超声衍生脂肪分数、受控衰减参数及肝肾回声比值对代谢相关脂肪性肝病肝脂肪变性分级的诊断价值比较
DOI: 10.12449/JCH250913
Comparison of the diagnostic value of ultrasound-derived fat fraction, controlled attenuation parameter, and hepatic/renal ratio in the grading of hepatic steatosis in metabolic associated fatty liver disease
-
摘要:
目的 以磁共振成像质子密度脂肪分数(MRI-PDFF,简称PDFF)作为金标准,分析比较超声衍生脂肪分数(UDFF)、受控衰减参数(CAP)及肝肾回声比值(HRR)对代谢相关脂肪性肝病(MAFLD)肝脂肪变性的诊断准确性和分级能力。 方法 选取2023年1月—2024年12月于河北医科大学第一医院就诊的150例MAFLD患者,并招募健康志愿者148例。所有受试者均接受PDFF、UDFF、CAP及HRR检查,利用PDFF对肝脂肪变性进行分级(S0级:148例,S1级:92例,S2级:21例,S3级:37例),分析MAFLD不同级别肝脂肪变性患者UDFF、CAP、HRR的临床资料特征及差异。符合正态分布的计量资料多组间比较采用单因素方差分析,进一步两两比较采用Tukey HSD检验;不符合正态分布的计量资料多组间比较采用Kruskal-Waills H检验,进一步两两比较采用MannWhitney U检验。计数资料组间比较采用χ2检验。UDFF、CAP、HRR与PDFF在不同分级MAFLD中的相关性采用Spearman相关性分析;受试者操作特征曲线(ROC曲线)分析UDFF、CAP、HRR对MAFLD不同程度肝脂肪变性的诊断效能;Bland-Altman差值图分析UDFF和PDFF在MAFLD不同程度肝脂肪变性中的一致性。 结果 随着脂肪肝分级的增加,UDFF测量值逐渐增加(H=201.52,P<0.001)。Spearman相关性分析显示,在S1、S2、S3级MAFLD中,UDFF、CAP、HRR与PDFF两两之间均存在较强的相关性(P值均<0.001),且UDFF与PDFF之间的相关性最强(S1:r=0.884,S2:r=0.962,S3:r=0.929,P值均<0.001)。ROC曲线分析结果显示,在S1和S3的分级诊断中,UDFF的AUC均高于CAP和HRR(P值均<0.05),在S2级MAFLD诊断中,UDFF的AUC明显高于HRR(P<0.05),与CAP的AUC相近(P>0.05)。Bland-Altman差值图显示,UDFF与PDFF检查结果在不同程度MAFLD肝脂肪变性中具有良好的一致性。 结论 与CAP和HRR相比,UDFF能更加精确地定量检测肝脂肪含量,且在识别不同程度MAFLD肝脂肪变性中具有良好的效能。 Abstract:Objective To investigate the diagnostic accuracy and grading capability of ultrasound-derived fat fraction (UDFF), controlled attenuation parameter (CAP), and hepatic/renal ratio (HRR) in assessing hepatic steatosis in metabolic associated fatty liver disease (MAFLD) with magnetic resonance imaging-proton density fat fraction (MRI-PDFF) as the gold standard. Methods A total of 150 patients with MAFLD who attended The First Hospital of Hebei Medical University from January 2023 to December 2024 were enrolled, and 148 healthy volunteers were recruited. All subjects underwent MRI-PDFF, UDFF, CAP, and HRR examinations. Hepatic steatosis was graded based on MRI-PDFF (S0:148 cases; S1:92 cases; S2:21 cases; S3:37 cases), and the MAFLD patients with different grades of hepatic steatosis were compared in terms of UDFF, CAP, HRR, and clinical features. A one-way analysis of variance was used for comparison of normally distributed continuous data between multiple groups and the Tukey HSD test was used for further comparision between two groups; the Kruskal-Wallis H test was used for comparison of non-normally distributed continuous data between multiple groups, and the Mann-Whitney U test was used for further comparison between two groups; the chi-square test was used for comparison of categorical data between groups. The Spearman correlation analysis was used to investigate the correlation between UDFF, CAP, HRR, and