代谢相关脂肪性肝病的发病机制与中医病机
DOI: 10.12449/JCH241005
-
摘要: 代谢相关脂肪性肝病(MAFLD)是目前全球最常见的肝脏疾病。MAFLD不仅本身易进展为肝炎、肝纤维化和肝硬化等不良结局,还常常伴发共患病,如糖尿病、高血压、高血脂、高尿酸血症及心脑血管疾病。病因治疗是疾病治疗的基石,由于MAFLD具有复杂性和不良转归,因此,探索MAFLD的发病机制,并据此开发有效的防治方案和新药等具有重大意义。本文将从遗传因素,饮食不节和氧化应激,脾胃湿热和胰岛素抵抗,湿热邪气和有机酸代谢,肠道微生态几个方面对MAFLD的发病机制进行综述。Abstract: Metabolic associated fatty liver disease (MAFLD) is currently the most common liver disease around the world. MAFLD may easily progress to the adverse outcomes such as hepatitis, liver fibrosis, and liver cirrhosis, and it is often accompanied by comorbidities such as diabetes, hypertension, hyperlipidemia, hyperuricemia, and cardiovascular and cerebrovascular diseases. Etiological treatment is the cornerstone of MAFLD treatment, and due to the complexity and adverse outcome of MAFLD, it is of great significance to explore the pathogenesis of MAFLD and develop effective prevention and treatment regimens and drugs. This article reviews the pathogenesis of MAFLD from the aspects of genetic factors, improper diet and oxidative stress, spleen-stomach damp-heat and insulin resistance, damp-heat and pathogenic Qi, organic acid metabolism, and intestinal microecology.
-
代谢相关脂肪性肝病(metabolic associated fatty liver disease, MAFLD)是指与全身代谢功能障碍相关的肝脂肪变性疾病,其病程从轻度脂肪变性到脂肪性肝炎、肝纤维化和肝硬化[1-2]。据统计[3],MAFLD患者中约25%进展为脂肪性肝炎,增加终末期肝病风险。MAFLD的诊断标准包括肝脂肪变性及以下3项之一:超重或肥胖,2型糖尿病(T2DM),或代谢失调的证据[2]。现有治疗策略是基于MAFLD发病机制的不同关键点,然而MAFLD的发病机制相当复杂,涉及较多因素,如氧化应激、炎症、脂肪毒性、线粒体功能障碍以及肠道微生态的影响等[4]。因此,MAFLD的理想防治方案仍十分缺乏,阐明MAFLD的发病机制对未来的研究具有重要意义。
1. 遗传基因
遗传因素在MAFLD的发生发展中起着至关重要的作用,在中医理论中被认为归属禀赋不足,脾胃先天运化无力,食少则生湿热,于是易成MAFLD。影响MAFLD的大部分遗传变异是由脂滴形成生物学相关基因驱动的,包括patatin样磷脂酶结构域3(PNPLA3)、跨膜6超家族成员2(TM6SF2)、17b-羟基类固醇脱氢酶13型(HSD17B13)、膜结合o-酰基转移酶结构域7和葡萄糖激酶调节因子[5-12]。PNPLA3能够编码脂滴蛋白,参与脂肪分解过程。在分子水平上,PNPLA3基因的表达受SREBP-1c(胰岛素诱导)和ChREBP(葡萄糖诱导)的直接转录控制。PNPLA3基因的单核苷酸多态性(SNP,I148M突变体)被认为与MAFLD进展为MASH密切相关[5]。PNPLA3 I148M突变体耐降解,并在脂滴上积聚,影响了甘油三酯的降解过程,增加了从肝脏单纯脂肪变性到肝硬化甚至肝细胞癌所有阶段的风险[6-7]。TM6SF2的E167K变异体导致该基因表达减少,使脂质通过低密度脂蛋白输出的功能减弱,因此引起肝脂肪积累增加[8]。HSD17B13是一种主要表达于肝脏的脂滴相关视黄醇脱氢酶蛋白[9],是胰岛素调节的SREBP-1c靶基因。研究[10]发现其在MAFLD患者的肝脏中表达上调。HSD17B13的功能缺失变异与降低MAFLD发病风险以及降低单纯性脂肪变性发展为脂肪性肝炎的风险有关[11-12]。对应遗传学可理解为脂肪代谢相关基因的突变与遗传影响了肝脏的脂肪积累过程,进一步提高了MAFLD发病风险。但仅有15%的患者属于遗传易感性,大部分仍为后天所致。
2. 致炎饮食和氧化应激
饮食不节是MAFLD发病的最主要因素,主要包括过食煎炸烧烤、高蛋白高脂肪的食物。中医认为此类食物属于“辛辣炙煿、醇甘厚味”,会使脾胃中焦运化失常,浊邪内生,变生痰湿、湿热、瘀血等,停聚中焦,此时患者的证候表现为湿热内蕴,常出现脘腹胀满、嗳气、大便黏腻不畅、舌苔厚腻等症状。湿热之邪会导致氧化应激过程被激活,使人体处于慢性炎症状态,损伤肝细胞,最后发展为MAFLD。高蛋白的食物往往在代谢后会生成氮合物与硫化物,辛辣刺激的食物会通过辣椒素受体诱发炎症反应,高温加工的过程可导致水分子断裂形成自由基,同时可能产生杂环类物质,以上饮食为导致MAFLD提供了物质基础。此外,饮食不节所导致的湿热内蕴常与肥胖息息相关,湿性黏腻重浊,反映在人体外部可为中央型肥胖,反映在内部则对应MAFLD“三次打击”学说:第一次打击为肝细胞脂质沉积;第二次打击为代谢过程中的氧化应激;第三次打击为慢性全身性代谢性炎症,最终可发展为胰岛素抵抗(IR)。
活性氧(ROS)可与蛋白质、脂质、DNA相互作用并改变其结构和功能[13]。在脂肪性肝炎中,氧化应激是由于ROS产生过多和抗氧化防御的破坏[14-15]。导致人体出现氧化应激损伤的重要原因之一是不健康的饮食习惯,食物的高温加工过程可产生大量ROS,过量ROS进入人体会造成生物大分子的氧化损伤,从而诱发机体慢性炎症[16]。有研究[17]显示,连续6周每天摄入1.5 mL 160~190 ℃反复加热的食用油会破坏大鼠体内甘油磷脂的代谢并改变肠道组织学和微生物群落的结构。本团队研究[18]显示,高温干炒黄豆饲料饲喂大鼠可使其发生非肥胖型MAFLD。研究中,给予大鼠高温干炒黄豆饲料8周后,与正常对照组和未炒黄豆组相比,炒黄豆组大鼠体质量和Lee’s指数无显著变化。但肝脏病理学评分显示,炒黄豆组大鼠肝脏在第8周时表现为单纯性脂肪肝,第8、12周时表现为脂肪性肝炎和轻中度纤维化,较高脂模型更快诱发过氧化损伤、代谢性炎症和肝纤维化。代谢组学分析显示,炒黄豆饮食组大鼠肝脏中白三烯E4的脂氧化物13E-Tetranor-16-carboxy-LTE4水平显著升高,并与肝纤维化评分呈显著正相关[18]。白三烯是一类具有高度生物活性的炎性介质,对中性粒细胞等炎细胞具有趋化作用,LTC4、LTD4及LTE4是变态反应中主要参与的炎症介质[19]。该研究同时发现干炒黄豆MAFLD模型肝组织氧化应激产物、次级胆汁酸、炎症因子等水平升高,谷胱甘肽衍生物和3-磷酸甘油等代谢物水平降低;与甘油磷脂代谢和牛磺胆酸代谢等代谢通路异常密切相关,同时干炒黄豆MAFLD模型大鼠的血清TNF-α、IL-6和糖基化终末产物水平显著升高,这些可能是肝细胞代谢异常的基础。该研究阐明了LTE4、5-LO与IKKβ/NF-κB通路在非肥胖MAFLD发病机制中发挥重要作用,为非肥胖MAFLD的病因和发病机制提供了新的实验证据[18]。
