中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多组学技术在代谢相关脂肪性肝病中的潜在应用: 从分子机制到血清学标志物

刘珍妮 龙琪琛 胡敏

引用本文:
Citation:

多组学技术在代谢相关脂肪性肝病中的潜在应用: 从分子机制到血清学标志物

DOI: 10.12449/JCH250904
基金项目: 

国家自然科学基金 (82302586)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:刘珍妮负责查找文献,撰写文稿;龙琪琛、胡敏负责确定写作思路,指导文章撰写及最终定稿。
详细信息
    通信作者:

    龙琪琛, qclong@csu.edu.cn (ORCID: 0000-0001-7545-7230)

    胡敏, huminjyk@csu.edu.cn (ORCID: 0000-0001-7886-8174)

Potential application of multi-omics techniques in metabolic dysfunction-associated fatty liver disease: From molecular mechanisms to serological markers

Research funding: 

National Natural Science Foundation of China (82302586)

More Information
  • 摘要: 代谢相关脂肪性肝病(MAFLD),即原非酒精性脂肪性肝病(NAFLD),已成为全球范围内常见的慢性肝病。目前,临床诊断肝病的方法存在侵入性操作、敏感性不足、诊断准确性较低等局限,给MAFLD的早期识别和精准治疗带来挑战。近年来,多组学技术的快速发展为MAFLD的精准诊疗提供了新思路。基因组学、代谢组学与脂质组学、微生物组学及蛋白质组学技术不仅在MAFLD发病机制方面提供了新的见解,还为疾病的预测、诊断和分期鉴定出新型生物标志物。同时,基于多组学数据构建的诊断模型展现出良好的临床效能,为开发无创、精准的MAFLD诊断工具奠定重要基础,有望实现传统诊疗向精准医学的转变。尽管多组学标志物在MAFLD早期诊断中的临床应用价值已得到一定认可,但在临床转化方面仍面临检测标准化、个体异质性、成本效益等挑战。

     

  • [1] LE MH, LE DM, BAEZ TC, et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1, 201, 807 persons[J]. J Hepatol, 2023, 79( 2): 287- 295. DOI: 10.1016/j.jhep.2023.03.040.
    [2] POWELL EE, WONG VW, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397( 10290): 2212- 2224. DOI: 10.1016/S0140-6736(20)32511-3.
    [3] WU YK, ZHENG Q, ZOU BY, et al. The epidemiology of NAFLD in Mainland China with analysis by adjusted gross regional domestic product: A meta-analysis[J]. Hepatol Int, 2020, 14( 2): 259- 269. DOI: 10.1007/s12072-020-10023-3.
    [4] ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158( 7): 1999- 2014.e1. DOI: 10.1053/j.gastro.2019.11.312.
    [5] LONG QC, LUO FM, LI BH, et al. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease[J]. Hepatol Commun, 2024, 8( 3): e0310. DOI: 10.1097/HC9.0000000-000000310.
    [6] LOOMBA R, SCHORK N, CHEN CH, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study[J]. Gastroenterology, 2015, 149( 7): 1784- 1793. DOI: 10.1053/j.gastro.2015.08.011.
    [7] SOOKOIAN S, PIROLA CJ. Genetic predisposition in nonalcoholic fatty liver disease[J]. Clin Mol Hepatol, 2017, 23( 1): 1- 12. DOI: 10.3350/cmh.2016.0109.
    [8] SCHWIMMER JB, CELEDON MA, LAVINE JE, et al. Heritability of nonalcoholic fatty liver disease[J]. Gastroenterology, 2009, 136( 5): 1585- 1592. DOI: 10.1053/j.gastro.2009.01.050.
    [9] CUI J, CHEN CH, LO MT, et al. Shared genetic effects between hepatic steatosis and fibrosis: A prospective twin study[J]. Hepatology, 2016, 64( 5): 1547- 1558. DOI: 10.1002/hep.28674.
    [10] BUCH S, STICKEL F, TRÉPO E, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis[J]. Nat Genet, 2015, 47( 12): 1443- 1448. DOI: 10.1038/ng.3417.
    [11] WHITFIELD JB, SCHWANTES-AN TH, DARLAY R, et al. A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers[J]. J Hepatol, 2022, 76( 2): 275- 282. DOI: 10.1016/j.jhep.2021.10.005.
    [12] SVEINBJORNSSON G, ULFARSSON MO, THOROLFSDOTTIR RB, et al. Multiomics study of nonalcoholic fatty liver disease[J]. Nat Genet, 2022, 54( 11): 1652- 1663. DOI: 10.1038/s41588-022-01199-5.
    [13] CHEN VL, OLIVERI A, MILLER MJ, et al. PNPLA3 genotype and diabetes identify patients with nonalcoholic fatty liver disease at high risk of incident cirrhosis[J]. Gastroenterology, 2023, 164( 6): 966- 977. e 17. DOI: 10.1053/j.gastro.2023.01.040.
    [14] JIN R, BANTON S, TRAN VT, et al. Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-an untargeted, high resolution metabolomics study[J]. J Pediatr, 2016, 172: 14- 19. e 5. DOI: 10.1016/j.jpeds.2016.01.026.
    [15] MASARONE M, TROISI J, AGLITTI A, et al. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis[J]. Metabolomics, 2021, 17( 2): 12. DOI: 10.1007/s11306-020-01756-1.
    [16] GAGGINI M, CARLI F, ROSSO C, et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance[J]. Hepatology, 2018, 67( 1): 145- 158. DOI: 10.1002/hep.29465.
    [17] ZHANG FY, ZHAO SH, YAN WJ, et al. Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy[J]. EBioMedicine, 2016, 13: 157- 167. DOI: 10.1016/j.ebiom.2016.10.013.
    [18] MIYAZAKI T, KARUBE M, MATSUZAKI Y, et al. Taurine inhibits oxidative damage and prevents fibrosis in carbon tetrachloride-induced hepatic fibrosis[J]. J Hepatol, 2005, 43( 1): 117- 125. DOI: 10.1016/j.jhep.2005.01.033.
    [19] FORLANO R, MARTINEZ-GILI L, TAKIS P, et al. Disruption of gut barrier integrity and host-microbiome interactions underlie MASLD severity in patients with type-2 diabetes mellitus[J]. Gut Microbes, 2024, 16( 1): 2304157. DOI: 10.1080/19490976.2024.2304157.
    [20] SMIRNOVA E, MUTHIAH MD, NARAYAN N, et al. Metabolic reprogramming of the intestinal microbiome with functional bile acid changes underlie the development of NAFLD[J]. Hepatology, 2022, 76( 6): 1811- 1824. DOI: 10.1002/hep.32568.
    [21] ZHONG J, HE XF, GAO XX, et al. Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling[J]. Nat Commun, 2023, 14( 1): 5451. DOI: 10.1038/s41467-023-41061-8.
    [22] KUANG JL, WANG JY, LI YT, et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis[J]. Cell Metab, 2023, 35( 10): 1752- 1766. e 8. DOI: 10.1016/j.cmet.2023.07.011.
    [23] YOUNOSSI ZM, RATZIU V, LOOMBA R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394( 10215): 2184- 2196. DOI: 10.1016/S0140-6736(19)33041-7.
    [24] OOI GJ, MEIKLE PJ, HUYNH K, et al. Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis[J]. J Hepatol, 2021, 75( 3): 524- 535. DOI: 10.1016/j.jhep.2021.04.013.
    [25] VELENOSI TJ, BEN-YAKOV G, PODSZUN MC, et al. Postprandial plasma lipidomics reveal specific alteration of hepatic-derived diacylglycerols in nonalcoholic fatty liver disease[J]. Gastroenterology, 2022, 162( 7): 1990- 2003. DOI: 10.1053/j.gastro.2022.03.004.
    [26] GORDEN DL, MYERS DS, IVANOVA PT, et al. Biomarkers of NAFLD progression: A lipidomics approach to an epidemic[J]. J Lipid Res, 2015, 56( 3): 722- 736. DOI: 10.1194/jlr.P056002.
    [27] CHAURASIA B, TIPPETTS TS, MONIBAS RM, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis[J]. Science, 2019, 365( 6451): 386- 392. DOI: 10.1126/science.aav3722.
    [28] PAGADALA M, KASUMOV T, MCCULLOUGH AJ, et al. Role of ceramides in nonalcoholic fatty liver disease[J]. Trends Endocrinol Metab, 2012, 23( 8): 365- 371. DOI: 10.1016/j.tem.2012.04.005.
    [29] CAUSSY C, AJMERA VH, PURI P, et al. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease[J]. Gut, 2019, 68( 10): 1884- 1892. DOI: 10.1136/gutjnl-2018-317584.
    [30] SPOONER MH, JUMP DB. Nonalcoholic fatty liver disease and omega-3 fatty acids: Mechanisms and clinical use[J]. Annu Rev Nutr, 2023, 43: 199- 223. DOI: 10.1146/annurev-nutr-061021-030223.
    [31] MA C, KESARWALA AH, EGGERT T, et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis[J]. Nature, 2016, 531( 7593): 253- 257. DOI: 10.1038/nature16969.
    [32] van NAME MA, SAVOYE M, CHICK JM, et al. A low ω-6 to ω-3 PUFA ratio(n-6: N-3 PUFA) diet to treat fatty liver disease in obese youth[J]. J Nutr, 2020, 150( 9): 2314- 2321. DOI: 10.1093/jn/nxaa183.
    [33] OLIVEIRA DT, CHAVES-FILHO AB, YOSHINAGA MY, et al. Liver lipidome signature and metabolic pathways in nonalcoholic fatty liver disease induced by a high-sugar diet[J]. J Nutr Biochem, 2021, 87: 108519. DOI: 10.1016/j.jnutbio.2020.108519.
    [34] OGAWA Y, KOBAYASHI T, HONDA Y, et al. Metabolomic/lipidomic-based analysis of plasma to diagnose hepatocellular ballooning in patients with non-alcoholic fatty liver disease: A multicenter study[J]. Hep‑atol Res, 2020, 50( 8): 955- 965. DOI: 10.1111/hepr.13528.
    [35] XIA JL, CHEN H, WANG XX, et al. Sphingosine d18: 1 promotes nonalcoholic steatohepatitis by inhibiting macrophage HIF-2α[J]. Nat Commun, 2024, 15( 1): 4755. DOI: 10.1038/s41467-024-48954-2.
    [36] LOOMBA R, SEGURITAN V, LI WZ, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease[J]. Cell Metab, 2017, 25( 5): 1054- 1062.e5. DOI: 10.1016/j.cmet.2017.04.001.
    [37] OH TG, KIM SM, CAUSSY C, et al. A universal gut-microbiome-derived signature predicts cirrhosis[J]. Cell Metab, 2020, 32( 5): 878- 888.e6. DOI: 10.1016/j.cmet.2020.06.005.
    [38] HU YQ, HU XY, JIANG L, et al. Microbiome and metabolomics reveal the effect of gut microbiota on liver regeneration of fatty liver disease[J]. EBioMedicine, 2025, 111: 105482. DOI: 10.1016/j.ebiom.2024.105482.
    [39] LIU JJ, SUN JY, YU JK, et al. Gut microbiome determines therapeutic effects of OCA on NAFLD by modulating bile acid metabolism[J]. NPJ Biofilms Microbiomes, 2023, 9( 1): 29. DOI: 10.1038/s41522-023-00399-z.
    [40] MOHAMAD NOR MH, AYOB N, MOKHTAR NM, et al. The effect of probiotics(MCP® BCMC® strains) on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease[J]. Nutrients, 2021, 13( 9): 3192. DOI: 10.3390/nu13093192.
    [41] ZHU YZ, TAN JK, LIU J, et al. Roles of traditional and next-generation probiotics on non-alcoholic fatty liver disease(NAFLD) and non-alcoholic steatohepatitis(NASH): A systematic review and network meta-analysis[J]. Antioxidants(Basel), 2024, 13( 3): 329. DOI: 10.3390/antiox13030329.
    [42] THING M, WERGE MP, KIMER N, et al. Targeted metabolomics reveals plasma short-chain fatty acids are associated with metabolic dysfunction-associated steatotic liver disease[J]. BMC Gastroenterol, 2024, 24( 1): 43. DOI: 10.1186/s12876-024-03129-7.
    [43] ZHANG X, LAU HC, YU J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options[J]. Pharmacol Rev, 2025, 77( 2): 100018. DOI: 10.1016/j.pharmr.2024.100018.
    [44] LEÓN-MIMILA P, VILLAMIL-RAMÍREZ H, LI XS, et al. Trimethylamine N-oxide levels are associated with NASH in obese subjects with type 2 diabetes[J]. Diabetes Metab, 2021, 47( 2): 101183. DOI: 10.1016/j.diabet.2020.07.010.
    [45] FLORES-GUERRERO JL, POST A, van DIJK PR, et al. Circulating trimethylamine-N-oxide is associated with all-cause mortality in subjects with nonalcoholic fatty liver disease[J]. Liver Int, 2021, 41( 10): 2371- 2382. DOI: 10.1111/liv.14963.
    [46] KRISHNAN S, DING YF, SAEDI N, et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages[J]. Cell Rep, 2018, 23( 4): 1099- 1111. DOI: 10.1016/j.celrep.2018.03.109.
    [47] ZHAO ZH, XIN FZ, XUE YQ, et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats[J]. Exp Mol Med, 2019, 51( 9): 1- 14. DOI: 10.1038/s12276-019-0304-5.
    [48] MUSSO G, GAMBINO R, CASSADER M, et al. Meta-analysis: Natural history of non-alcoholic fatty liver disease(NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity[J]. Ann Med, 2011, 43( 8): 617- 649. DOI: 10.3109/07853890.2010.518623.
    [49] Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of metabolic dysfunction-associated(non-alcoholic) fatty liver disease(version 2024)[J]. J Prac Hepatol, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163.

    中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 实用肝脏病杂志, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163.
    [50] BYRNE CD, TARGHER G. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease: Is universal screening appropriate?[J]. Diabetologia, 2016, 59( 6): 1141- 1144. DOI: 10.1007/s00125-016-3910-y.
    [51] JEONG C, HAN N, JEON N, et al. Efficacy and safety of fibroblast growth factor-21 analogs for the treatment of metabolic dysfunction-associated steatohepatitis: A systematic review and meta-analysis[J]. Clin Pharmacol Ther, 2024, 116( 1): 72- 81. DOI: 10.1002/cpt.3278.
    [52] NIU LL, GEYER PE, WEWER ALBRECHTSEN NJ, et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease[J]. Mol Syst Biol, 2019, 15( 3): e8793. DOI: 10.15252/msb.20188793.
    [53] GOVAERE O, HASOON M, ALEXANDER L, et al. A proteo-transcript‑omic map of non-alcoholic fatty liver disease signatures[J]. Nat Metab, 2023, 5( 4): 572- 578. DOI: 10.1038/s42255-023-00775-1.
    [54] COREY KE, PITTS R, LAI M, et al. ADAMTSL2 protein and a soluble biomarker signature identify at-risk non-alcoholic steatohepatitis and fibrosis in adults with NAFLD[J]. J Hepatol, 2022, 76( 1): 25- 33. DOI: 10.1016/j.jhep.2021.09.026.
    [55] INDIRA CHANDRAN V, WERNBERG CW, LAURIDSEN MM, et al. Circulating TREM2 as a noninvasive diagnostic biomarker for NASH in patients with elevated liver stiffness[J]. Hepatology, 2023, 77( 2): 558- 572. DOI: 10.1002/hep.32620.
    [56] MAYO R, CRESPO J, MARTÍNEZ-ARRANZ I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts[J]. Hepatol Commun, 2018, 2( 7): 807- 820. DOI: 10.1002/hep4.1188.
    [57] STOLS-GONÇALVES D, MAK AL, MADSEN MS, et al. Faecal Microbiota transplantation affects liver DNA methylation in non-alcoholic fatty liver disease: A multi-omics approach[J]. Gut Microbes, 2023, 15( 1): 2223330. DOI: 10.1080/19490976.2023.2223330.
    [58] LIN J, ZHANG RY, LIU HE, et al. Multi-omics analysis of the biological mechanism of the pathogenesis of non-alcoholic fatty liver disease[J]. Front Microbiol, 2024, 15: 1379064. DOI: 10.3389/fmicb.2024.1379064.
    [59] FENG G, WONG VW, TARGHER G, et al. Non-invasive tests of fibrosis in the management of MASLD: Revolutionising diagnosis, progression and regression monitoring[J]. Gut, 2025. DOI: 10.1136/gutjnl-2025-335542.
  • 加载中
计量
  • 文章访问数:  199
  • HTML全文浏览量:  40
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-18
  • 录用日期:  2025-07-23
  • 出版日期:  2025-09-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回