MRI-PDFF in different grades of MAFLD; the receiver operating characteristic (ROC) curve was used to investigate the efficacy of UDFF, CAP, and HRR in the diagnosis of different degrees of hepatic steatosis in MAFLD; the Bland-Altman difference plot was used to analyze the consistency between UDFF and MRI-PDFF in different degrees of hepatic steatosis in MAFLD. Results UDFF measurement gradually increased with the increase in the grade of fatty liver (H=201.52,P<0.001). The Spearman correlation analysis showed that there was a strong correlation between any two indicators of UDFF, CAP, HRR, and MRI-PDFF in S1, S2, and S3 MAFLD (all P<0.001), with the strongest correlation between UDFF and MRI-PDFF (rs1=0.884,rs2=0.962,rs3=0.929, all P<0.001). The ROC curve analysis showed that UDFF had a larger area under the ROC curve (AUC) than CAP and HRR in the graded diagnosis of S1 and S3 (all P<0.05), while in the diagnosis of S2 MAFLD, UDFF had a significantly larger AUC than HRR (P<0.05) and a similar AUC to CAP (P>0.05). The Bland-Altman difference plot showed good consistency between UDFF and MRI-PDFF in different degrees of hepatic steatosis in MAFLD. Conclusion Compared with CAP and HRR, UDFF can accurately measure liver fat content and has good efficacy in identifying varying degrees of hepatic steatosis in MAFLD. -
表 1 不同级别MAFLD患者临床特征比较
Table 1. Clinical data characteristics of MAFLD patients with different grades
指标 S0级(n=148) S1级(n=92) S2级(n=21) S3级(n=37) 统计值 P值 男/女(例) 89/59 45/47 6/151) 13/241) χ2=13.05 0.005 年龄(岁) 36.28±11.47 49.46±14.711) 46.71±10.611) 40.84±9.441) F=31.11 <0.001 BMI(kg/m2) 21.22±1.21 26.38±2.891) 28.74±2.911) 30.28±3.991) F=129.93 <0.001 腹围(cm) 88.74±8.45 93.87±9.111) 97.22±15.371) 95.74±9.891) F=10.74 <0.001 臀围(cm) 98.79±5.66 101.29±6.791) 102.51±6.951) 102.14±5.891) F=6.13 <0.001 糖尿病史[例(%)] 32(21.62) 71(77.17)1) 16(76.19)1) 28(75.68)1) χ2=90.33 <0.001 ALT(U/L) 32.00(26.08~35.23) 41.60(30.80~48.20)1) 54.75(39.80~74.55)1) 108.90(71.90~124.60)1) H=129.17 <0.001 AST(U/L) 32.90(30.17~36.85) 38.60(27.37~52.62)1) 42.00(33.60~54.50)1) 55.20(41.60~79.30)1) H=34.41 <0.001 ALP(U/L) 80.12±18.26 76.33±20.09 76.89±21.21 74.59±19.07 F=3.54 0.316 GGT(U/L) 29.10(24.17~34.85) 57.25(33.70~82.38)1) 54.40(31.86~61.50)1) 59.80(45.69~80.27)1) H=94.78 <0.001 TG(mmol/L) 1.28±0.32 2.47±1.361) 2.90±1.411) 2.93±1.311) F=44.56 <0.001 TC(mmol/L) 4.75±0.85 4.59±0.89 4.66±0.91 4.67±1.08 F=0.71 0.548 HDL-C(mmol/L) 1.28±0.17 1.09±0.291) 1.21±0.47 0.99±0.261) F=13.05 <0.001 空腹血糖(mmol/L) 5.34±0.95 7.92±2.531) 7.65±1.901) 8.12±2.891) F=44.75 <0.001 PDFF(%) 3.20(2.42~4.06) 9.44(7.57~12.12)1) 18.14(17.66~18.69)1) 28.69(21.47~35.21)1) H=197.13 <0.001 UDFF(%) 4.50(3.90~5.20) 14.11(10.29~16.80)1) 17.29(14.39~23.70)1) 30.25(15.00~36.80)1) H=201.52 <0.001 CAP(dB/m) 207.00
(186.97~230.60)271.75
(246.02~302.50)1)303.00
(269.00~317.00)1)307.00
(291.90~323.60)1)H=127.28 <0.001 HRR 1.27(1.06~1.50) 2.00(1.35~2.46)1) 2.77(2.34~3.17)1) 2.98(2.12~3.66)1) H=102.58 <0.001 注:与S0级比较,1)P<0.05。
表 2 UDFF、CAP和HRR诊断不同分级MAFLD肝脏脂肪变性的价值
Table 2. The value of UDFF, CAP, and HRR in diagnosing different grades of MAFLD liver steatosis
分级 参数 敏感度(%) 特异度(%) AUC(95%CI) cut-off值 S1 UDFF 96.29 90.08 0.92(0.89~0.96) 6.02 CAP 85.89 85.15 0.90(0.85~0.96) 246.00 HRR 76.21 88.14 0.80(0.74~0.84) 1.78 S2 UDFF 99.86 81.21 0.98(0.96~0.99) 15.12 CAP 96.44 78.54 0.97(0.94~0.98) 277.00 HRR 92.51 74.51 0.94(0.85~0.96) 2.03 S3 UDFF 86.20 93.81 0.99(0.98~0.99) 22.98 CAP 86.77 85.21 0.96(0.91~0.97) 288.00 HRR 90.86 79.57 0.93(0.87~0.95) 2.41 -
[1] RINELLA ME, LAZARUS JV, RATZIU V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature[J]. J Hepatol, 2023, 79( 6): 1542- 1556. DOI: 10.1016/j.jhep.2023.06.003. [2] HUTCHISON AL, TAVAGLIONE F, ROMEO S, et al. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease(MASLD): Beyond insulin resistance[J]. J Hepatol, 2023, 79( 6): 1524- 1541. DOI: 10.1016/j.jhep.2023.08.030. [3] LEE HH, LEE HA, KIM EJ, et al. Metabolic dysfunction-associated steatotic liver disease and risk of cardiovascular disease[J]. Gut, 2024, 73( 3): 533- 540. DOI: 10.1136/gutjnl-2023-331003. [4] ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73( 1): 202- 209. DOI: 10.1016/j.jhep.2020.03.039. [5] TAMAKI N, AJMERA V, LOOMBA R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD[J]. Nat Rev Endocrinol, 2022, 18( 1): 55- 66. DOI: 10.1038/s41574-021-00584-0. [6] ZHANG J, HE NA. The diagnostic value of ultrasound-derived fat fraction for metabolic dysfunction associated fatty liver disease[J]. Chin J Ultrasound Med, 2024, 40( 7): 771- 774. DOI: 10.3969/j.issn.1002-0101.2024.07.013.张杰, 何年安. 评估超声脂肪分数对代谢相关脂肪性肝病的诊断价值[J]. 中国超声医学杂志, 2024, 40( 7): 771- 774. DOI: 10.3969/j.issn.1002-0101.2024.07.013. [7] YIN HH, FAN YL, YU JF, et al. Quantitative US fat fraction for noninvasive assessment of hepatic steatosis in suspected metabolic-associated fatty liver disease[J]. Insights Imaging, 2024, 15( 1): 159. DOI: 10.1186/s13244-024-01728-2. [8] KURODA H, OGURI T, KAMIYAMA N, et al. Multivariable quantitative US parameters for assessing hepatic steatosis[J]. Radiology, 2023, 309( 1): e230341. DOI: 10.1148/radiol.230341. [9] JIANG TT, DENG W, WANG SY, et al. Diagnosis and evaluation of fatty liver disease[J/CD]. Chin J Liver Dis(Electronic Version), 2024, 16( 2): 22- 28. DOI: 10.3969/j.issn.1674-7380.2024.02.005.蒋婷婷, 邓雯, 王诗雨, 等. 脂肪性肝病的诊断和评估[J/CD]. 