氨基酸代谢在自身免疫性肝炎中的作用机制及相关治疗靶点
DOI: 10.12449/JCH250323
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:郭佩佩负责撰写论文;徐洋、石嘉琪、伍杨参与修改论文;卢利霞、李斌负责拟定写作思路;于晓辉指导撰写文章并最后定稿。
Role of amino acid metabolism in autoimmune hepatitis and related therapeutic targets
-
摘要: 自身免疫性肝炎(AIH)是一种慢性炎症性肝病,其发病机制目前尚不清楚,主要是免疫系统的异常激活,导致自身免疫耐受性破坏引起的自身免疫性损伤,但其更为具体的分子机制并不十分清楚。最近的研究表明,氨基酸代谢异常在AIH发病及疾病进展中起着重要作用。本文围绕氨基酸代谢重编程在AIH中的研究进展进行综述,为氨基酸代谢作为AIH临床诊断和治疗的新靶点提供理论依据。Abstract: Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease. The pathogenesis of AIH remains unclear, but it is mainly autoimmune injury caused by the breakdown of autoimmune tolerance due to the abnormal activation of the immune system, while the specific molecular mechanism remains unknown. Recent studies have shown that abnormal amino acid metabolism plays an important role in the development and progression of AIH. This article reviews the research advances in amino acid metabolic reprogramming in AIH, in order to provide a theoretical basis for amino acid metabolism as a new target for the clinical diagnosis and treatment of AIH.
-
Key words:
- Hepatitis, Autoimmune /
- Amino Acids /
- Molecular Targeted Therapy
-
[1] ZHANG Y, ZHANG DH, CHEN L, et al. The progress of autoimmune hepatitis research and future challenges[J]. Open Med(Wars), 2023, 18( 1): 20230823. DOI: 10.1515/med-2023-0823. [2] SHIFFMAN ML. Autoimmune hepatitis: Epidemiology, subtypes, and presentation[J]. Clin Liver Dis, 2024, 28( 1): 1- 14. DOI: 10.1016/j.cld.2023.06.002. [3] YANG LM, CHU ZL, LIU M, et al. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy[J]. J Hematol Oncol, 2023, 16( 1): 59. DOI: 10.1186/s13045-023-01453-1. [4] SANO A, KAKAZU E, MOROSAWA T, et al. The profiling of plasma free amino acids and the relationship between serum albumin and plasma-branched chain amino acids in chronic liver disease: A single-center retrospective study[J]. J Gastroenterol, 2018, 53( 8): 978- 988. DOI: 10.1007/s00535-018-1435-5. [5] LYTTON SD, OSIECKI M, MAŁGORZATAWOŹNIAK, et al. Tryptophan-kynurenine profile in pediatric autoimmune hepatitis[J]. Immunol Res, 2019, 67( 1): 39- 47. DOI: 10.1007/s12026-019-9068-1. [6] YU Q, TU HH, YIN XY, et al. Targeting glutamine metabolism ameliorates autoimmune hepatitis via inhibiting T cell activation and differentiation[J]. Front Immunol, 2022, 13: 880262. DOI: 10.3389/fimmu.2022.880262. [7] LEI Y, CHEN Y, WANG SH, et al. L-lysine supplementation attenuates experimental autoimmune hepatitis in a chronic murine model[J]. Exp Anim, 2024, 73( 1): 83- 92. DOI: 10.1538/expanim.23-0053. [8] WANG KC, WU WR, JIANG XW, et al. Multi-omics analysis reveals the protection of gasdermin D in concanavalin A-induced autoimmune hepatitis[J]. Microbiol Spectr, 2022, 10( 5): e0171722. DOI: 10.1128/spectrum.01717-22. [9] FENG XJ, LI X, LIU N, et al. Glutaminolysis and CD4+ T-cell metabolism in autoimmunity: From pathogenesis to therapy prospects[J]. Front Immunol, 2022, 13: 986847. DOI: 10.3389/fimmu.2022.986847. [10] JOHNSON MO, WOLF MM, MADDEN MZ, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism[J]. Cell, 2018, 175( 7): 1780- 1795. e 19. DOI: 10.1016/j.cell.2018.10.001. [11] RAGHU G, BERK M, CAMPOCHIARO PA, et al. The multifaceted therapeutic role of N-acetylcysteine(NAC) in disorders characterized by oxidative stress[J]. Curr Neuropharmacol, 2021, 19( 8): 1202- 1224. DOI: 10.2174/1570159X19666201230144109. [12] KHALEEL A, EL-SHEAKH AR, SUDDEK GM. Celecoxib abrogates concanavalin A-induced hepatitis in mice: Possible involvement of Nrf2/HO-1, JNK signaling pathways and COX-2 expression[J]. Int Immunopharmacol, 2023, 121: 110442. DOI: 10.1016/j.intimp.2023.110442. [13] SHEHATA AM, ELBADAWY HM, IBRAHIM SRM, et al. Alpha-mangostin as a new therapeutic candidate for concanavalin A-induced autoimmune hepatitis: Impact on the SIRT1/Nrf2 and NF-κB crosstalk[J]. Plants(Basel), 2022, 11( 18): 2441. DOI: 10.3390/plants11182441. [14] ZHANG M, LI QX, ZHOU CS, et al. Demethyleneberberine attenuates concanavalin A-induced autoimmune hepatitis in mice through inhibition of NF-κB and MAPK signaling[J]. Int Immunopharmacol, 2020, 80: 106137. DOI: 10.1016/j.intimp.2019.106137. [15] HU YH, LIN CL, HUANG YW, et al. Dietary amino acid taurine ameliorates liver injury in chronic hepatitis patients[J]. Amino Acids, 2008, 35( 2): 469- 473. DOI: 10.1007/s00726-007-0565-5. [16] LUAN JY, ZHANG XY, WANG SF, et al. NOD-like receptor protein 3 inflammasome-dependent IL-1β accelerated ConA-induced hepatitis[J]. Front Immunol, 2018, 9: 758. DOI: 10.3389/fimmu.2018.00758. [17] BOSTRÖM EA, EKSTEDT M, KECHAGIAS S, et al. Resistin is associated with breach of tolerance and anti-nuclear antibodies in patients with hepatobiliary inflammation[J]. Scand J Immunol, 2011, 74( 5): 463- 470. DOI: 10.1111/j.1365-3083.2011.02592.x. [18] ZHOU QH, SHI Y, CHEN C, et al. A narrative review of the roles of indoleamine 2, 3-dioxygenase and tryptophan-2, 3-dioxygenase in liver diseases[J]. Ann Transl Med, 2021, 9( 2): 174. DOI: 10.21037/atm-20-3594. [19] ZENG T, DENG GH, ZHONG WC, et al. Corrigendum to“Indoleamine 2, 3-dioxygenase 1enhanceshepatocytes ferroptosis in acute immune hepatitis associated with excess nitrative stress”[Free Radic. Biol. Med. 2020 May 20; 152: 668-679/FRBM_2020_27][J]. Free Radic Biol Med, 2022, 179: 431. DOI: 10.1016/j.freeradbiomed.2021.08.020. [20] ISLAM MM, WALLIN R, WYNN RM, et al. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex[J]. J Biol Chem, 2007, 282( 16): 11893- 11903. DOI: 10.1074/jbc.M700198200. [21] ZHANG SH, ZENG XF, REN M, et al. Novel metabolic and physiological functions of branched chain amino acids: A review[J]. J Anim Sci Biotechnol, 2017, 8: 10. DOI: 10.1186/s40104-016-0139-z. [22] KRISHNAN B, MASSILAMANY C, BASAVALINGAPPA RH, et al. Branched chain α-ketoacid dehydrogenase kinase 111-130, a T cell epitope that induces both autoimmune myocarditis and hepatitis in A/J mice[J]. Immun Inflamm Dis, 2017, 5( 4): 421- 434. DOI: 10.1002/iid3.177. [23] AÖ GEVREKCI. The roles of polyamines in microorganisms[J]. World J Microbiol Biotechnol, 2017, 33( 11): 204. DOI: 10.1007/s11274-017-2370-y. [24] ELSHERBINY NM, RAMMADAN M, HASSAN EA, et al. Autoimmune hepatitis: Shifts in gut microbiota and metabolic pathways among Egyptian patients[J]. Microorganisms, 2020, 8( 7): 1011. DOI: 10.3390/microorganisms8071011. [25] WEI YR, LI YM, YAN L, et al. Alterations of gut microbiome in autoimmune hepatitis[J]. Gut, 2020, 69( 3): 569- 577. DOI: 10.1136/gutjnl-2018-317836. [26] ALTAMIRANO-BARRERA A, BARRANCO-FRAGOSO B, MÉNDEZ-SÁNCHEZ N. Management strategies for liver fibrosis[J]. Ann Hepatol, 2017, 16( 1): 48- 56. DOI: 10.5604/16652681.1226814. [27] KAFFE ET, RIGOPOULOU EI, KOUKOULIS GK, et al. Oxidative stress and antioxidant status in patients with autoimmune liver diseases[J]. Redox Rep, 2015, 20( 1): 33- 41. DOI: 10.1179/1351000214Y.0000000101. [28] SUN LH, OUYANG J, ZENG Z, et al. Targeted and activatable nanosystem for fluorescent and optoacoustic imaging of immune-mediated inflammatory diseases and therapy via