099), and there was also no significant difference in allele frequency between the two groups (P=0.063). In the recessive model of A allele, there was a significant difference in the distribution of AA homozygote and TA+TT genotype between the NAFLD group and the control group (P=0.032). The binary logistic regression analysis showed that in the recessive model of A allele, AA homozygote carriers had an increased risk of NAFLD compared with TA+TT genotype carriers (odds ratio [OR]=1.712, 95% confidence interval [CI]: 1.045 — 2.807, P=0.033). There was still a significant difference after adjustment for sex, age, and BMI (OR=2.156, 95%CI: 1.221 — 3.808, P=0.008). In the NAFLD group, AA genotype carriers had a significantly higher serum level of total cholesterol (TC) than TT+TA carriers (Z=-1.99,P=0.046). Conclusion GHSR rs2922126 AA genotype may be associated with the increased risk of NAFLD in the Chinese Han population in Qingdao, and GHSR rs2922126 AA genotype is associated with the increase in TC in NAFLD patients. -
Key words:
- Non-alcoholic Fatty Liver Disease /
- Receptors, Ghrelin /
- Genes
-
表 1 对照组与NAFLD组临床特征与生化指标比较
Table 1. Comparison of clinical characteristics and biochemical indicators between NAFLD and control group
指标 对照组(n=167) NAFLD组(n=220) 统计值 P值 女/男(例) 87/80 111/109 χ2=0.10 0.749 年龄(岁) 43.97±10.94 52.85±12.83 t=-7.19 <0.001 BMI(kg/m2) 24.26(21.85~27.10) 26.80(24.60~29.10) Z=-5.13 <0.001 FPG(mmol/L) 4.91(4.49~5.19) 5.12(4.60~5.86) Z=-2.78 0.005 TC(mmol/L) 4.99±1.12 5.15±1.23 t=-1.09 0.273 TG(mmol/L) 1.05(0.79~1.46) 1.72(1.14~2.42) Z=-6.78 <0.001 HDL(mmol/L) 1.30(1.13~1.46) 1.15(1.00~1.32) Z=-4.10 <0.001 LDL(mmol/L) 3.10(2.47~3.46) 3.12(2.63~3.55) Z=-1.09 0.276 ALT(U/L) 17.80(12.97~26.15) 28.22(17.61~41.19) Z=-5.57 <0.001 AST(U/L) 20.00(16.22~24.00) 24.41(19.79~32.96) Z=-5.49 <0.001 GGT(U/L) 18.00(12.00~26.00) 30.22(21.62~53.26) Z=-7.09 <0.001 ALP(U/L) 74.66(60.35~87.06) 87.17(72.32~103.66) Z=-3.68 <0.001 表 2 GHSR rs2922126位点基因型和等位基因频率在两组间的分布
Table 2. Distribution of genotype and allele frequencies at GHSRrs2922126 between two groups
项目 对照组
(n=167)NAFLD组
(n=220)χ2值 P值 基因型[例(%)] 4.623 0.099 AA 30(18.0) 60(27.3) TA 83(49.7) 98(44.5) TT 54(32.3) 62(28.3) 等位基因[例(%)] 3.457 0.063 A 143(42.8) 218(49.5) T 191(57.2) 222(50.5) 显性模型[例(%)] 0.780 0.377 AA+TA 113(67.7) 158(71.8) TT 54(32.3) 62(28.2) 隐性模型[例(%)] 4.609 0.032 TT+TA 137(82.0) 160(72.7) AA 30(18.0) 60(27.3) 表 3 GHSR rs2922126在不同基因模型下的回归分析
Table 3. Regression analysis of GHSR rs2922126 under different gene models
模型 未校正 校正后1) OR(95%CI) P值 OR(95%CI) P值 隐性模型 AA 1.712(1.045~2.807) 0.033 2.156(1.221~3.808) 0.008 TT+TA 1.000 1.000 显性模型 TT 1.218(0.786~1.886) 0.377 1.367(0.842~2.221) 0.206 TA+AA 1.000 1.000 注:1)校正年龄、性别与BMZ。
表 4 全部受试者GHSR rs2922126不同等位基因携带者生化指标比较
Table 4. Comparison of biochemical indexes of different allele carriers of GHSR rs2922126 in all subjects
指标 AA(n=90) TA+TT(n=297) 统计值 P值 女/男(例) 48/42 150/147 χ2=0.22 0.638 年龄(岁) 50.00±15.81 48.87±13.62 t=0.62 0.539 BMI(kg/m2) 25.64±3.26 26.67±4.75 t=-1.89 0.060 FPG(mmol/L) 5.06(4.48~5.71) 5.04(4.60~5.79) Z=-0.47 0.641 TC(mmol/L) 5.24±0.96 5.05±1.26 t=1.59 0.116 TG(mmol/L) 1.32(0.98~2.15) 1.47(0.95~2.06) Z=-0.47 0.655 HDL(mmol/L) 1.27(1.04~1.50) 1.18(1.04~1.35) Z=-1.94 0.053 LDL(mmol/L) 3.10(2.67~3.54) 3.12(2.53~3.53) Z=-0.04 0.966 ALT(U/L) 22.85(13.91~34.59) 23.00(15.58~37.05) Z=-0.83 0.409 AST(U/L) 22.82(18.46~27.45) 22.05(18.51~29.79) Z=-0.16 0.872 GGT(U/L) 27.00(17.32~48.84) 24.11(17.00~42.74) Z=-0.87 0.837 ALP(U/L) 83.54(66.47~103.38) 85.64(71.35~99.91) Z=-0.50 0.620 表 5 NAFLD组GHSR rs2922126不同等位基因携带者生化指标比较