中国肝脏病杂志(电子版), 2024, 16( 2): 22- 28. DOI: 10.3969/j.issn.1674-7380.2024.02.005. [10] PIRMOAZEN AM, KHURANA A, LOENING AM, et al. Diagnostic performance of 9 quantitative ultrasound parameters for detection and classification of hepatic steatosis in nonalcoholic fatty liver disease[J]. Invest Radiol, 2022, 57( 1): 23- 32. DOI: 10.1097/RLI.0000000000000797. [11] PETROFF D, BLANK V, NEWSOME PN, et al. Assessment of hepatic steatosis by controlled attenuation parameter using the M and XL probes: An individual patient data meta-analysis[J]. Lancet Gastroenterol Hepatol, 2021, 6( 3): 185- 198. DOI: 10.1016/S2468-1253(20)30357-5. [12] SHIRALKAR K, JOHNSON S, BLUTH EI, et al. Improved method for calculating hepatic steatosis using the hepatorenal index[J]. J Ultrasound Med, 2015, 34( 6): 1051- 1059. DOI: 10.7863/ultra.34.6.1051. [13] HAN JH, LI J, SHEN HM, et al. Performance of ultrasound derived fat fraction on diagnosing metabolic dysfunction associated steatotic liver disease[J]. Chin J Ultrasonogr, 2024, 33( 8): 703- 711. DOI: 10.3760/cma.j.cn131148-20240418-00234.韩佳豪, 李嘉, 沈会明, 等. 超声衍生脂肪分数对代谢异常相关脂肪性肝病的诊断效能[J]. 中华超声影像学杂志, 2024, 33( 8): 703- 711. DOI: 10.3760/cma.j.cn131148-20240418-00234. [14] GUGLIELMO FF, BARR RG, YOKOO T, et al. Liver fibrosis, fat, and iron evaluation with MRI and fibrosis and fat evaluation with US: A practical guide for radiologists[J]. Radiographics, 2023, 43( 6): e220181. DOI: 10.1148/rg.220181. [15] XIA JX, ZHAO YH, HE H, et al. Application of TG/HDL-C combined with liver function indexes to predict metabolic-associated fatty liver disease[J]. J Sichuan Univ Med Sci, 2022, 53( 5): 764- 769. DOI: 10.12182/20220960102.夏君香, 赵艳华, 何訸, 等. TG/HDL-C联合肝功指标预测代谢相关脂肪性肝病的价值[J]. 四川大学学报(医学版), 2022, 53( 5): 764- 769. DOI: 10.12182/20220960102. [16] LOOMBA R, SANYAL AJ. The global NAFLD epidemic[J]. Nat Rev Gastroenterol Hepatol, 2013, 10( 11): 686- 690. DOI: 10.1038/nrgastro.2013.171. [17] YAO SK, LIU J, ZHOU TH. Research advances in the pathogenesis of metabolic associated fatty liver disease[J]. J Clin Hepatol, 2024, 40( 10): 1954- 1958. DOI: 10.12449/JCH241005.姚树坤, 刘婧, 周天惠. 代谢相关脂肪性肝病的发病机制与中医病机[J]. 临床肝胆病杂志, 2024, 40( 10): 1954- 1958. DOI: 10.12449/JCH241005. [18] VILAR-GOMEZ E, MARTINEZ-PEREZ Y, CALZADILLA-BERTOT L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis[J]. Gastroenterology, 2015, 149( 2): 367- 378. e5; quize14-5. DOI: 10.1053/j.gastro.2015.04.005. [19] CASTÉRA L, NÈGRE I, SAMII K, et al. Pain experienced during percutaneous liver biopsy[J]. Hepatology, 1999, 30( 6): 1529- 1530. DOI: 10.1002/hep.510300624. [20] BEDOSSA P, POYNARD T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group[J]. Hepatology, 1996, 24( 2): 289- 293. DOI: 10.1002/hep.510240201. [21] REEDER SB, HU HH, SIRLIN