终末期肝病间充质干细胞归巢能力的影响因素及优化措施
DOI: 10.12449/JCH250326
Influencing factors for the homing ability of mesenchymal stem cells in end-stage liver disease and optimization measures
-
摘要: 间充质干细胞(MSC)因其强大的自我再生、旁分泌及免疫调节特性成为终末期肝病潜在的细胞治疗手段,为晚期肝病治疗提供了新的方向。然而,受损肝脏中炎症、氧化应激和缺氧等复杂微环境的影响,以及静脉注射后大部分MSC滞留在肺毛细血管中且缺乏足够的归巢受体或黏附分子,导致MSC在归巢过程中出现大量凋亡或坏死,只有少数细胞能够成功归巢至肝脏,极大限制了MSC的临床应用。为优化MSC的增殖、迁移及归巢能力,目前已开发多种方法,如预处理、基因修饰及纳米封装技术等。本文将重点阐述影响MSC归巢能力的因素及优化终末期肝病中MSC归巢的措施,并深入分析MSC归巢的机制,以期提高细胞植入效率,促进肝脏修复和再生,为MSC在终末期肝病治疗中的应用开辟新路径。Abstract: Mesenchymal stem cells (MSCs) have emerged as a promising cellular therapy for end-stage liver disease (ESLD) due to their robust self-regenerative, paracrine, and immunomodulatory characteristics, providing new directions for the treatment of advanced liver disease. However, the clinical application of MSCs is significantly limited by the fact that only a small number of MSCs can reach the liver due to massive apoptosis or necrosis during the homing process caused by the influence of the complex microenvironment (inflammation, oxidative stress, and hypoxia) of the injured liver and the fact that a substantial proportion of MSCs become trapped in the pulmonary capillaries following intravenous administration with a lack of sufficient homing receptors or adhesion molecules. Various strategies have been developed to optimize the proliferation, migration, and homing abilities of MSCs, including preconditioning, gene modification, and nanoencapsulation technology. This article elaborates on the influencing factors for the homing ability of MSCs, the strategies to optimize their homing in ESLD, and the mechanism of the homing of MSCs, in order to improve cell transplantation efficiency, promote liver repair and regeneration, and pave the way for the application of MSCs in the treatment of ESLD.
-
Key words:
- End Stage Liver Disease /
- Mesenchymal Stem Cells /
- Homing
-
表 1 基因修饰增强MSC在肝病中的归巢
Table 1. Gene modification enhances MSC homing in liver disease
MSC类型 基因 载体 肝病模型 具体机制 BM-MSC[3] CXCR-4 腺病毒 肝移植后 激活CXCR-4/SDF-1α,抑制caspase-3表达和肝酶释放 CXCR-4 慢病毒 急性肝损伤 通过HGF/c-Met和PI3K/Akt通路的同步激活来增强MSC归巢 c-Met 慢病毒 ALF 通过激活HGF/c-Met通路来增强MSC对肝脏的归巢 EPO 慢病毒 ALF 抑制IL-6和TGF-β1表达并上调MMP-9表达 HGF 腺病毒 肝硬化 改善MSC归巢,促进肝脏修复 FGF4 慢病毒 肝硬化 改善MSC的增殖和迁移 UC-MSC[3] CCR-2 慢病毒 ALF 增强CCR-2/CCL-2轴来增强MSC归巢 CXCL-9 慢病毒 肝纤维化 增强MSC黏附、爬行和扩散能力 VEGF165 腺病毒 ALF 改善MSC归巢 AD-MSC[3] BCAT1 腺病毒 肝硬化 增强MSC对肝脏的归巢和定位 FGF21 质粒 肝纤维化 抑制p-JNK、NF-κB、p-Smad2/3信号通路,减少纤维化因子释放,减轻肝纤维化 注:EPO,促红细胞生成素;MMP-9,基质金属蛋白酶9;FGF,成纤维细胞生长因子;VEGF,血管内皮生长因子;BCAT,支链氨基酸转氨酶;p-JNK,磷酸化c-Jun氨基末端激酶;p-Smad,磷酸化Smad蛋白。
表 2 不同预处理策略对MSC肝脏归巢的作用机制及影响
Table 2. Mechanisms and effects of different preconditioning strategies on MSC homing to the liver
预处理 具体机制 影响 缺氧[19] 通过HGF/c-Met趋化,激活ERK1/2、P38、PI3K/Akt通路 增强MSC迁移和对ALF的修复 褪黑素[20] 抗氧化,抑制促炎细胞因子表达,减弱凋亡因子Bax表达 改善肝功能,减少肝细胞凋亡坏死,抑制肝纤维化 维生素E[21] 抗氧化,抑制促炎细胞因子表达,降低纤维化标志物如Ⅰ型胶原表达 改善肝功能,减轻肝损伤,抑制肝纤维化 IL-6[27] 抗氧化,抗凋亡基因Bcl-xl上调,Bax、caspase-3、TNF-α上调 增强MSC归巢,改善肝功能,减轻肝细胞凋亡 牛蒡多糖[28] 抗氧化,抑制Wnt/β-catenin通路阻止肝星状细胞活化和胶原形成 增强MSC肝脏归巢,减轻肝纤维化 IL-1β[22] 增强MSC表面CXCR-4表达及向SDF-1的迁移 增强MSC对肝脏的归巢,提高对ALF的疗效 雷帕霉素[23] 诱导自噬增强MSC表面CXCR-4表达及对CXCL-12的迁移 增强MSC对肝脏的归巢,改善肝损伤 UTMB[24] 增强MSC表面CXCR-4表达 增强MSC对纤维化肝脏的归巢,改善肝纤维化 TC14012[25] 增强MSC表面CXCR-7表达 增强MSC对肝脏的归巢,改善肝纤维化 聚乙二醇修饰[29] 抑制静脉给药MSC的肺包埋,抑制肝脏内白细胞浸润 增强MSC对肝脏的归巢,提高对ALF的疗效 表 3 不同纳米材料对MSC归巢的作用机制及影响
Table 3. Mechanisms and effects of different nanomaterials on MSC homing
-
[1] YU SX, YU SH, LIU HY, et al. Enhancing mesenchymal stem cell survival and homing capability to improve cell engraftment efficacy for liver diseases[J]. Stem Cell Res Ther, 2023, 14( 1): 235. DOI: 10.1186/s13287-023-03476-4. [2] MEI RY, WAN Z, YANG C, et al. Advances and clinical challenges of mesenchymal stem cell therapy[J]. Front Immunol, 2024, 15: 1421854. DOI: 10.3389/fimmu.2024.1421854. [3] FAGOONEE S, SHUKLA SP, DHASMANA A, et al. Routes of stem cell administration[J]. Adv Exp Med Biol, 2022. DOI: 10.1007/5584_2022_710.[ Online ahead of print] [4] GHUFRAN H, AZAM M, MEHMOOD A, et al. Adipose tissue and umbilical cord tissue: Potential sources of mesenchymal stem cells for liver fibrosis treatment[J]. J Clin Exp Hepatol, 2024, 14( 4): 101364. DOI: 10.1016/j.jceh.2024.101364. [5] HASS R, KASPER C, BÖHM S, et al. Different populations and sources of human mesenchymal stem cells(MSC): A comparison of adult and neonatal tissue-derived MSC[J]. Cell Commun Signal, 2011, 9: 12. DOI: 10.1186/1478-811X-9-12. [6] JERVIS M, HUAMAN O, CAHUASCANCO B, et al. Comparative analysis of in vitro proliferative, migratory and pro-angiogenic potentials of bovine fetal mesenchymal stem cells derived from bone marrow and adipose tissue[J]. Vet Res Commun, 2019, 43( 3): 165- 178. DOI: 10.1007/s11259-019-09757-9. [7] SHI LH, CHEN LL, GAO XZ, et al. Comparison of different sources of mesenchymal stem cells: Focus on inflammatory bowel disease[J]. Inflammopharmacology, 2024, 32( 3): 1721- 1742. DOI: 10.1007/s10787-024-01468-1. [8] SINEH SEPEHR K, RAZAVI A, HASSAN ZM, et al. Comparative immunomodulatory properties of mesenchymal stem cells derived from human breast tumor and normal breast adipose tissue[J]. Cancer Immunol Immunother, 2020, 69( 9): 1841- 1854. DOI: 10.1007/s00262-020-02567-y. [9] KABAT M, BOBKOV I, KUMAR S, et al. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range?[J]. Stem Cells Transl Med, 2020, 9( 1): 17- 27. DOI: 10.1002/sctm.19-0202. [10] LI M, ZHANG JG, FANG JM, et al. Pre-administration of human umbilical cord mesenchymal stem cells has better therapeutic efficacy in rats with D-galactosamine-induced acute liver failure[J]. Int Immunopharmacol, 2024, 130: 111672. DOI: 10.1016/j.intimp.2024.111672. [11] YANG H, CHEN JX, LI J. Isolation, culture, and delivery considerations for the use of mesenchymal stem cells in potential therapies for acute liver failure[J]. Front Immunol, 2023, 14: 1243220. DOI: 10.3389/fimmu.2023.1243220. [12] YUAN MQ, HU X, YAO LC, et al. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease[J]. Stem Cell Res Ther, 2022, 13( 1): 179. DOI: 10.1186/s13287-022-02858-4. [13] OGASAWARA H, INAGAKI A, FATHI I, et al. Preferable transplant site for hepatocyte transplantation in a rat model[J]. Cell Transplant, 2021, 30: 9636897211040012. DOI: 10.1177/09636897211040012. [14] YUAN LZ, JIANG J, LIU X, et al. HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation[J]. Gut, 2019, 68( 11): 2044- 2056. DOI: 10.1136/gutjnl-2018-316091. [15] OHKI A, SAITO S, FUKUCHI K. Magnetic resonance imaging of umbilical cord stem cells labeled with superparamagnetic iron oxide nanoparticles: Effects of labelling and transplantation parameters[J]. Sci Rep, 2020, 10( 1): 13684. DOI: 10.1038/s41598-020-70291-9. [16] HERVÁS-SALCEDO R, FERNÁNDEZ-GARCÍA M, HERNANDO-RODRÍGUEZ M, et al. Enhanced anti-inflammatory effects of mesenchymal stromal cells mediated by the transient ectopic expression of CXCR4 and IL10[J]. Stem Cell Res Ther, 2021, 12( 1): 124. DOI: 10.1186/s13287-021-02193-0. [17] XU RX, NI BB, WANG L, et al. CCR2-overexpressing mesenchymal stem cells targeting damaged liver enhance recovery of acute liver failure[J]. Stem Cell Res Ther, 2022, 13( 1): 55. DOI: 10.1186/s13287-022-02729-y. [18] LI Y, DONG JT, ZHOU Y, et al. Therapeutic effects of CXCL9-overexpressing human umbilical cord mesenchymal stem cells on liver fibrosis in rats[J]. Biochem Biophys Res Commun, 2021, 584: 87- 94. DOI: 10.1016/j.bbrc.2021.10.078. [19] WANG Q, LI YW, YUAN H, et al. Hypoxia preconditioning of human amniotic mesenchymal stem cells enhances proliferation and migration and promotes their homing via the HGF/C-MET signaling axis to augment the repair of acute liver failure[J]. Tissue Cell, 2024, 87: 102326. DOI: 10.1016/j.tice.2024.102326. [20] ELZAINY A, SADIK A EL, ALTOWAYAN WM. Comparison between the regenerative and therapeutic impacts of bone marrow mesenchymal stem cells and adipose mesenchymal stem cells pre-treated with melatonin on liver fibrosis[J]. Biomolecules, 2024, 14( 3): 297. DOI: 10.3390/biom14030297. [21] BAIG MT, GHUFRAN H, MEHMOOD A, et al. Vitamin E pretreated Wharton’s jelly-derived mesenchymal stem cells attenuate CCl4-induced hepatocyte injury in vitro and liver fibrosis in vivo[J]. Biochem Pharmacol, 2021, 186: 114480. DOI: 10.1016/j.bcp.2021.114480. [22] NIE H, AN FM, MEI J, et al. IL-1β pretreatment improves the efficacy of mesenchymal stem cells on acute liver failure by enhancing CXCR4 expression[J]. Stem Cells Int, 2020, 2020: 1498315. DOI: 10.1155/2020/1498315. [23] ZHENG J, LI H, HE LY, et al. Preconditioning of umbilical cord-derived mesenchymal stem cells by rapamycin increases cell migration and ameliorates liver ischaemia/reperfusion injury in mice via the CXCR4/CXCL12 axis[J]. Cell Prolif, 2019, 52( 2): e12546. DOI: 10.1111/cpr.12546. [24] XU HM, HUANG YZ, ZHANG FS, et al. Ultrasonic microbubbles promote mesenchymal stem cell homing to the fibrotic liver via upregulation of CXCR4 expression[J]. Cell Div, 2024, 19( 1): 7. DOI: 10.1186/s13008-023-00104-8. [25] DING F, LIU YT, LI J, et al. TC14012 enhances the anti-fibrosis effects of UC-MSCs on the liver by reducing collagen accumulation and ameliorating inflammation[J]. Stem Cell Res Ther, 2024, 15( 1): 44. DOI: 10.1186/s13287-024-03648-w. [26] LE B, CRESSMAN A, MORALES D, et al. First clinical experiences using preconditioning approaches to improve MSC-based therapies[J]. Curr Stem Cell Rep, 2024, 10( 1): 1- 7. DOI: 10.1007/s40778-023-00232-5. [27] NASIR GA, MOHSIN S, KHAN M, et al. Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice[J]. J Transl Med, 2013, 11: 78. DOI: 10.1186/1479-5876-11-78. [28] XIANG W, YIN GL, LIU HM, et al. Arctium lappa L. polysaccharides enhanced the therapeutic effects of nasal ectomesenchymal stem cells against liver fibrosis by inhibiting the Wnt/β-catenin pathway[J]. Int J Biol Macromol, 2024, 261( Pt 1): 129670. DOI: 10.1016/j.ijbiomac.2024.129670. [29] TAKAYAMA Y, KUSAMORI K, KATSURADA Y, et al. Efficient delivery of mesenchymal stem/stromal cells to injured liver by surface PEGylation[J]. Stem Cell Res Ther, 2023, 14( 1): 216. DOI: 10.1186/s13287-023-03446-w. [30] QUE HY, MAI E, HU YT, et al. Multilineage-differentiating stress-enduring cells: A powerful tool for tissue damage repair[J]. Front Cell Dev Biol, 2024, 12: 1380785. DOI: 10.3389/fcell.2024.1380785. [31] KATAGIRI H, KUSHIDA Y, NOJIMA M, et al. A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components[J]. Am J Transplant, 2016, 16( 2): 468- 483. DOI: 10.1111/ajt.13537. [32] ISEKI M, KUSHIDA Y, WAKAO S, et al. Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis[J]. Cell Transplant, 2017, 26( 5): 821- 840. DOI: 10.3727/096368916X693662. [33] ISEKI M, MIZUMA M, WAKAO S, et al. The evaluation of the safety and efficacy of intravenously administered allogeneic multilineage-differentiating stress-enduring cells in a swine hepatectomy model[J]. Surg Today, 2021, 51( 4): 634- 650. DOI: 10.1007/s00595-020-02117-0. [34] LI H, WEI JH, LI MZ, et al. Biological characteristics of Muse cells derived from MenSCs and their application in acute liver injury and intracerebral hemorrhage diseases[J]. Regen Ther, 2024, 27: 48- 62. DOI: 10.1016/j.reth.2024.03.003. [35] CHENG WY, YANG MY, YEH CA, et al. Therapeutic applications of mesenchymal stem cell loaded with gold nanoparticles for regenerative medicine[J]. Pharmaceutics, 2023, 15( 5): 1385. DOI: 10.3390/pharmaceutics15051385. [36] HUANG XL, ZHANG F, WANG Y, et al. Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing[J]. ACS Nano, 2014, 8( 5): 4403- 4414. DOI: 10.1021/nn4062726. [37] VITALE E, ROSSIN D, PERVEEN S, et al. Silica nanoparticle internalization improves chemotactic behaviour of human mesenchymal stem cells acting on the SDF1α/CXCR4 axis[J]. Biomedicines, 2022, 10( 2): 336. DOI: 10.3390/biomedicines10020336. [38] ZHANG DX, FU LW, YANG YT, et al. Tetrahedral framework nucleic acids improve the effectiveness of adipose-derived mesenchymal stem cells in the repair of acute liver failure[J]. Mater Today Nano, 2024, 25: 100454. DOI: 10.1016/j.mtnano.2024.100454. [39] FOROUTAN T, KASSAEE MZ, SALARI M, et al. Magnetic Fe3 O4@graphene oxide improves the therapeutic effects of embryonic stem cells on acute liver damage[J]. Cell Prolif, 2021, 54( 11): e13126. DOI: 10.1111/cpr.13126. [40] SHIN MJ, PARK JY, LEE DH, et al. Stem cell mimicking nanoencapsulation for targeting arthritis[J]. Int J Nanomedicine, 2021, 16: 8485- 8507. DOI: 10.2147/IJN.S334298. -

计量
- 文章访问数: 153
- HTML全文浏览量: 93
- PDF下载量: 15
- 被引次数: 0