Table 5. Comparison of biochemical indexes of different allele carriers of GHSR rs2922126 in the NAFLD group
指标 AA(n=59) TA+TT(n=160) 统计值 P值 女/男(例) 32/27 78/82 χ2=0.52 0.471 年龄(岁) 55.16±14.73 52.34±12.54 t=1.39 0.166 BMI(kg/m2) 26.24(24.33~28.19) 27.17(24.55~29.67) Z=-1.76 0.079 FPG(mmol/L) 5.22(4.56~5.80) 5.11(4.62~6.10) Z=-0.22 0.828 TC(mmol/L) 5.31(4.74~6.07) 4.99(4.31~5.77) Z=-1.99 0.046 TG(mmol/L) 1.51(1.17~2.27) 1.76(1.14~2.44) Z=-0.61 0.545 HDL(mmol/L) 1.22(1.02~1.42) 1.13(0.99~1.30) Z=-1.69 0.092 LDL(mmol/L) 3.11(2.68~3.57) 3.13(2.62~3.53) Z=-0.40 0.690 ALT(U/L) 26.17(15.03~36.69) 28.51(18.00~46.45) Z=-1.52 0.130 AST(U/L) 24.97(19.76~32.30) 24.36(19.76~34.26) Z=-0.59 0.559 GGT(U/L) 30.74(21.97~58.07) 30.12(21.13~50.38) Z=-0.42 0.677 ALP(U/L) 90.13(75.87~108.64) 86.47(71.53~103.23) Z=-0.69 0.493 表 6 GHSR rs2922126基因型肝纤维化风险比较
Table 6. Comparison of the risk of liver fibrosis with the GHSR rs2922126 genotype
项目 例数 AA TA+TT 纤维化低风险 84 19(31.7) 65(40.6) 纤维化高风险 136 41(68.3) 95(59.4) χ2值 1.484 P值 0.223 -
[1] LU R, LIU Y, HONG TP. Epidemiological characteristics and management of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in China: A narrative review[J]. Diabetes Obes Metab, 2023, 25( Suppl 1): 13- 26. DOI: 10.1111/dom.15014. [2] MA L, HU XX, ZHAO B, et al. Association of polymorphisms of the acetyl-coA acetyltransferase 1 gene and the melatonin receptor 1B gene with the susceptibility to nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2024, 40( 4): 700- 705. DOI: 10.12449/JCH240410.马磊, 胡欣欣, 赵波, 等. ACAT1和MTNR1B基因多态性与非酒精性脂肪性肝病易感性的关系[J]. 临床肝胆病杂志, 2024, 40( 4): 700- 705. DOI: 10.12449/JCH240410. [3] DONGIOVANNI P, ROMEO S, VALENTI L. Genetic factors in the pathogenesis of nonalcoholic fatty liver and steatohepatitis[J]. Biomed Res Int, 2015, 2015: 460190. DOI: 10.1155/2015/460190. [4] LONGO M, MERONI M, PAOLINI E, et al. TM6SF2/PNPLA3/MBOAT7 loss-of-function genetic variants impact on NAFLD development and progression both in patients and in vitro models[J]. Cell Mol Gastroenterol Hepatol, 2022, 13( 3): 759- 788. DOI: 10.1016/j.jcmgh.2021.11.007. [5] AJMERA V, LOOMBA R. Advances in the genetics of nonalcoholic fatty liver disease[J]. Curr Opin Gastroenterol, 2023, 39( 3): 150- 155. DOI: 10.1097/MOG.0000000000000927. [6] BAESSLER A, HASINOFF MJ, FISCHER M, et al. Genetic linkage and association of the growth hormone secretagogue receptor(ghrelin receptor) gene in human obesity[J]. Diabetes, 2005, 54( 1): 259- 267. DOI: 10.2337/diabetes.54.1.259. [7] KISSEBAH AH, SONNENBERG GE, MYKLEBUST J, et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome[J]. Proc Natl Acad Sci USA, 2000, 97( 26): 14478- 14483. DOI: 10.1073/pnas.97.26.14478. [8] GUEORGUIEV M, LECOEUR C, MEYRE D, et al. Association studies on ghrelin and ghrelin receptor gene polymorphisms with obesity[J]. Obesity(Silver Spring), 2009, 17( 4): 745- 754. DOI: 10.1038/oby.2008.589. [9] INOUE H, KANGAWA N, KINOUCHI A, et al. Identification and functional analysis of novel human growth hormone secretagogue receptor(GHSR) gene mutations in Japanese subjects with short stature[J]. J Clin Endocrinol Metab, 2011, 96( 2): E373- E378. DOI: 10.1210/jc.2010-1570. [10] TANG LY, HUANG H, ZHU LN, et al. Effects of GHSR rs572169 gene polymorphism on blood glucose and lipid levels in longevity population[J]. J Guangxi Med Univ, 2019, 36( 5): 837- 841. DOI: 10.16190/j.cnki.45-1211/r.2019.05.038.唐岚莹, 黄浩, 朱丽娜, 等. GHSR rs572169基因多态性对长寿人群血糖和血脂水平的影响[J]. 广西医科大学学报, 2019, 36( 5): 837- 841. DOI: 10.16190/j.cnki.45-1211/r.2019.05.038. [11] YANG YM, LI C. Association study of GHSR and hypercholesterolemia[J]. Med J West China, 2012, 24( 1): 155- 157. DOI: 10.3969/j.issn.1672-3511.2012.01.070.杨驭媒, 李岑. GHSR基因多态性与高胆固醇血症的关联研究[J]. 西部医学, 2012, 24( 1): 155- 157. DOI: 10.3969/j.issn.1672-3511.2012.01.070. [12] HUH Y, CHO YJ, GE NAM. Recent epidemiology and risk factors of nonalcoholic fatty liver disease[J]. J Obes Metab Syndr, 2022, 31( 1): 17- 27. DOI: 10.7570/jomes22021. [13] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association: Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: a 2018 update[J]. J Clin Hepatol, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.10015256.2018.05.007.中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.10015256.2018.05.007. [14] BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease(NAFLD)[J]. Metabolism, 2016, 65( 8): 1038- 1048. DOI: 10.1016/j.metabol.2015.12.012. [15] LV Y, LIANG TT, WANG GX, et al. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism[J]. Biosci Rep, 2018, 38( 5): BSR20181061. DOI: 10.1042/BSR20181061. [16] MÜLLER TD, NOGUEIRAS R, ANDERMANN ML, et al. Ghrelin[J]. Mol Metab, 2015, 4( 6): 437- 460. DOI: 10.1016/j.molmet.2015.03.005. [17] WANG Q, LIU C, UCHIDA A, et al. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin[J]. Mol Metab, 2013, 3( 1): 64- 72. DOI: 10.1016/j.molmet.2013.10.001. [18] REZAMAND G, MAHMOUDI T, TABAEIAN SP, et al. The“GG” genotype of rs26802 variant in the ghrelin gene is a potential protective factor against nonalcoholic fatty liver disease[J]. Physiol Int, 2021, 108( 3): 342- 352. DOI: 10.1556/2060.2021.00183. [19] TABAEIAN SP, MAHMOUDI T, SABZIKARIAN M, et al. The Leu72Met(rs696217 GT) polymorphism of the ghrelin gene might be a protective factor for nonalcoholic fatty liver disease[J]. J Gastrointestin Liver Dis, 2021, 30( 2): 233- 239. DOI: 10.15403/jgld-2703. [20] LI WJ, ZHEN YS, SUN K, et al. Ghrelin receptor gene polymorphisms are associated with female metabolic syndrome in Chinese population[J]. Chin Med J(Engl), 2008, 121( 17): 1666- 1669. [21] ARGUELLO G, BALBOA E, ARRESE M, et al. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease[J]. Biochim Biophys Acta, 2015, 1852( 9): 1765- 1778. DOI: 10.1016/j.bbadis.2015.05.015. [22] PENG KP, MO ZN, TIAN GX. Serum lipid abnormalities and nonalcoholic fatty liver disease in adult males[J]. Am J Med Sci, 2017, 353( 3): 236- 241. DOI: 10.1016/j.amjms.2017.01.002. [23] ZHANG YX, WANG Y, YOU CL, et al. Analysis of related factors of abnormal liver function in patients with nonalcoholic fatty liver disease[J]. Clin J Med Offic, 2025, 53( 5): 522- 524, 528. DOI: 10.16680/j.1671-3826.2025.05.21.张月霞, 王宇, 尤丛蕾, 等. 非酒精性脂肪肝患者肝功能异常相关因素分析[J]. 临床军医杂志, 2025, 53( 5): 522- 524, 528. DOI: 10.16680/j.1671-3826.2025.05.21. [24] ZHANG YT, WANG AH, YANG JN, et al. Mechanisms of cholesterol metabolism imbalance in a PA-induced non-alcoholic fatty liver disease cell model[J]. J China Pharm Univ, 2023, 54( 4): 490- 500. DOI: 10.11665/j.issn.1000-5048.2023032401.章玉婷, 王安慧, 杨晋妮, 等. 非酒精性脂肪性肝病细胞模型中胆固醇代谢紊乱机制[J]. 中国药科大学学报, 2023, 54( 4): 490- 500. DOI: 10.11665/j.issn.1000-5048.2023032401. -
本文二维码
计量
- 文章访问数: 108
- HTML全文浏览量: 25
- PDF下载量: 10
- 被引次数: 0

PDF下载 ( 646 KB)
下载: 