inhibiting NF-κB/NLRP3 pathways[J]. Bioact Mater, 2021, 10: 79- 92. DOI: 10.1016/j.bioactmat.2021.08.010. [29] GADOUR E, MOHAMED T, HASSAN Z, et al. Meta-analysis and systematic review of primary renal tubular acidosis in patients with autoimmune hepatitis and alcoholic hepatitis[J]. Cureus, 2021, 13( 5): e15287. DOI: 10.7759/cureus.15287. [30] KIELBIK M, SZULC-KIELBIK I, KLINK M. The potential role of iNOS in ovarian cancer progression and chemoresistance[J]. Int J Mol Sci, 2019, 20( 7): 1751. DOI: 10.3390/ijms20071751. [31] SANZ-CAMENO P, MEDINA J, GARCÍA-BUEY L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune hepatitis[J]. J Hepatol, 2002, 37( 6): 723- 729. DOI: 10.1016/s0168-8278(02)00266-0. [32] DENG GH, LI YJ, MA SY, et al. Caveolin-1 dictates ferroptosis in the execution of acute immune-mediated hepatic damage by attenuating nitrogen stress[J]. Free Radic Biol Med, 2020, 148: 151- 161. DOI: 10.1016/j.freeradbiomed.2019.12.026. [33] MIKI H, TOKUHARA K, OISHI M, et al. Elental® amino acid component has protective effects on primary cultured hepatocytes and a rat model of acute liver injury[J]. Nutr Res, 2017, 42: 71- 84. DOI: 10.1016/j.nutres.2017.04.010. [34] SAITO Y, LI L, COYAUD E, et al. LLGL2 rescues nutrient stress by promoting leucine uptake in ER+ breast cancer[J]. Nature, 2019, 569( 7755): 275- 279. DOI: 10.1038/s41586-019-1126-2. [35] SOKOLOV AM, HOLMBERG JC, FELICIANO DM. The amino acid transporter Slc7a5 regulates the mTOR pathway and is required for granule cell development[J]. Hum Mol Genet, 2020, 29( 18): 3003- 3013. DOI: 10.1093/hmg/ddaa186. [36] XU J, JIANG CS, CAI YS, et al. Intervening upregulated SLC7A5 could mitigate inflammatory mediator by mTOR-P70S6K signal in rheumatoid arthritis synoviocytes[J]. Arthritis Res Ther, 2020, 22( 1): 200. DOI: 10.1186/s13075-020-02296-8. [37] AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe, 2018, 23( 6): 716- 724. DOI: 10.1016/j.chom.2018.05.003. [38] PANDEY SP, BENDER MJ, MCPHERSON AC, et al. Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell autoimmune hepatitis[J]. Cell Host Microbe, 2022, 30( 7): 1003- 1019. e 10. DOI: 10.1016/j.chom.2022.05.006. [39] CANNON AS, HOLLOMAN BL, WILSON K, et al. AhR activation leads to attenuation of murine autoimmune hepatitis: Single-cell RNA-seq analysis reveals unique immune cell phenotypes and gene expression changes in the liver[J]. Front Immunol, 2022, 13: 899609. DOI: 10.3389/fimmu.2022.899609. [40] VUERICH M, HARSHE R, FRANK LA, et al. Altered aryl-hydrocarbon-receptor signalling affects regulatory and effector cell immunity in autoimmune hepatitis[J]. J Hepatol, 2021, 74( 1): 48- 57. DOI: 10.1016/j.jhep.2020.06.044. [41] GAO L, ZHANG W, ZHANG LN, et al. Silencing of aryl hydrocarbon receptor repressor restrains Th17 cell immunity in autoimmune hepatitis[J]. J Autoimmun, 2024, 143: 103162. DOI: 10.1016/j.jaut.2023.103162. [42] JEYARAJ D, SCHEER FAJL, RIPPERGER JA, et al. Klf15 orchestrates circadian nitrogen homeostasis[J]. Cell Metab, 2012, 15( 3): 311- 323. DOI: 10.1016/j.cmet.2012.01.020. [43] CHEN H, LI LL, DU Y. Krüppel-like factor 15 in liver diseases: Insights into metabolic reprogramming[J]. Front Pharmacol, 2023, 14: 1115226. DOI: 10.3389/fphar.2023.1115226. [44] TU YL, CHEN DZ, PAN TT, et al. Inhibition of miR-431-5p attenuated liver apoptosis through KLF15/p53 signal pathway in S100 induced autoimmune hepatitis mice[J]. Life Sci, 2021, 280: 119698. DOI: 10.1016/j.lfs.2021.119698. -

计量
- 文章访问数: 161
- HTML全文浏览量: 84
- PDF下载量: 19
- 被引次数: 0