肠道菌群及其代谢物在慢加急性肝衰竭发生发展中的作用
DOI: 10.12449/JCH250327
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:时克、张群负责资料查找,撰写论文;冯颖负责修改论文;王宪波指导修改文章并最终定稿。
Effect of intestinal flora and metabolites on the development and progression of acute-on-chronic liver failure
-
摘要: 慢加急性肝衰竭(ACLF)病情凶险,发病迅速,短期病死率高。肠道菌群及其代谢物与ACLF发生发展和发病机制之间密切相关。ACLF进展过程中,肠道完整性破坏,肠道微生态及其代谢物失调,介导免疫紊乱,进而加重全身炎症性反应。本文旨在阐明肠道菌群及其代谢物在ACLF发展过程中的作用和相关治疗策略。Abstract: Acute-on-chronic liver failure (ACLF) is a dangerous disease with severe conditions, rapid progression, and high short-term mortality. Intestinal flora and metabolites are closely associated with the development, progression, and pathogenesis of ACLF. During the development of ACLF, the destruction of intestinal integrity and the dysregulation of intestinal microecology and its metabolites mediate immune disturbance and thus aggravate systemic inflammatory response. This article elaborates on the role of intestinal flora and metabolites in the development and progression of ACLF and related therapeutic strategies.
-
Key words:
- Gastrointestinal Microbiome /
- Metabolism /
- Acute-On-Chronic Liver Failure
-
[1] FERSTL P, TREBICKA J. Acute decompensation and acute-on-chronic liver failure[J]. Clin Liver Dis, 2021, 25( 2): 419- 430. DOI: 10.1016/j.cld.2021.01.009. [2] D’AMICO G, BERNARDI M, ANGELI P. Towards a new definition of decompensated cirrhosis[J]. J Hepatol, 2022, 76( 1): 202- 207. DOI: 10.1016/j.jhep.2021.06.018. [3] SOLÉ C, GUILLY S, SILVA K DA, et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: Relationship with acute-on-chronic liver failure and prognosis[J]. Gastroenterology, 2021, 160( 1): 206- 218. e 13. DOI: 10.1053/j.gastro.2020.08.054. [4] LÓPEZ-VICARIO C, CHECA A, URDANGARIN A, et al. Targeted lipidomics reveals extensive changes in circulating lipid mediators in patients with acutely decompensated cirrhosis[J]. J Hepatol, 2020, 73( 4): 817- 828. DOI: 10.1016/j.jhep.2020.03.046. [5] WANG FC, LI ZY, ZHANG WJ, et al. The significance of gut microbiota in acute-on-chronic liver failure[J]. J Clin Hepatol, 2022, 38( 7): 1667- 1670. DOI: 10.3969/j.issn.1001-5256.2022.07.040.王富春, 李子怡, 张万洁, 等. 肠道菌群在慢加急性肝衰竭中的意义[J]. 临床肝胆病杂志, 2022, 38( 7): 1667- 1670. DOI: 10.3969/j.issn.1001-5256.2022.07.040. [6] WOODHOUSE CA, PATEL VC, SINGANAYAGAM A, et al. Review article: The gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease[J]. Aliment Pharmacol Ther, 2018, 47( 2): 192- 202. DOI: 10.1111/apt.14397. [7] KORPELA K, COSTEA P, COELHO LP, et al. Selective maternal seeding and environment shape the human gut microbiome[J]. Genome Res, 2018, 28( 4): 561- 568. DOI: 10.1101/gr.233940.117. [8] WASTYK HC, FRAGIADAKIS GK, PERELMAN D, et al. Gut-microbiota-targeted diets modulate human immune status[J]. Cell, 2021, 184( 16): 4137- 4153. e 14. DOI: 10.1016/j.cell.2021.06.019. [9] LI ZZ, HUANG XW, ZHANG ZP, et al. Research progress in role of gut-liver axis in occurrence and development of atherosclerosis[J]. J Jilin Univ Med Ed, 2023, 49( 6): 1669- 1676. DOI: 10.13481/j.1671-587X.20230636.李朝政, 黄晓巍, 张泽鹏, 等. 肠-肝轴在动脉粥样硬化发生发展中作用的研究进展[J]. 吉林大学学报(医学版), 2023, 49( 6): 1669- 1676. DOI: 10.13481/j.1671-587X.20230636. [10] TRIPATHI A, DEBELIUS J, BRENNER DA, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15( 7): 397- 411. DOI: 10.1038/s41575-018-0011-z. [11] CLÀRIA J, STAUBER RE, COENRAAD MJ, et al. Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure[J]. Hepatology, 2016, 64( 4): 1249- 1264. DOI: 10.1002/hep.28740. [12] TREBICKA J, AMOROS A, PITARCH C, et al. Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis[J]. Front Immunol, 2019, 10: 476. DOI: 10.3389/fimmu.2019.00476. [13] WANG K, ZHANG Z, MO ZS, et al. Gut microbiota as prognosis markers for patients with HBV-related acute-on-chronic liver failure[J]. Gut Microbes, 2021, 13( 1): 1- 15. DOI: 10.1080/19490976.2021.1921925. [14] BAJAJ JS, VARGAS HE, REDDY KR, et al. Association between intestinal microbiota collected at hospital admission and outcomes of patients with cirrhosis[J]. Clin Gastroenterol Hepatol, 2019, 17( 4): 756- 765. e 3. DOI: 10.1016/j.cgh.2018.07.022. [15] TREBICKA J, MACNAUGHTAN J, SCHNABL B, et al. The microbiota in cirrhosis and its role in hepatic decompensation[J]. J Hepatol, 2021, 75( Suppl 1): S67- S68. DOI: 10.1016/j.jhep.2020.11.013. [16] BAJAJ JS, REDDY KR, O’LEARY JG, et al. Serum levels of metabolites produced by intestinal microbes and lipid moieties independently associated with acute-on-chronic liver failure and death in patients with cirrhosis[J]. Gastroenterology, 2020, 159( 5): 1715- 1730. e 12. DOI: 10.1053/j.gastro.2020.07.019. [17] DALILE B, van OUDENHOVE L, VERVLIET B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16( 8): 461- 478. DOI: 10.1038/s41575-019-0157-3. [18] CANI PD, JORDAN BF. Gut microbiota-mediated inflammation in obesity: A link with gastrointestinal cancer[J]. Nat Rev Gastroenterol Hepatol, 2018, 15: 671- 682. DOI: 10.1038/s41575-018-0025-6. [19] PARK JH, EBERL G. Type 3 regulatory T cells at the interface of symbiosis[J]. J Microbiol, 2018, 56( 3): 163- 171. DOI: 10.1007/s12275-018-7565-x. [20] LITVAK Y, MON KKZ, NGUYEN H, et al. Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition[J]. Cell Host Microbe, 2019, 25( 1): 128- 139. e 5. DOI: 10.1016/j.chom.2018.12.003. [21] BRONNER DN, FABER F, OLSAN EE, et al. Genetic ablation of butyrate utilization attenuates gastrointestinal Salmonella disease[J]. Cell Host Microbe, 2018, 23( 2): 266- 273. e 4. DOI: 10.1016/j.chom.2018.01.004. [22] CHANG PV, HAO LM, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci USA, 2014, 111( 6): 2247- 2252. DOI: 10.1073/pnas.1322269111. [23] de VOS WM, TILG H, VAN HUL M, et al. Gut microbiome and health: Mechanistic insights[J]. Gut, 2022, 71( 5): 1020- 1032. DOI: 10.1136/gutjnl-2021-326789. [24] AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe, 2018, 23( 6): 716- 724. DOI: 10.1016/j.chom.2018.05.003. [25] MUNN DH, MELLOR AL. Indoleamine 2, 3 dioxygenase and metabolic control of immune responses[J]. Trends Immunol, 2013, 34( 3): 137- 143. DOI: 10.1016/j.it.2012.10.001. [26] CERVENKA I, AGUDELO LZ, RUAS JL. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health[J]. Science, 2017, 357( 6349): eaaf9794. DOI: 10.1126/science.aaf9794. [27] CORREIA AS, VALE N. Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways[J]. Int J Mol Sci, 2022, 23( 15): 8493. DOI: 10.3390/ijms23158493. [28] CLÀRIA J, MOREAU R, FENAILLE F, et al. Orchestration of tryptophan-kynurenine pathway, acute decompensation, and acute-on-chronic liver failure in cirrhosis[J]. Hepatology, 2019, 69( 4): 1686- 1701. DOI: 10.1002/hep.30363. [29] RAMOS-MOLINA B, QUEIPO-ORTUÑO MI, LAMBERTOS A, et al. Dietary and gut microbiota polyamines in obesity- and age-related diseases[J]. Front Nutr, 2019, 6: 24. DOI: 10.3389/fnut.2019.00024. [30] ZACCHERINI G, AGUILAR F, CARACENI P, et al. Assessing the role of amino acids in systemic inflammation and organ failure in patients with ACLF[J]. J Hepatol, 2021, 74( 5): 1117- 1131. DOI: 10.1016/j.jhep.2020.11.035. [31] JOHNSON CH, SPILKER ME, GOETZ L, et al. Metabolite and microbiome interplay in cancer immunotherapy[J]. Cancer Res, 2016, 76( 21): 6146- 6152. DOI: 10.1158/0008-5472.CAN-16-0309. [32] LEVY M, THAISS CA, ZEEVI D, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling[J]. Cell, 2015, 163( 6): 1428- 1443. DOI: 10.1016/j.cell.2015.10.048. [33] FUCHS CD, TRAUNER M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology[J]. Nat Rev Gastroenterol Hepatol, 2022, 19( 7): 432- 450. DOI: 10.1038/s41575-021-00566-7. [34] PERINO A, DEMAGNY H, VELAZQUEZ-VILLEGAS L, et al. Molecular physiology of bile acid signaling in health, disease, and aging[J]. Physiol Rev, 2021, 101( 2): 683- 731. DOI: 10.1152/physrev.00049.2019. [35] LI F, JIANG CT, KRAUSZ KW, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity[J]. Nat Commun, 2013, 4: 2384. DOI: 10.1038/ncomms3384. [36] FRIEDMAN ES, LI Y, SHEN TC D, et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid[J]. Gastroenterology, 2018, 155( 6): 1741- 1752.e5. DOI: 10.1053/j.gastro.2018.08.022. [37] SCHWABL P, HAMBRUCH E, SEELAND BA, et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction[J]. J Hepatol, 2017, 66( 4): 724- 733. DOI: 10.1016/j.jhep.2016.12.005. [38] ZHAO LN, YU T, LAN SY, et al. Probiotics can improve the clinical outcomes of hepatic encephalopathy: An update meta-analysis[J]. Clin Res Hepatol Gastroenterol, 2015, 39( 6): 674- 682. DOI: 10.1016/j.clinre.2015.03.008. [39] WANG YZ, XIE JM, LI YX, et al. Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure[J]. Eur J Nutr, 2016, 55( 2): 821- 831. DOI: 10.1007/s00394-015-0904-3. [40] WANG QQ, LV LX, JIANG HY, et al. Lactobacillus helveticus R0052 alleviates liver injury by modulating gut microbiome and metabolome in D-galactosamine-treated rats[J]. Appl Microbiol Biotechnol, 2019, 103( 23-24): 9673- 9686. DOI: 10.1007/s00253-019-10211-8. [41] ZHUGE AX, LI B, YUAN Y, et al. Lactobacillus salivarius LI01 encapsulated in alginate-pectin microgels ameliorates D-galactosamine-induced acute liver injury in rats[J]. Appl Microbiol Biotechnol, 2020, 104( 17): 7437- 7455. DOI: 10.1007/s00253-020-10749-y. [42] SANDERS ME, MERENSTEIN DJ, REID G, et al. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic[J]. Nat Rev Gastroenterol Hepatol, 2019, 16( 10): 605- 616. DOI: 10.1038/s41575-019-0173-3. [43] YU JH, ZHANG WG, ZHANG RG, et al. Lactulose accelerates liver regeneration in rats by inducing hydrogen[J]. J Surg Res, 2015, 195( 1): 128- 135. DOI: 10.1016/j.jss.2015.01.034. [44] LIU Q, DUAN ZP, HA DK, et al. Synbiotic modulation of gut flora: Effect on minimal hepatic encephalopathy in patients with cirrhosis[J]. Hepatology, 2004, 39( 5): 1441- 1449. DOI: 10.1002/hep.20194. [45] ŻÓŁKIEWICZ J, MARZEC A, RUSZCZYŃSKI M, et al. Postbiotics-a step beyond pre- and probiotics[J]. Nutrients, 2020, 12( 8): 2189. DOI: 10.3390/nu12082189. [46] SONG W, WEN RX, LIU TQ, et al. Oat-based postbiotics ameliorate high-sucrose induced liver injury and colitis susceptibility by modulating fatty acids metabolism and gut microbiota[J]. J Nutr Biochem, 2024, 125: 109553. DOI: 10.1016/j.jnutbio.2023.109553. [47] YE W, CHEN Z, HE Z, et al. Lactobacillus plantarum-derived postbiotics ameliorate acute alcohol-induced liver injury by protecting cells from oxidative damage, improving lipid metabolism, and regulating intestinal microbiota[J]. Nutrients, 2023, 15( 4): 845. DOI: 10.3390/nu15040845. [48] YANG CJ, CHANG HC, SUNG PC, et al. Oral fecal transplantation enriches Lachnospiraceae and butyrate to mitigate acute liver injury[J]. Cell Rep, 2024, 43( 1): 113591. DOI: 10.1016/j.celrep.2023.113591. [49] FAN LD, LIU YM, CHENG ML. Probiotics enhance the efficacy of fecal microbiota transplantation in severe acute liver injury[J]. Chin J Hepatol, 2020, 28( 4): 345- 350. DOI: 10.3760/cma.j.cn501113-20190823-00315.范琳达, 刘咏梅, 程明亮. 益生菌增强急性严重肝损伤粪菌移植效果[J]. 中华肝脏病杂志, 2020, 28( 4): 345- 350. DOI: 10.3760/cma.j.cn501113-20190823-00315. [50] AHMAD J, KUMAR M, SARIN SK, et al. PS-163-faecal microbiota transplantation with tenofovir is superior to tenofovir alone in improving clinical outcomes in acute-on-chronic liver failure due to hepatitis B: An open label randomized controlled trial(NCT02689245)[J]. J Hepatol, 2019, 70( 1): e102. DOI: 10.1016/S0618-8278(19)30181-1. [51] SHARMA A, ROY A, PREMKUMAR M, et al. Fecal microbiota transplantation in alcohol-associated acute-on-chronic liver failure: an open-label clinical trial[J]. Hepatol Int, 2022, 16( 2): 433- 446. DOI: 10.1007/s12072-022-10312-z. -

计量
- 文章访问数: 1700
- HTML全文浏览量: 79
- PDF下载量: 24
- 被引次数: 0