CB. Proton density fat-fraction: A standardized MR-based biomarker of tissue fat concentration[J]. J Magn Reson Imaging, 2012, 36( 5): 1011- 1014. DOI: 10.1002/jmri.23741. [22] TANG A, DESAI A, HAMILTON G, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease[J]. Radiology, 2015, 274( 2): 416- 425. DOI: 10.1148/radiol.14140754. [23] FERRAIOLI G, BERZIGOTTI A, BARR RG, et al. Quantification of liver fat content with ultrasound: A WFUMB position paper[J]. Ultrasound Med Biol, 2021, 47( 10): 2803- 2820. DOI: 10.1016/j.ultrasmedbio.2021.06.002. [24] LIU GC, ZHANG HX. Progress in MRI evaluation of nonalcoholic fatty liver disease[J]. Chin J Magn Reson Imaging, 2024, 15( 9): 201- 204. DOI: 10.12015/issn.1674-8034.2024.09.035.刘冠辰, 张红霞. MRI对非酒精性脂肪性肝病定量评估研究进展[J]. 磁共振成像, 2024, 15( 9): 201- 204. DOI: 10.12015/issn.1674-8034.2024.09.035. [25] FRANKLAND MP, DILLMAN JR, ANTON CG, et al. Diagnostic performance of ultrasound hepatorenal index for the diagnosis of hepatic steatosis in children[J]. Pediatr Radiol, 2022, 52( 7): 1306- 1313. DOI: 10.1007/s00247-022-05313-x. [26] FERRAIOLI G, WONG VW, CASTERA L, et al. Liver ultrasound elastography: An update to the world federation for ultrasound in medicine and biology guidelines and recommendations[J]. Ultrasound Med Biol, 2018, 44( 12): 2419- 2440. DOI: 10.1016/j.ultrasmedbio.2018.07.008. [27] DILLMAN JR, THAPALIYA S, TKACH JA, et al. Quantification of hepatic steatosis by ultrasound: Prospective comparison with MRI proton density fat fraction as reference standard[J]. AJR Am J Roentgenol, 2022, 219( 5): 784- 791. DOI: 10.2214/AJR.22.27878. [28] CAUSSY C, ALQUIRAISH MH, NGUYEN P, et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis[J]. Hepatology, 2018, 67( 4): 1348- 1359. DOI: 10.1002/hep.29639. [29] KARLAS T, PETROFF D, SASSO M, et al. Individual patient data meta-analysis of controlled attenuation parameter(CAP) technology for assessing steatosis[J]. J Hepatol, 2017, 66( 5): 1022- 1030. DOI: 10.1016/j.jhep.2016.12.022. [30] D’HONDT A, RUBESOVA E, XIE H, et al. Liver fat quantification by ultrasound in children: A prospective study[J]. AJR Am J Roentgenol, 2021, 217( 4): 996- 1006. DOI: 10.2214/AJR.20.24874. [31] TANPOWPONG N, PANICHYAWAT S. Comparison of sonographic hepatorenal ratio and the degree of hepatic steatosis in magnetic resonance imaging-proton density fat fraction[J]. J Ultrason, 2020, 20( 82): e169- e175. DOI: 10.15557/JoU.2020.0028. [32] FERRAIOLI G, BARR RG, BERZIGOTTI A, et al. WFUMB guidelines/guidance on liver multiparametric ultrasound. part 2: Guidance on liver fat quantification[J]. Ultrasound Med Biol, 2024, 50( 8): 1088- 1098. DOI: 10.1016/j.ultrasmedbio.2024.03.014. -

PDF下载 ( 2103 KB)
下载:
