多组学技术在代谢相关脂肪性肝病中的潜在应用: 从分子机制到血清学标志物
DOI: 10.12449/JCH250904
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:刘珍妮负责查找文献,撰写文稿;龙琪琛、胡敏负责确定写作思路,指导文章撰写及最终定稿。
Potential application of multi-omics techniques in metabolic dysfunction-associated fatty liver disease: From molecular mechanisms to serological markers
-
摘要: 代谢相关脂肪性肝病(MAFLD),即原非酒精性脂肪性肝病(NAFLD),已成为全球范围内常见的慢性肝病。目前,临床诊断肝病的方法存在侵入性操作、敏感性不足、诊断准确性较低等局限,给MAFLD的早期识别和精准治疗带来挑战。近年来,多组学技术的快速发展为MAFLD的精准诊疗提供了新思路。基因组学、代谢组学与脂质组学、微生物组学及蛋白质组学技术不仅在MAFLD发病机制方面提供了新的见解,还为疾病的预测、诊断和分期鉴定出新型生物标志物。同时,基于多组学数据构建的诊断模型展现出良好的临床效能,为开发无创、精准的MAFLD诊断工具奠定重要基础,有望实现传统诊疗向精准医学的转变。尽管多组学标志物在MAFLD早期诊断中的临床应用价值已得到一定认可,但在临床转化方面仍面临检测标准化、个体异质性、成本效益等挑战。Abstract: Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), has become a common chronic liver disease worldwide. Currently, the clinical methods for diagnosing liver diseases have limitations such as invasive procedures, insufficient sensitivity, and low diagnostic accuracy, posing challenges to the early identification and precise treatment of MAFLD. In recent years, the rapid development of multi-omics techniques has provided new ideas for the precise diagnosis and treatment of MAFLD. Genomics, metabolomics, lipidomics, microbiomics, and proteomics techniques not only offer new insights into the pathogenesis of MAFLD, but also identify novel biomarkers for disease prediction, diagnosis, and staging. Meanwhile, diagnostic models constructed based on multi-omics data have shown good clinical efficacy and laid an important foundation for the development of noninvasive precise diagnostic tools for MAFLD, and therefore, it is expected to realize the transition from traditional diagnosis and treatment to precision medicine. Although the clinical application value of multi-omics markers in the early diagnosis of MAFLD has been recognized to some extent, there are still challenges in clinical translation, such as the standardization of detection, individual heterogeneity, and cost-effectiveness.
-
[1] LE MH, LE DM, BAEZ TC, et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1, 201, 807 persons[J]. J Hepatol, 2023, 79( 2): 287- 295. DOI: 10.1016/j.jhep.2023.03.040. [2] POWELL EE, WONG VW, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397( 10290): 2212- 2224. DOI: 10.1016/S0140-6736(20)32511-3. [3] WU YK, ZHENG Q, ZOU BY, et al. The epidemiology of NAFLD in Mainland China with analysis by adjusted gross regional domestic product: A meta-analysis[J]. Hepatol Int, 2020, 14( 2): 259- 269. DOI: 10.1007/s12072-020-10023-3. [4] ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158( 7): 1999- 2014.e1. DOI: 10.1053/j.gastro.2019.11.312. [5] LONG QC, LUO FM, LI BH, et al. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease[J]. Hepatol Commun, 2024, 8( 3): e0310. DOI: 10.1097/HC9.0000000-000000310. [6] LOOMBA R, SCHORK N, CHEN CH, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study[J]. Gastroenterology, 2015, 149( 7): 1784- 1793. DOI: 10.1053/j.gastro.2015.08.011. [7] SOOKOIAN S, PIROLA CJ. Genetic predisposition in nonalcoholic fatty liver disease[J]. Clin Mol Hepatol, 2017, 23( 1): 1- 12. DOI: 10.3350/cmh.2016.0109. [8] SCHWIMMER JB, CELEDON MA, LAVINE JE, et al. Heritability of nonalcoholic fatty liver disease[J]. Gastroenterology, 2009, 136( 5): 1585- 1592. DOI: 10.1053/j.gastro.2009.01.050. [9] CUI J, CHEN CH, LO MT, et al. Shared genetic effects between hepatic steatosis and fibrosis: A prospective twin study[J]. Hepatology, 2016, 64( 5): 1547- 1558. DOI: 10.1002/hep.28674. [10] BUCH S, STICKEL F, TRÉPO E, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis[J]. Nat Genet, 2015, 47( 12): 1443- 1448. DOI: 10.1038/ng.3417. [11] WHITFIELD JB, SCHWANTES-AN TH, DARLAY R, et al. A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers[J]. J Hepatol, 2022, 76( 2): 275- 282. DOI: 10.1016/j.jhep.2021.10.005. [12] SVEINBJORNSSON G, ULFARSSON MO, THOROLFSDOTTIR RB, et al. Multiomics study of nonalcoholic fatty liver disease[J]. Nat Genet, 2022, 54( 11): 1652- 1663. DOI: 10.1038/s41588-022-01199-5. [13] CHEN VL, OLIVERI A, MILLER MJ, et al. PNPLA3 genotype and diabetes identify patients with nonalcoholic fatty liver disease at high risk of incident cirrhosis[J]. Gastroenterology, 2023, 164( 6): 966- 977. e 17. DOI: 10.1053/j.gastro.2023.01.040. [14] JIN R, BANTON S, TRAN VT, et al. Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-an untargeted, high resolution metabolomics study[J]. J Pediatr, 2016, 172: 14- 19. e 5. DOI: 10.1016/j.jpeds.2016.01.026. [15] MASARONE M, TROISI J, AGLITTI A, et al. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis[J]. Metabolomics, 2021, 17( 2): 12. DOI: 10.1007/s11306-020-01756-1. [16] GAGGINI M, CARLI F, ROSSO C, et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance[J]. Hepatology, 2018, 67( 1): 145- 158. DOI: 10.1002/hep.29465. [17] ZHANG FY, ZHAO SH, YAN WJ, et al. Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy[J]. EBioMedicine, 2016, 13: 157- 167. DOI: 10.1016/j.ebiom.2016.10.013. [18] MIYAZAKI T, KARUBE M, MATSUZAKI Y, et al. Taurine inhibits oxidative damage and prevents fibrosis in carbon tetrachloride-induced hepatic fibrosis[J]. J Hepatol, 2005, 43( 1): 117- 125. DOI: 10.1016/j.jhep.2005.01.033. [19] FORLANO R, MARTINEZ-GILI L, TAKIS P, et al. Disruption of gut barrier integrity and host-microbiome interactions underlie MASLD severity in patients with type-2 diabetes mellitus[J]. Gut Microbes, 2024, 16( 1): 2304157. DOI: 10.1080/19490976.2024.2304157. [20] SMIRNOVA E, MUTHIAH MD, NARAYAN N, et al. Metabolic reprogramming of the intestinal microbiome with functional bile acid changes underlie the development of NAFLD[J]. Hepatology, 2022, 76( 6): 1811- 1824. DOI: 10.1002/hep.32568. [21] ZHONG J, HE XF, GAO XX, et al. Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling[J]. Nat Commun, 2023, 14( 1): 5451. DOI: 10.1038/s41467-023-41061-8. [22] KUANG JL, WANG JY, LI YT, et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis[J]. Cell Metab, 2023, 35( 10): 1752- 1766. e 8. DOI: 10.1016/j.cmet.2023.07.011. [23] YOUNOSSI ZM, RATZIU V, LOOMBA R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394( 10215): 2184- 2196. DOI: 10.1016/S0140-6736(19)33041-7. [24] OOI GJ, MEIKLE PJ, HUYNH K, et al. Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis[J]. J Hepatol, 2021, 75( 3): 524- 535. DOI: 10.1016/j.jhep.2021.04.013. [25] VELENOSI TJ, BEN-YAKOV G, PODSZUN MC, et al. Postprandial plasma lipidomics reveal specific alteration of hepatic-derived diacylglycerols in nonalcoholic fatty liver disease[J]. Gastroenterology, 2022, 162( 7): 1990- 2003. DOI: 10.1053/j.gastro.2022.03.004. [26] GORDEN DL, MYERS DS, IVANOVA PT, et al. Biomarkers of NAFLD progression: A lipidomics approach to an epidemic[J]. J Lipid Res, 2015, 56( 3): 722- 736. DOI: 10.1194/jlr.P056002. [27] CHAURASIA B, TIPPETTS TS, MONIBAS RM, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis[J]. Science, 2019, 365( 6451): 386- 392. DOI: 10.1126/science.aav3722. [28] PAGADALA M, KASUMOV T, MCCULLOUGH AJ, et al. Role of ceramides in nonalcoholic fatty liver disease[J]. Trends Endocrinol Metab, 2012, 23( 8): 365- 371. DOI: 10.1016/j.tem.2012.04.005. [29] CAUSSY C, AJMERA VH, PURI P, et al. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease[J]. Gut, 2019, 68( 10): 1884- 1892. DOI: 10.1136/gutjnl-2018-317584. [30] SPOONER MH, JUMP DB. Nonalcoholic fatty liver disease and omega-3 fatty acids: Mechanisms and clinical use[J]. Annu Rev Nutr, 2023, 43: 199- 223. DOI: 10.1146/annurev-nutr-061021-030223. [31] MA C, KESARWALA AH, EGGERT T, et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis[J]. Nature, 2016, 531( 7593): 253- 257. DOI: 10.1038/nature16969. [32] van NAME MA, SAVOYE M, CHICK JM, et al. A low ω-6 to ω-3 PUFA ratio(n-6: N-3 PUFA) diet to treat fatty liver disease in obese youth[J]. J Nutr, 2020, 150( 9): 2314- 2321. DOI: 10.1093/jn/nxaa183. [33] OLIVEIRA DT, CHAVES-FILHO AB, YOSHINAGA MY, et al. Liver lipidome signature and metabolic pathways in nonalcoholic fatty liver disease induced by a high-sugar diet[J]. J Nutr Biochem, 2021, 87: 108519. DOI: 10.1016/j.jnutbio.2020.108519. [34] OGAWA Y, KOBAYASHI T, HONDA Y, et al. Metabolomic/lipidomic-based analysis of plasma to diagnose hepatocellular ballooning in patients with non-alcoholic fatty liver disease: A multicenter study[J]. Hep‑atol Res, 2020, 50( 8): 955- 965. DOI: 10.1111/hepr.13528. [35] XIA JL, CHEN H, WANG XX, et al. Sphingosine d18: 1 promotes nonalcoholic steatohepatitis by inhibiting macrophage HIF-2α[J]. Nat Commun, 2024, 15( 1): 4755. DOI: 10.1038/s41467-024-48954-2. [36] LOOMBA R, SEGURITAN V, LI WZ, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease[J]. Cell Metab, 2017, 25( 5): 1054- 1062.e5. DOI: 10.1016/j.cmet.2017.04.001. [37] OH TG, KIM SM, CAUSSY C, et al. A universal gut-microbiome-derived signature predicts cirrhosis[J]. Cell Metab, 2020, 32( 5): 878- 888.e6. DOI: 10.1016/j.cmet.2020.06.005. [38] HU YQ, HU XY, JIANG L, et al. Microbiome and metabolomics reveal the effect of gut microbiota on liver regeneration of fatty liver disease[J]. EBioMedicine, 2025, 111: 105482. DOI: 10.1016/j.ebiom.2024.105482. [39] LIU JJ, SUN JY, YU JK, et al. Gut microbiome determines therapeutic effects of OCA on NAFLD by modulating bile acid metabolism[J]. NPJ Biofilms Microbiomes, 2023, 9( 1): 29. DOI: 10.1038/s41522-023-00399-z. [40] MOHAMAD NOR MH, AYOB N, MOKHTAR NM, et al. The effect of probiotics(MCP® BCMC® strains) on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease[J]. Nutrients, 2021, 13( 9): 3192. DOI: 10.3390/nu13093192. [41] ZHU YZ, TAN JK, LIU J, et al. Roles of traditional and next-generation probiotics on non-alcoholic fatty liver disease(NAFLD) and non-alcoholic steatohepatitis(NASH): A systematic review and network meta-analysis[J]. Antioxidants(Basel), 2024, 13( 3): 329. DOI: 10.3390/antiox13030329. [42] THING M, WERGE MP, KIMER N, et al. Targeted metabolomics reveals plasma short-chain fatty acids are associated with metabolic dysfunction-associated steatotic liver disease[J]. BMC Gastroenterol, 2024, 24( 1): 43. DOI: 10.1186/s12876-024-03129-7. [43] ZHANG X, LAU HC, YU J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options[J]. Pharmacol Rev, 2025, 77( 2): 100018. DOI: 10.1016/j.pharmr.2024.100018. [44] LEÓN-MIMILA P, VILLAMIL-RAMÍREZ H, LI XS, et al. Trimethylamine N-oxide levels are associated with NASH in obese subjects with type 2 diabetes[J]. Diabetes Metab, 2021, 47( 2): 101183. DOI: 10.1016/j.diabet.2020.07.010. [45] FLORES-GUERRERO JL, POST A, van DIJK PR, et al. Circulating trimethylamine-N-oxide is associated with all-cause mortality in subjects with nonalcoholic fatty liver disease[J]. Liver Int, 2021, 41( 10): 2371- 2382. DOI: 10.1111/liv.14963. [46] KRISHNAN S, DING YF, SAEDI N, et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages[J]. Cell Rep, 2018, 23( 4): 1099- 1111. DOI: 10.1016/j.celrep.2018.03.109. [47] ZHAO ZH, XIN FZ, XUE YQ, et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats[J]. Exp Mol Med, 2019, 51( 9): 1- 14. DOI: 10.1038/s12276-019-0304-5. [48] MUSSO G, GAMBINO R, CASSADER M, et al. Meta-analysis: Natural history of non-alcoholic fatty liver disease(NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity[J]. Ann Med, 2011, 43( 8): 617- 649. DOI: 10.3109/07853890.2010.518623. [49] Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of metabolic dysfunction-associated(non-alcoholic) fatty liver disease(version 2024)[J]. J Prac Hepatol, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163.中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 实用肝脏病杂志, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163. [50] BYRNE CD, TARGHER G. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease: Is universal screening appropriate?[J]. Diabetologia, 2016, 59( 6): 1141- 1144. DOI: 10.1007/s00125-016-3910-y. [51] JEONG C, HAN N, JEON N, et al. Efficacy and safety of fibroblast growth factor-21 analogs for the treatment of metabolic dysfunction-associated steatohepatitis: A systematic review and meta-analysis[J]. Clin Pharmacol Ther, 2024, 116( 1): 72- 81. DOI: 10.1002/cpt.3278. [52] NIU LL, GEYER PE, WEWER ALBRECHTSEN NJ, et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease[J]. Mol Syst Biol, 2019, 15( 3): e8793. DOI: 10.15252/msb.20188793. [53] GOVAERE O, HASOON M, ALEXANDER L, et al. A proteo-transcript‑omic map of non-alcoholic fatty liver disease signatures[J]. Nat Metab, 2023, 5( 4): 572- 578. DOI: 10.1038/s42255-023-00775-1. [54] COREY KE, PITTS R, LAI M, et al. ADAMTSL2 protein and a soluble biomarker signature identify at-risk non-alcoholic steatohepatitis and fibrosis in adults with NAFLD[J]. J Hepatol, 2022, 76( 1): 25- 33. DOI: 10.1016/j.jhep.2021.09.026. [55] INDIRA CHANDRAN V, WERNBERG CW, LAURIDSEN MM, et al. Circulating TREM2 as a noninvasive diagnostic biomarker for NASH in patients with elevated liver stiffness[J]. Hepatology, 2023, 77( 2): 558- 572. DOI: 10.1002/hep.32620. [56] MAYO R, CRESPO J, MARTÍNEZ-ARRANZ I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts[J]. Hepatol Commun, 2018, 2( 7): 807- 820. DOI: 10.1002/hep4.1188. [57] STOLS-GONÇALVES D, MAK AL, MADSEN MS, et al. Faecal Microbiota transplantation affects liver DNA methylation in non-alcoholic fatty liver disease: A multi-omics approach[J]. Gut Microbes, 2023, 15( 1): 2223330. DOI: 10.1080/19490976.2023.2223330. [58] LIN J, ZHANG RY, LIU HE, et al. Multi-omics analysis of the biological mechanism of the pathogenesis of non-alcoholic fatty liver disease[J]. Front Microbiol, 2024, 15: 1379064. DOI: 10.3389/fmicb.2024.1379064. [59] FENG G, WONG VW, TARGHER G, et al. Non-invasive tests of fibrosis in the management of MASLD: Revolutionising diagnosis, progression and regression monitoring[J]. Gut, 2025. DOI: 10.1136/gutjnl-2025-335542. -
本文二维码
计量
- 文章访问数: 199
- HTML全文浏览量: 40
- PDF下载量: 71
- 被引次数: 0

PDF下载 ( 699 KB)
下载:
