中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

终末期肝病间充质干细胞归巢能力的影响因素及优化措施

刘宇馨 张缭云

引用本文:
Citation:

终末期肝病间充质干细胞归巢能力的影响因素及优化措施

DOI: 10.12449/JCH250326
基金项目: 

山西省重点研发计划 (201903D421056)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:刘宇馨负责文献查找,资料分析,撰写论文;张缭云负责拟定写作思路,指导撰写文章,修改论文并最后定稿。
详细信息
    通信作者:

    张缭云, zlysgzy@163.com (ORCID: 0000-0002-7666-7368)

Influencing factors for the homing ability of mesenchymal stem cells in end-stage liver disease and optimization measures

Research funding: 

Key R & D Projects of Shanxi Province (201903D421056)

More Information
    Corresponding author: ZHANG Liaoyun, zlysgzy@163.com (ORCID: 0000-0002-7666-7368)
  • 摘要: 间充质干细胞(MSC)因其强大的自我再生、旁分泌及免疫调节特性成为终末期肝病潜在的细胞治疗手段,为晚期肝病治疗提供了新的方向。然而,受损肝脏中炎症、氧化应激和缺氧等复杂微环境的影响,以及静脉注射后大部分MSC滞留在肺毛细血管中且缺乏足够的归巢受体或黏附分子,导致MSC在归巢过程中出现大量凋亡或坏死,只有少数细胞能够成功归巢至肝脏,极大限制了MSC的临床应用。为优化MSC的增殖、迁移及归巢能力,目前已开发多种方法,如预处理、基因修饰及纳米封装技术等。本文将重点阐述影响MSC归巢能力的因素及优化终末期肝病中MSC归巢的措施,并深入分析MSC归巢的机制,以期提高细胞植入效率,促进肝脏修复和再生,为MSC在终末期肝病治疗中的应用开辟新路径。

     

  • 表  1  基因修饰增强MSC在肝病中的归巢

    Table  1.   Gene modification enhances MSC homing in liver disease

    MSC类型 基因 载体 肝病模型 具体机制
    BM-MSC3 CXCR-4 腺病毒 肝移植后 激活CXCR-4/SDF-1α,抑制caspase-3表达和肝酶释放
    CXCR-4 慢病毒 急性肝损伤 通过HGF/c-Met和PI3K/Akt通路的同步激活来增强MSC归巢
    c-Met 慢病毒 ALF 通过激活HGF/c-Met通路来增强MSC对肝脏的归巢
    EPO 慢病毒 ALF 抑制IL-6和TGF-β1表达并上调MMP-9表达
    HGF 腺病毒 肝硬化 改善MSC归巢,促进肝脏修复
    FGF4 慢病毒 肝硬化 改善MSC的增殖和迁移
    UC-MSC3 CCR-2 慢病毒 ALF 增强CCR-2/CCL-2轴来增强MSC归巢
    CXCL-9 慢病毒 肝纤维化 增强MSC黏附、爬行和扩散能力
    VEGF165 腺病毒 ALF 改善MSC归巢
    AD-MSC3 BCAT1 腺病毒 肝硬化 增强MSC对肝脏的归巢和定位
    FGF21 质粒 肝纤维化 抑制p-JNK、NF-κB、p-Smad2/3信号通路,减少纤维化因子释放,减轻肝纤维化

    注:EPO,促红细胞生成素;MMP-9,基质金属蛋白酶9;FGF,成纤维细胞生长因子;VEGF,血管内皮生长因子;BCAT,支链氨基酸转氨酶;p-JNK,磷酸化c-Jun氨基末端激酶;p-Smad,磷酸化Smad蛋白。

    下载: 导出CSV

    表  2  不同预处理策略对MSC肝脏归巢的作用机制及影响

    Table  2.   Mechanisms and effects of different preconditioning strategies on MSC homing to the liver

    预处理 具体机制 影响
    缺氧19 通过HGF/c-Met趋化,激活ERK1/2、P38、PI3K/Akt通路 增强MSC迁移和对ALF的修复
    褪黑素20 抗氧化,抑制促炎细胞因子表达,减弱凋亡因子Bax表达 改善肝功能,减少肝细胞凋亡坏死,抑制肝纤维化
    维生素E21 抗氧化,抑制促炎细胞因子表达,降低纤维化标志物如Ⅰ型胶原表达 改善肝功能,减轻肝损伤,抑制肝纤维化
    IL-627 抗氧化,抗凋亡基因Bcl-xl上调,Bax、caspase-3、TNF-α上调 增强MSC归巢,改善肝功能,减轻肝细胞凋亡
    牛蒡多糖28 抗氧化,抑制Wnt/β-catenin通路阻止肝星状细胞活化和胶原形成 增强MSC肝脏归巢,减轻肝纤维化
    IL-1β22 增强MSC表面CXCR-4表达及向SDF-1的迁移 增强MSC对肝脏的归巢,提高对ALF的疗效
    雷帕霉素23 诱导自噬增强MSC表面CXCR-4表达及对CXCL-12的迁移 增强MSC对肝脏的归巢,改善肝损伤
    UTMB24 增强MSC表面CXCR-4表达 增强MSC对纤维化肝脏的归巢,改善肝纤维化
    TC1401225 增强MSC表面CXCR-7表达 增强MSC对肝脏的归巢,改善肝纤维化
    聚乙二醇修饰29 抑制静脉给药MSC的肺包埋,抑制肝脏内白细胞浸润 增强MSC对肝脏的归巢,提高对ALF的疗效
    下载: 导出CSV

    表  3  不同纳米材料对MSC归巢的作用机制及影响

    Table  3.   Mechanisms and effects of different nanomaterials on MSC homing

    纳米材料 作用机制 影响
    金纳米粒子35

    激活PI3K/Akt/eNOS,

    α5β3/FAK/RhoGTPase通路

    提高MSC迁移能力
    四面体框架核酸39 增加MAPK通路中Erk1/2,P38磷酸化 增强归巢,促进MSC肝源性分化
    铁基磁性纳米颗粒36-37 增强MSC的CXCR-4表达,MRI监测MSC 提高MSC归巢效率,改善肝脏炎症
    二氧化硅纳米颗粒37-38 增加MSC的CXCR-4表达及对SDF-1α的迁移 提高MSC对肝脏的归巢
    石墨烯氧化物40 抑制肝酶释放,降低促炎细胞因子水平,增加VEGF和MMP-9表达 提高肝衰竭存活率
    下载: 导出CSV
  • [1] YU SX, YU SH, LIU HY, et al. Enhancing mesenchymal stem cell survival and homing capability to improve cell engraftment efficacy for liver diseases[J]. Stem Cell Res Ther, 2023, 14( 1): 235. DOI: 10.1186/s13287-023-03476-4.
    [2] MEI RY, WAN Z, YANG C, et al. Advances and clinical challenges of mesenchymal stem cell therapy[J]. Front Immunol, 2024, 15: 1421854. DOI: 10.3389/fimmu.2024.1421854.
    [3] FAGOONEE S, SHUKLA SP, DHASMANA A, et al. Routes of stem cell administration[J]. Adv Exp Med Biol, 2022. DOI: 10.1007/5584_2022_710.[ Online ahead of print]
    [4] GHUFRAN H, AZAM M, MEHMOOD A, et al. Adipose tissue and umbilical cord tissue: Potential sources of mesenchymal stem cells for liver fibrosis treatment[J]. J Clin Exp Hepatol, 2024, 14( 4): 101364. DOI: 10.1016/j.jceh.2024.101364.
    [5] HASS R, KASPER C, BÖHM S, et al. Different populations and sources of human mesenchymal stem cells(MSC): A comparison of adult and neonatal tissue-derived MSC[J]. Cell Commun Signal, 2011, 9: 12. DOI: 10.1186/1478-811X-9-12.
    [6] JERVIS M, HUAMAN O, CAHUASCANCO B, et al. Comparative analysis of in vitro proliferative, migratory and pro-angiogenic potentials of bovine fetal mesenchymal stem cells derived from bone marrow and adipose tissue[J]. Vet Res Commun, 2019, 43( 3): 165- 178. DOI: 10.1007/s11259-019-09757-9.
    [7] SHI LH, CHEN LL, GAO XZ, et al. Comparison of different sources of mesenchymal stem cells: Focus on inflammatory bowel disease[J]. Inflammopharmacology, 2024, 32( 3): 1721- 1742. DOI: 10.1007/s10787-024-01468-1.
    [8] SINEH SEPEHR K, RAZAVI A, HASSAN ZM, et al. Comparative immunomodulatory properties of mesenchymal stem cells derived from human breast tumor and normal breast adipose tissue[J]. Cancer Immunol Immunother, 2020, 69( 9): 1841- 1854. DOI: 10.1007/s00262-020-02567-y.
    [9] KABAT M, BOBKOV I, KUMAR S, et al. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range?[J]. Stem Cells Transl Med, 2020, 9( 1): 17- 27. DOI: 10.1002/sctm.19-0202.
    [10] LI M, ZHANG JG, FANG JM, et al. Pre-administration of human umbilical cord mesenchymal stem cells has better therapeutic efficacy in rats with D-galactosamine-induced acute liver failure[J]. Int Immunopharmacol, 2024, 130: 111672. DOI: 10.1016/j.intimp.2024.111672.
    [11] YANG H, CHEN JX, LI J. Isolation, culture, and delivery considerations for the use of mesenchymal stem cells in potential therapies for acute liver failure[J]. Front Immunol, 2023, 14: 1243220. DOI: 10.3389/fimmu.2023.1243220.
    [12] YUAN MQ, HU X, YAO LC, et al. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease[J]. Stem Cell Res Ther, 2022, 13( 1): 179. DOI: 10.1186/s13287-022-02858-4.
    [13] OGASAWARA H, INAGAKI A, FATHI I, et al. Preferable transplant site for hepatocyte transplantation in a rat model[J]. Cell Transplant, 2021, 30: 9636897211040012. DOI: 10.1177/09636897211040012.
    [14] YUAN LZ, JIANG J, LIU X, et al. HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation[J]. Gut, 2019, 68( 11): 2044- 2056. DOI: 10.1136/gutjnl-2018-316091.
    [15] OHKI A, SAITO S, FUKUCHI K. Magnetic resonance imaging of umbilical cord stem cells labeled with superparamagnetic iron oxide nanoparticles: Effects of labelling and transplantation parameters[J]. Sci Rep, 2020, 10( 1): 13684. DOI: 10.1038/s41598-020-70291-9.
    [16] HERVÁS-SALCEDO R, FERNÁNDEZ-GARCÍA M, HERNANDO-RODRÍGUEZ M, et al. Enhanced anti-inflammatory effects of mesenchymal stromal cells mediated by the transient ectopic expression of CXCR4 and IL10[J]. Stem Cell Res Ther, 2021, 12( 1): 124. DOI: 10.1186/s13287-021-02193-0.
    [17] XU RX, NI BB, WANG L, et al. CCR2-overexpressing mesenchymal stem cells targeting damaged liver enhance recovery of acute liver failure[J]. Stem Cell Res Ther, 2022, 13( 1): 55. DOI: 10.1186/s13287-022-02729-y.
    [18] LI Y, DONG JT, ZHOU Y, et al. Therapeutic effects of CXCL9-overexpressing human umbilical cord mesenchymal stem cells on liver fibrosis in rats[J]. Biochem Biophys Res Commun, 2021, 584: 87- 94. DOI: 10.1016/j.bbrc.2021.10.078.
    [19] WANG Q, LI YW, YUAN H, et al. Hypoxia preconditioning of human amniotic mesenchymal stem cells enhances proliferation and migration and promotes their homing via the HGF/C-MET signaling axis to augment the repair of acute liver failure[J]. Tissue Cell, 2024, 87: 102326. DOI: 10.1016/j.tice.2024.102326.
    [20] ELZAINY A, SADIK A EL, ALTOWAYAN WM. Comparison between the regenerative and therapeutic impacts of bone marrow mesenchymal stem cells and adipose mesenchymal stem cells pre-treated with melatonin on liver fibrosis[J]. Biomolecules, 2024, 14( 3): 297. DOI: 10.3390/biom14030297.
    [21] BAIG MT, GHUFRAN H, MEHMOOD A, et al. Vitamin E pretreated Wharton’s jelly-derived mesenchymal stem cells attenuate CCl4-induced hepatocyte injury in vitro and liver fibrosis in vivo[J]. Biochem Pharmacol, 2021, 186: 114480. DOI: 10.1016/j.bcp.2021.114480.
    [22] NIE H, AN FM, MEI J, et al. IL-1β pretreatment improves the efficacy of mesenchymal stem cells on acute liver failure by enhancing CXCR4 expression[J]. Stem Cells Int, 2020, 2020: 1498315. DOI: 10.1155/2020/1498315.
    [23] ZHENG J, LI H, HE LY, et al. Preconditioning of umbilical cord-derived mesenchymal stem cells by rapamycin increases cell migration and ameliorates liver ischaemia/reperfusion injury in mice via the CXCR4/CXCL12 axis[J]. Cell Prolif, 2019, 52( 2): e12546. DOI: 10.1111/cpr.12546.
    [24] XU HM, HUANG YZ, ZHANG FS, et al. Ultrasonic microbubbles promote mesenchymal stem cell homing to the fibrotic liver via upregulation of CXCR4 expression[J]. Cell Div, 2024, 19( 1): 7. DOI: 10.1186/s13008-023-00104-8.
    [25] DING F, LIU YT, LI J, et al. TC14012 enhances the anti-fibrosis effects of UC-MSCs on the liver by reducing collagen accumulation and ameliorating inflammation[J]. Stem Cell Res Ther, 2024, 15( 1): 44. DOI: 10.1186/s13287-024-03648-w.
    [26] LE B, CRESSMAN A, MORALES D, et al. First clinical experiences using preconditioning approaches to improve MSC-based therapies[J]. Curr Stem Cell Rep, 2024, 10( 1): 1- 7. DOI: 10.1007/s40778-023-00232-5.
    [27] NASIR GA, MOHSIN S, KHAN M, et al. Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice[J]. J Transl Med, 2013, 11: 78. DOI: 10.1186/1479-5876-11-78.
    [28] XIANG W, YIN GL, LIU HM, et al. Arctium lappa L. polysaccharides enhanced the therapeutic effects of nasal ectomesenchymal stem cells against liver fibrosis by inhibiting the Wnt/β-catenin pathway[J]. Int J Biol Macromol, 2024, 261( Pt 1): 129670. DOI: 10.1016/j.ijbiomac.2024.129670.
    [29] TAKAYAMA Y, KUSAMORI K, KATSURADA Y, et al. Efficient delivery of mesenchymal stem/stromal cells to injured liver by surface PEGylation[J]. Stem Cell Res Ther, 2023, 14( 1): 216. DOI: 10.1186/s13287-023-03446-w.
    [30] QUE HY, MAI E, HU YT, et al. Multilineage-differentiating stress-enduring cells: A powerful tool for tissue damage repair[J]. Front Cell Dev Biol, 2024, 12: 1380785. DOI: 10.3389/fcell.2024.1380785.
    [31] KATAGIRI H, KUSHIDA Y, NOJIMA M, et al. A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components[J]. Am J Transplant, 2016, 16( 2): 468- 483. DOI: 10.1111/ajt.13537.
    [32] ISEKI M, KUSHIDA Y, WAKAO S, et al. Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis[J]. Cell Transplant, 2017, 26( 5): 821- 840. DOI: 10.3727/096368916X693662.
    [33] ISEKI M, MIZUMA M, WAKAO S, et al. The evaluation of the safety and efficacy of intravenously administered allogeneic multilineage-differentiating stress-enduring cells in a swine hepatectomy model[J]. Surg Today, 2021, 51( 4): 634- 650. DOI: 10.1007/s00595-020-02117-0.
    [34] LI H, WEI JH, LI MZ, et al. Biological characteristics of Muse cells derived from MenSCs and their application in acute liver injury and intracerebral hemorrhage diseases[J]. Regen Ther, 2024, 27: 48- 62. DOI: 10.1016/j.reth.2024.03.003.
    [35] CHENG WY, YANG MY, YEH CA, et al. Therapeutic applications of mesenchymal stem cell loaded with gold nanoparticles for regenerative medicine[J]. Pharmaceutics, 2023, 15( 5): 1385. DOI: 10.3390/pharmaceutics15051385.
    [36] HUANG XL, ZHANG F, WANG Y, et al. Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing[J]. ACS Nano, 2014, 8( 5): 4403- 4414. DOI: 10.1021/nn4062726.
    [37] VITALE E, ROSSIN D, PERVEEN S, et al. Silica nanoparticle internalization improves chemotactic behaviour of human mesenchymal stem cells acting on the SDF1α/CXCR4 axis[J]. Biomedicines, 2022, 10( 2): 336. DOI: 10.3390/biomedicines10020336.
    [38] ZHANG DX, FU LW, YANG YT, et al. Tetrahedral framework nucleic acids improve the effectiveness of adipose-derived mesenchymal stem cells in the repair of acute liver failure[J]. Mater Today Nano, 2024, 25: 100454. DOI: 10.1016/j.mtnano.2024.100454.
    [39] FOROUTAN T, KASSAEE MZ, SALARI M, et al. Magnetic Fe3 O4@graphene oxide improves the therapeutic effects of embryonic stem cells on acute liver damage[J]. Cell Prolif, 2021, 54( 11): e13126. DOI: 10.1111/cpr.13126.
    [40] SHIN MJ, PARK JY, LEE DH, et al. Stem cell mimicking nanoencapsulation for targeting arthritis[J]. Int J Nanomedicine, 2021, 16: 8485- 8507. DOI: 10.2147/IJN.S334298.
  • 加载中
表(3)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  93
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-16
  • 录用日期:  2024-08-22
  • 出版日期:  2025-03-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回