代谢相关脂肪性肝病: 全身代谢性紊乱的核心枢纽之一
DOI: 10.12449/JCH250902
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:赵家军负责设计论文框架和思路,指导撰写、修改文章并最后定稿;周蒙、范修德负责文献查阅;周蒙、薄涛负责初稿写作。
Metabolic dysfunction-associated fatty liver disease: A central hub in systemic metabolic dysregulation
-
摘要: 代谢相关脂肪性肝病(MAFLD)的全球患病率持续上升,且被认为是多种代谢相关疾病的重要危险因素。然而,目前临床仍主要采用单一病种的管理模式,对MAFLD在代谢共病防控中的核心作用及其系统性影响缺乏充分认识。本文综述了MAFLD作为全身代谢疾病网络的始动因素和关键节点的循证医学依据,重点阐述肝脏胰岛素抵抗、脂毒性损伤、炎症反应及肝源性激素紊乱等病理机制如何介导心血管疾病、慢性肾病、糖尿病等多器官代谢紊乱的发生发展。结合最新国内外指南和共识,提出多学科协作的综合管理策略,包括肝脏与血糖的联合干预和“心血管-肝脏-肾脏”跨器官干预模式,并倡导将临床治疗模式从传统的肝脏局部病变控制,转变为以肝脏为中心的全身代谢精准防控体系,旨在更有效地延缓MAFLD及其相关多系统并发症的进展。Abstract: The prevalence rate of metabolic associated fatty liver disease (MAFLD) is steadily increasing worldwide, and MAFLD is now considered a significant risk factor for a wide range of metabolic comorbidities. However, current clinical management strategies often address MAFLD from a single-disease perspective, lacking a comprehensive understanding of the central role and systemic impact of MAFLD in the prevention and control of metabolic comorbidities. This article reviews the current evidence supporting MASLD as both a trigger and a key node in systemic metabolic dysfunction and elaborates on how hepatic insulin resistance, lipotoxic injury, inflammatory responses, and dysregulation of hepatokines mediate organ-specific metabolic disorders including cardiovascular disease, chronic kidney disease, and diabetes. With reference to the latest national and international guidelines, this article proposes an integrated multidisciplinary management strategy, including liver-glucose joint intervention and a cross-organ “cardio-renal-hepatic” strategy, and it also advocates for a paradigm shift from conventional liver-focused management toward liver-centered systemic metabolic control, in order to effectively delay the progression of MAFLD and its related multisystem complications.
-
[1] Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of metabolic dysfunction-associated(non-alcoholic)fatty liver disease(Version 2024)[J]. J Prac Hepatol, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-202403-27-00163.中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 实用肝脏病杂志, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163. [2] TACKE F, HORN P, WAI-SUN WONG V, et al. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease(MASLD)[J]. J Hepatol, 2024, 81( 3): 492- 542. DOI: 10.1016/j.jhep.2024.04.031. [3] YOUNOSSI ZM, GOLABI P, PRICE JK, et al. The global epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among patients with type 2 diabetes[J]. Clin Gastroenterol Hepatol, 2024, 22( 10): 1999- 2010. e 8. DOI: 10.1016/j.cgh.2024.03.006. [4] BOGDAN RG, BOICEAN A, ANDERCO P, et al. From liver to kidney: The overlooked burden of nonalcoholic fatty liver disease in chronic kidney disease[J]. J Clin Med, 2025, 14( 7): 2486. DOI: 10.3390/jcm1407-2486. [5] ZHU YD, ZHANG ZJ, ZHANG GL, et al. Association of metabolic associated fatty liver disease with carotid atherosclerotic plaque and stenosis[J]. J Clin Hepatol, 2024, 40( 8): 1591- 1597. DOI: 10.12449/JCH24-0814.朱英嵽, 张志娇, 张桂林, 等. 代谢相关脂肪性肝病与颈动脉粥样硬化斑块及狭窄的关联分析[J]. 临床肝胆病杂志, 2024, 40( 8): 1591- 1597. DOI: 10.12449/JCH240814. [6] ZHOU JH, SUN DQ, TARGHER G, et al. Metabolic dysfunction-associated fatty liver disease increases risk of chronic kidney disease: A systematic review and meta-analysis[J]. eGastroenterology, 2023, 1( 1): e100005. DOI: 10.1136/egastro-2023-100005. [7] LI Y, YAN XB, LU ZH, et al. Population distribution of non-alcoholic fatty liver disease before and after renaming and risk factors for liver fibrosis in metabolic dysfunction-associated steatotic liver disease[J]. J Clin Hepatol, 2024, 40( 6): 1136- 1141. DOI: 10.12449/JCH240611.李岩, 颜学兵, 陆忠华, 等. 非酒精性脂肪性肝病更名前后的人群分布变化及代谢功能障碍相关脂肪性肝病肝纤维化的危险因素分析[J]. 临床肝胆病杂志, 2024, 40( 6): 1136- 1141. DOI: 10.12449/JCH240611. [8] XU J, DAI LY, ZHANG YJ, et al. Severity of nonalcoholic fatty liver disease and risk of future ischemic stroke events[J]. Stroke, 2021, 52( 1): 103- 110. DOI: 10.1161/STROKEAHA.120.030433. [9] PETRELLI F, MANARA M, COLOMBO S, et al. Hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis: HCC and steatosis or steatohepatitis[J]. Neoplasia, 2022, 30: 100809. DOI: 10.1016/j.neo.2022.100809. [10] STEFAN N, SCHICK F, BIRKENFELD AL, et al. The role of hepatokines in NAFLD[J]. Cell Metab, 2023, 35( 2): 236- 252. DOI: 10.1016/j.cmet.2023.01.006. [11] VERRELLI N, BONFIGLIO C, FRANCO I, et al. The role of global physical capacity score in key parameters of metabolic dysfunction-associated steatotic liver disease(MASLD)[J]. J Clin Med, 2025, 14( 11): 3821. DOI: 10.3390/jcm14113821. [12] CHEAH MCC, CRANE H, GEORGE J. Global prevalence, metabolic characteristics, and outcomes of lean-MAFLD: A systematic review and meta-analysis[J]. Hepatol Int, 2025, 19( 3): 607- 618. DOI: 10.1007/s12072-025-10801-x. [13] BO T, GAO L, YAO ZY, et al. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease[J]. Cell Metab, 2024, 36( 5): 947- 968. DOI: 10.1016/j.cmet.2024.04.006. [14] YAO ZY, GONG Y, CHEN WB, et al. Upregulation of WDR6 drives hepatic de novo lipogenesis in insulin resistance in mice[J]. Nat Metab, 2023, 5( 10): 1706- 1725. DOI: 10.1038/s42255-023-00896-7. [15] SONG YF, LIU JJ, ZHAO K, et al. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases[J]. Cell Metab, 2021, 33( 10): 1911- 1925. DOI: 10.1016/j.cmet.2021.09.001. [16] ZHAO M, TANG X, YANG T, et al. Lipotoxicity, a potential risk factor for the increasing prevalence of subclinical hypothyroidism?[J]. J Clin Endocrinol Metab, 2015, 100( 5): 1887- 1894. DOI: 10.1210/jc.2014-3987. [17] LIU C, ZHENG XJ, JI J, et al. The carotenoid torularhodin alleviates NAFLD by promoting Akkermanisa muniniphila-mediated adenosylcobalamin metabolism[J]. Nat Commun, 2025, 16( 1): 3338. DOI: 10.1038/s41467-025-58500-3. [18] WANG PC, ZHANG SY, DONG YQ, et al. Adipose ADM2 ameliorates NAFLD via promotion of ceramide catabolism[J]. Acta Pharm Sin B, 2024, 14( 11): 4883- 4898. DOI: 10.1016/j.apsb.2024.09.010. [19] HORN P, TACKE F. Metabolic reprogramming in liver fibrosis[J]. Cell Metab, 2024, 36( 7): 1439- 1455. DOI: 10.1016/j.cmet.2024.05.003. [20] GAO JH, LAN T, KOSTALLARI E, et al. Angiocrine signaling in sinusoidal homeostasis and liver diseases[J]. J Hepatol, 2024, 81( 3): 543- 561. DOI: 10.1016/j.jhep.2024.05.014. [21] HU HM, WANG SW, CHEN C. Pathophysiological role and potential drug target of NLRP3 inflammasome in the metabolic disorders[J]. Cell Signal, 2024, 122: 111320. DOI: 10.1016/j.cellsig.2024.111320. [22] YU HF, DAVOUDI M, SADEGH-NEJADI S, et al. Impact of monotherapy and combination therapy with glucagon-like peptide-1 receptor agonists on exosomal and non-exosomal microRNA signatures in type 2 diabetes mellitus: A systematic review[J]. J Transl Med, 2025, 23( 1): 477. DOI: 10.1186/s12967-025-06461-y. [23] HAO XY, SONG H, SU X, et al. Prophylactic effects of nutrition, dietary strategies, exercise, lifestyle and environment on nonalcoholic fatty liver disease[J]. Ann Med, 2025, 57( 1): 2464223. DOI: 10.1080/07853890.2025.2464223. [24] ZAMBRANO-VÁSQUEZ OR, CORTÉS-CAMACHO F, CASTAÑEDA-SÁNCHEZ JI, et al. Update in non-alcoholic fatty liver disease management: Role of sodium-glucose cotransporter 2 inhibitors[J]. Life Sci, 2025, 372: 123638. DOI: 10.1016/j.lfs.2025.123638. [25] ELSAYED NA, ALEPPO G, ARODA VR, et al. 4. Comprehensive medical evaluation and assessment of comorbidities: Standards of care in diabetes-2023[J]. Diabetes Care, 2023, 46( Suppl 1): S49- S47. DOI: 10.2337/dc23-S004. [26] KHAN SS, CORESH J, PENCINA MJ, et al. Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating cardiovascular-kidney-metabolic health: A scientific statement from the American Heart Association[J]. Circulation, 2023, 148( 24): 1982- 2004. DOI: 10.1161/CIR.0000000000001191. [27] ARRAGAN LEZAMA CA, JARAMILLO RAMOS JJ, ARMAS EGUIZÁBAL DA, et al. Cardiovascular-renal-hepatic-metabolic syndrome: Interlinked pathophysiology and integrated management approach[J]. Cureus, 2025, 17( 6): e85813. DOI: 10.7759/cureus.85813. -
本文二维码
计量
- 文章访问数: 317
- HTML全文浏览量: 43
- PDF下载量: 106
- 被引次数: 0

PDF下载 ( 633 KB)
下载:
