中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨基酸代谢在自身免疫性肝炎中的作用机制及相关治疗靶点

郭佩佩 徐洋 石嘉琪 伍杨 卢利霞 李斌 于晓辉

引用本文:
Citation:

氨基酸代谢在自身免疫性肝炎中的作用机制及相关治疗靶点

DOI: 10.12449/JCH250323
基金项目: 

甘肃省科技计划项目青年科技基金 (23JRRA1675);

甘肃省科技计划项目重点研发计划-社发类 (22YF7FA105)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:郭佩佩负责撰写论文;徐洋、石嘉琪、伍杨参与修改论文;卢利霞、李斌负责拟定写作思路;于晓辉指导撰写文章并最后定稿。
详细信息
    通信作者:

    于晓辉, yuxiaohui528@126.com (ORCID: 0000-0002-8633-3281)

Role of amino acid metabolism in autoimmune hepatitis and related therapeutic targets

Research funding: 

Gansu Province Science and Technology Plan Project Youth Science and Technology Fund (23JRRA1675);

Gansu Province Science and Technology Plan Project Key Research and Development Program-Social Development Category (22YF7FA105)

More Information
  • 摘要: 自身免疫性肝炎(AIH)是一种慢性炎症性肝病,其发病机制目前尚不清楚,主要是免疫系统的异常激活,导致自身免疫耐受性破坏引起的自身免疫性损伤,但其更为具体的分子机制并不十分清楚。最近的研究表明,氨基酸代谢异常在AIH发病及疾病进展中起着重要作用。本文围绕氨基酸代谢重编程在AIH中的研究进展进行综述,为氨基酸代谢作为AIH临床诊断和治疗的新靶点提供理论依据。

     

  • [1] ZHANG Y, ZHANG DH, CHEN L, et al. The progress of autoimmune hepatitis research and future challenges[J]. Open Med(Wars), 2023, 18( 1): 20230823. DOI: 10.1515/med-2023-0823.
    [2] SHIFFMAN ML. Autoimmune hepatitis: Epidemiology, subtypes, and presentation[J]. Clin Liver Dis, 2024, 28( 1): 1- 14. DOI: 10.1016/j.cld.2023.06.002.
    [3] YANG LM, CHU ZL, LIU M, et al. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy[J]. J Hematol Oncol, 2023, 16( 1): 59. DOI: 10.1186/s13045-023-01453-1.
    [4] SANO A, KAKAZU E, MOROSAWA T, et al. The profiling of plasma free amino acids and the relationship between serum albumin and plasma-branched chain amino acids in chronic liver disease: A single-center retrospective study[J]. J Gastroenterol, 2018, 53( 8): 978- 988. DOI: 10.1007/s00535-018-1435-5.
    [5] LYTTON SD, OSIECKI M, MAŁGORZATAWOŹNIAK, et al. Tryptophan-kynurenine profile in pediatric autoimmune hepatitis[J]. Immunol Res, 2019, 67( 1): 39- 47. DOI: 10.1007/s12026-019-9068-1.
    [6] YU Q, TU HH, YIN XY, et al. Targeting glutamine metabolism ameliorates autoimmune hepatitis via inhibiting T cell activation and differentiation[J]. Front Immunol, 2022, 13: 880262. DOI: 10.3389/fimmu.2022.880262.
    [7] LEI Y, CHEN Y, WANG SH, et al. L-lysine supplementation attenuates experimental autoimmune hepatitis in a chronic murine model[J]. Exp Anim, 2024, 73( 1): 83- 92. DOI: 10.1538/expanim.23-0053.
    [8] WANG KC, WU WR, JIANG XW, et al. Multi-omics analysis reveals the protection of gasdermin D in concanavalin A-induced autoimmune hepatitis[J]. Microbiol Spectr, 2022, 10( 5): e0171722. DOI: 10.1128/spectrum.01717-22.
    [9] FENG XJ, LI X, LIU N, et al. Glutaminolysis and CD4+ T-cell metabolism in autoimmunity: From pathogenesis to therapy prospects[J]. Front Immunol, 2022, 13: 986847. DOI: 10.3389/fimmu.2022.986847.
    [10] JOHNSON MO, WOLF MM, MADDEN MZ, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism[J]. Cell, 2018, 175( 7): 1780- 1795. e 19. DOI: 10.1016/j.cell.2018.10.001.
    [11] RAGHU G, BERK M, CAMPOCHIARO PA, et al. The multifaceted therapeutic role of N-acetylcysteine(NAC) in disorders characterized by oxidative stress[J]. Curr Neuropharmacol, 2021, 19( 8): 1202- 1224. DOI: 10.2174/1570159X19666201230144109.
    [12] KHALEEL A, EL-SHEAKH AR, SUDDEK GM. Celecoxib abrogates concanavalin A-induced hepatitis in mice: Possible involvement of Nrf2/HO-1, JNK signaling pathways and COX-2 expression[J]. Int Immunopharmacol, 2023, 121: 110442. DOI: 10.1016/j.intimp.2023.110442.
    [13] SHEHATA AM, ELBADAWY HM, IBRAHIM SRM, et al. Alpha-mangostin as a new therapeutic candidate for concanavalin A-induced autoimmune hepatitis: Impact on the SIRT1/Nrf2 and NF-κB crosstalk[J]. Plants(Basel), 2022, 11( 18): 2441. DOI: 10.3390/plants11182441.
    [14] ZHANG M, LI QX, ZHOU CS, et al. Demethyleneberberine attenuates concanavalin A-induced autoimmune hepatitis in mice through inhibition of NF-κB and MAPK signaling[J]. Int Immunopharmacol, 2020, 80: 106137. DOI: 10.1016/j.intimp.2019.106137.
    [15] HU YH, LIN CL, HUANG YW, et al. Dietary amino acid taurine ameliorates liver injury in chronic hepatitis patients[J]. Amino Acids, 2008, 35( 2): 469- 473. DOI: 10.1007/s00726-007-0565-5.
    [16] LUAN JY, ZHANG XY, WANG SF, et al. NOD-like receptor protein 3 inflammasome-dependent IL-1β accelerated ConA-induced hepatitis[J]. Front Immunol, 2018, 9: 758. DOI: 10.3389/fimmu.2018.00758.
    [17] BOSTRÖM EA, EKSTEDT M, KECHAGIAS S, et al. Resistin is associated with breach of tolerance and anti-nuclear antibodies in patients with hepatobiliary inflammation[J]. Scand J Immunol, 2011, 74( 5): 463- 470. DOI: 10.1111/j.1365-3083.2011.02592.x.
    [18] ZHOU QH, SHI Y, CHEN C, et al. A narrative review of the roles of indoleamine 2, 3-dioxygenase and tryptophan-2, 3-dioxygenase in liver diseases[J]. Ann Transl Med, 2021, 9( 2): 174. DOI: 10.21037/atm-20-3594.
    [19] ZENG T, DENG GH, ZHONG WC, et al. Corrigendum to“Indoleamine 2, 3-dioxygenase 1enhanceshepatocytes ferroptosis in acute immune hepatitis associated with excess nitrative stress”[Free Radic. Biol. Med. 2020 May 20; 152: 668-679/FRBM_2020_27][J]. Free Radic Biol Med, 2022, 179: 431. DOI: 10.1016/j.freeradbiomed.2021.08.020.
    [20] ISLAM MM, WALLIN R, WYNN RM, et al. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex[J]. J Biol Chem, 2007, 282( 16): 11893- 11903. DOI: 10.1074/jbc.M700198200.
    [21] ZHANG SH, ZENG XF, REN M, et al. Novel metabolic and physiological functions of branched chain amino acids: A review[J]. J Anim Sci Biotechnol, 2017, 8: 10. DOI: 10.1186/s40104-016-0139-z.
    [22] KRISHNAN B, MASSILAMANY C, BASAVALINGAPPA RH, et al. Branched chain α-ketoacid dehydrogenase kinase 111-130, a T cell epitope that induces both autoimmune myocarditis and hepatitis in A/J mice[J]. Immun Inflamm Dis, 2017, 5( 4): 421- 434. DOI: 10.1002/iid3.177.
    [23] AÖ GEVREKCI. The roles of polyamines in microorganisms[J]. World J Microbiol Biotechnol, 2017, 33( 11): 204. DOI: 10.1007/s11274-017-2370-y.
    [24] ELSHERBINY NM, RAMMADAN M, HASSAN EA, et al. Autoimmune hepatitis: Shifts in gut microbiota and metabolic pathways among Egyptian patients[J]. Microorganisms, 2020, 8( 7): 1011. DOI: 10.3390/microorganisms8071011.
    [25] WEI YR, LI YM, YAN L, et al. Alterations of gut microbiome in autoimmune hepatitis[J]. Gut, 2020, 69( 3): 569- 577. DOI: 10.1136/gutjnl-2018-317836.
    [26] ALTAMIRANO-BARRERA A, BARRANCO-FRAGOSO B, MÉNDEZ-SÁNCHEZ N. Management strategies for liver fibrosis[J]. Ann Hepatol, 2017, 16( 1): 48- 56. DOI: 10.5604/16652681.1226814.
    [27] KAFFE ET, RIGOPOULOU EI, KOUKOULIS GK, et al. Oxidative stress and antioxidant status in patients with autoimmune liver diseases[J]. Redox Rep, 2015, 20( 1): 33- 41. DOI: 10.1179/1351000214Y.0000000101.
    [28] SUN LH, OUYANG J, ZENG Z, et al. Targeted and activatable nanosystem for fluorescent and optoacoustic imaging of immune-mediated inflammatory diseases and therapy via inhibiting NF-κB/NLRP3 pathways[J]. Bioact Mater, 2021, 10: 79- 92. DOI: 10.1016/j.bioactmat.2021.08.010.
    [29] GADOUR E, MOHAMED T, HASSAN Z, et al. Meta-analysis and systematic review of primary renal tubular acidosis in patients with autoimmune hepatitis and alcoholic hepatitis[J]. Cureus, 2021, 13( 5): e15287. DOI: 10.7759/cureus.15287.
    [30] KIELBIK M, SZULC-KIELBIK I, KLINK M. The potential role of iNOS in ovarian cancer progression and chemoresistance[J]. Int J Mol Sci, 2019, 20( 7): 1751. DOI: 10.3390/ijms20071751.
    [31] SANZ-CAMENO P, MEDINA J, GARCÍA-BUEY L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune hepatitis[J]. J Hepatol, 2002, 37( 6): 723- 729. DOI: 10.1016/s0168-8278(02)00266-0.
    [32] DENG GH, LI YJ, MA SY, et al. Caveolin-1 dictates ferroptosis in the execution of acute immune-mediated hepatic damage by attenuating nitrogen stress[J]. Free Radic Biol Med, 2020, 148: 151- 161. DOI: 10.1016/j.freeradbiomed.2019.12.026.
    [33] MIKI H, TOKUHARA K, OISHI M, et al. Elental® amino acid component has protective effects on primary cultured hepatocytes and a rat model of acute liver injury[J]. Nutr Res, 2017, 42: 71- 84. DOI: 10.1016/j.nutres.2017.04.010.
    [34] SAITO Y, LI L, COYAUD E, et al. LLGL2 rescues nutrient stress by promoting leucine uptake in ER+ breast cancer[J]. Nature, 2019, 569( 7755): 275- 279. DOI: 10.1038/s41586-019-1126-2.
    [35] SOKOLOV AM, HOLMBERG JC, FELICIANO DM. The amino acid transporter Slc7a5 regulates the mTOR pathway and is required for granule cell development[J]. Hum Mol Genet, 2020, 29( 18): 3003- 3013. DOI: 10.1093/hmg/ddaa186.
    [36] XU J, JIANG CS, CAI YS, et al. Intervening upregulated SLC7A5 could mitigate inflammatory mediator by mTOR-P70S6K signal in rheumatoid arthritis synoviocytes[J]. Arthritis Res Ther, 2020, 22( 1): 200. DOI: 10.1186/s13075-020-02296-8.
    [37] AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe, 2018, 23( 6): 716- 724. DOI: 10.1016/j.chom.2018.05.003.
    [38] PANDEY SP, BENDER MJ, MCPHERSON AC, et al. Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell autoimmune hepatitis[J]. Cell Host Microbe, 2022, 30( 7): 1003- 1019. e 10. DOI: 10.1016/j.chom.2022.05.006.
    [39] CANNON AS, HOLLOMAN BL, WILSON K, et al. AhR activation leads to attenuation of murine autoimmune hepatitis: Single-cell RNA-seq analysis reveals unique immune cell phenotypes and gene expression changes in the liver[J]. Front Immunol, 2022, 13: 899609. DOI: 10.3389/fimmu.2022.899609.
    [40] VUERICH M, HARSHE R, FRANK LA, et al. Altered aryl-hydrocarbon-receptor signalling affects regulatory and effector cell immunity in autoimmune hepatitis[J]. J Hepatol, 2021, 74( 1): 48- 57. DOI: 10.1016/j.jhep.2020.06.044.
    [41] GAO L, ZHANG W, ZHANG LN, et al. Silencing of aryl hydrocarbon receptor repressor restrains Th17 cell immunity in autoimmune hepatitis[J]. J Autoimmun, 2024, 143: 103162. DOI: 10.1016/j.jaut.2023.103162.
    [42] JEYARAJ D, SCHEER FAJL, RIPPERGER JA, et al. Klf15 orchestrates circadian nitrogen homeostasis[J]. Cell Metab, 2012, 15( 3): 311- 323. DOI: 10.1016/j.cmet.2012.01.020.
    [43] CHEN H, LI LL, DU Y. Krüppel-like factor 15 in liver diseases: Insights into metabolic reprogramming[J]. Front Pharmacol, 2023, 14: 1115226. DOI: 10.3389/fphar.2023.1115226.
    [44] TU YL, CHEN DZ, PAN TT, et al. Inhibition of miR-431-5p attenuated liver apoptosis through KLF15/p53 signal pathway in S100 induced autoimmune hepatitis mice[J]. Life Sci, 2021, 280: 119698. DOI: 10.1016/j.lfs.2021.119698.
  • 加载中
计量
  • 文章访问数:  161
  • HTML全文浏览量:  84
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-09
  • 录用日期:  2024-07-11
  • 出版日期:  2025-03-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回