中医认为,湿热邪气会损伤脾胃正气,影响水谷精微在人体中的化生、转运、输布,致清气不升,浊气不降,在细胞层面则表现为线粒体氧化应激损伤。线粒体是细胞能量的生成场所,也是ROS的主要来源,过多的ROS直接导致线粒体肿胀,抑制电子传递链酶,最终导致线粒体损伤。在生理情况下,受损的线粒体通过线粒体自噬被清除。有研究[20]表明,线粒体自噬机制受损会触发NLRP3炎性小体激活,进而导致代谢相关脂肪性肝炎的进展。甲基化控制J蛋白(MCJ)被认为是呼吸链复合体Ⅰ的内源性负调节因子,可抑制线粒体呼吸,其在MAFLD患者肝脏中可见水平升高。降低MCJ表达可增强游离脂肪酸的β氧化,减少脂质积累,从而减少肝细胞损伤和纤维化[21]。
3. 脾胃湿热和IR
既往研究认为肥胖和T2DM是MAFLD发病的重要机制。久坐久卧,缺乏运动,气血流通不畅,脾虚失运,不能充分利用饮食化生人体精微,反化为水湿痰饮,痰湿之邪停聚中焦,使膏脂停聚于腹部,腹部肥满,则内脏温度向外传达受阻,腹部皮肤温度降低,为肥满的病理基础,进展为MAFLD。湿邪停滞日久,郁而化热,出现湿热内蕴,痰湿、湿热耗伤气阴,则发为消渴病,即T2DM。
IR被认为是肝脂肪变性和代谢综合征发生和发展的危险因素[22]。IR和代偿性高胰岛素血症进展为脂质代谢缺陷和肝脏甘油三酯积累是MAFLD的核心发病机制[23]。长期劳逸过度可诱发自主神经功能失衡,导致循环巨噬细胞增加,血管壁炎症、氧化应激和趋化因子增加,并引发人体糖耐量降低[24],加重胰岛素抵抗,大幅提高MAFLD发生风险。
4. 湿热邪气与有机酸代谢
水谷精微在人体中的化生、转运、输布全依赖于脾胃功能的正常运行,饮食不节、劳逸失度易伤脾胃运化,产生痰饮、湿热、瘀血等病理性代谢产物,其中MAFLD发病又以湿热之邪最为多见,即代谢过程中产生的有机酸类物质。
血清尿酸(serum uric acid, sUA)也可视为人体湿热证的有害代谢产物。在我国非肥胖成年人群中,sUA水平升高与MAFLD呈显著正相关,是MAFLD的独立危险因素[25]。sUA可以作为非肥胖性MAFLD严重程度的线索。一项纳入28 187例受试者的研究[26]发现,在不患T2DM的非肥胖患者中,高尿酸血症(hyperuricemia,HUA)和MAFLD的相关性尤为显著。HUA对MAFLD发生发展所产生的影响受到了更多关注。一项针对日本人群的回顾性队列研究[27]显示,除了基线sUA水平外,较高的sUA变化轨迹与脂肪肝风险呈独立正相关。Zhou等[28]对9项观察性研究进行的荟萃分析也显示,高sUA水平患者发生脂肪肝的风险是低sUA水平患者的1.92倍。sUA与MAFLD之间的关联可能是由于sUA可以与氧化剂相互作用,诱导自由基和氧化应激的产生,而自由基和氧化应激是诱发MAFLD的关键因素[29]。因此,sUA作为一种促氧化剂,可能对脂肪肝有直接影响。Liu等[30]研究表明,UA可与某些特殊的自由基发生反应,产生更强的自由基,引起严重的内质网应激和线粒体氧化应激,干扰三羧酸循环,导致脂肪合成增加,脂肪酸氧化受损,发生肝脂肪变性。sUA也可通过刺激促炎介质的产生来加速慢性炎症过程。
sUA升高可能通过降低内皮一氧化氮的生物利用度,下调胰岛素增敏剂的产生,激活NLRP3炎性小体导致IR[31]。UA和IR的相关性在非肥胖MAFLD患者中仍然很显著,如Choe等[32]认为,高水平的sUA会导致肌肉减少症。肌少症患者MAFLD的患病率明显高于非肌少症患者。IR是肌肉减少症和MAFLD的常见病理生理机制,因为肝脏和肌肉都是胰岛素的靶器官[33]。肌肉量的减少导致葡萄糖不耐受,并通过减少胰岛素的主要细胞靶点的数量来促进糖异生。当IR发生在肌细胞时,由于蛋白质合成的减少和分解代谢的增加,肌肉质量被消耗[34]。最后,IR和肌肉减少症成为非肥胖MAFLD的恶性循环。另外,蛋白质的代谢影响着血清氨基酸水平。本团队研究发现,与健康对照者相比,MAFLD患者的血清支链氨基酸(亮氨酸、异亮氨酸和缬氨酸)、谷氨酸和酪氨酸等氨基酸水平显著升高。大量临床数据[35-36]显示,血清支链氨基酸的水平升高与外周IR的发生风险呈正相关。如支链氨基酸增加使得相应的分解代谢途径活跃,影响糖脂代谢途径,进而造成胰腺β细胞的线粒体损伤[37]。Masarone等[38]研究表明,支链氨基酸在肝脏和骨骼肌中分解代谢时会产生酰基肉碱C3和C5,而这些代谢产物的增加与IR的发生呈正相关。
短链脂肪酸(short chain fatty acids,SCFA)是一组由丁酸盐、醋酸盐和丙酸盐组成的脂肪酸,通过微生物发酵在结肠中产生,通常是不易消化的复合碳水化合物(膳食纤维)[39]。SCFA参与脂肪酸合成和糖异生[40]。SCFA激活G蛋白偶联受体43(G protein-coupled receptor 43,GPR43)可减少炎症产生和T淋巴细胞浸润,而SCFA水平较低的GPR43-/-小鼠或无菌小鼠在循环免疫细胞水平和结肠中均表现出炎症增加,这是脂肪性肝炎中常见的特征[41]。SCFA可能通过抑制组蛋白去乙酰化酶的表观遗传在MAFLD中发挥有益作用。在大鼠实验[42]中显示,组蛋白去乙酰化酶抑制会降低与MAFLD相关的肝脏基因的表达,主要是脂肪生成基因,如编码乙酰辅酶a羧化酶和脂肪酸合成酶的基因。本团队[43-44]曾对MAFLD患者的血清胆汁酸代谢组学进行分析,发现与健康对照者相比,MAFLD患者的血清去甲胆酸浓度显著升高,23-脱甲脱氧胆酸等10种胆汁酸浓度显著降低,且与肝损伤程度相关,提示MAFLD患者存在胆汁酸代谢紊乱,后者也有可能参与该病的发生发展。
5. 肠道微生态相关发病机制
中医认为肝主疏泄、主情志,情志失调则肝失疏泄于是影响脾胃,但西医一般将情绪变化与大脑相关联,研究表明“脑-肠轴”参与压力、抑郁等情绪的调控,而压力和情绪低落是强迫性暴饮暴食的主要诱因[45],同时肠道微生物群可影响对压力的易感性和可复性,参与心理疾病的发生与发展[46],进一步强调情志变化与代谢密不可分。而肠道微生物群通过“肠-肝轴”在肝脏执行其生理功能的过程中同样起到了关键作用。
肠道微生物群囊括多种菌群,其中大量与脂肪代谢相关,若出现菌群失调则可能导致致炎物质的出现,积累过多后引发MAFLD。肠-肝轴具有相互串扰的生理病理基础,其稳态主要依赖肝肠间的免疫交流和胆汁酸-肠道微生物轴的稳定,其内涵在于维持肠道微生态平衡、肠道黏膜屏障功能的完整以及肝脏生理功能的正常发挥[47]。肠道微生物产生乙醇也可能在MAFLD的生理病理中发挥作用。在儿童中,与肥胖儿童或健康儿童相比,患有MAFLD的儿童肠道微生物群显示出乙醇产生细菌的丰度增加[48]。在不摄入乙醇的情况下,患有MAFLD的成年人呼气中乙醇浓度升高,这可能是由于与健康对照组相比,其更多的相关肠道微生物群衍生乙醇[49]。一项动物实验和临床验证[50]表明,一些细菌(即肺炎克雷伯菌)能够在没有任何酒精消耗的情况下从葡萄糖代谢产生乙醇。这些结果表明,肠道微生物群产生的乙醇可能作为一种肝脏毒素,促进了MAFLD进展。有研究[51-52]认为,氧化三甲胺(trimethylamino oxide,TMAO)的增加可能介导了与MAFLD相关的胆汁酸降低。TMAO通过抑制两种关键酶参与胆汁酸代谢的CYP7A1和CYP27A1诱导总胆汁酸池的减少。与之一致的是,晚期肝硬化患者表现出胆汁酸转化减少,同时其微生物群组成发生改变,包括肠杆菌科的丰度增加,毛杆菌科、瘤胃球菌科和经黏液真杆菌属的丰度降低。肠道微生物群的胆汁酸生物转化(降解、脱氢和去羟基化)与MAFLD的进展有关[53]。肠道微生物群的生长与平衡虽可以通过服用益生菌得到短期的改善,长期仍需要人体自身状态的稳定,此时可与中医相结合,通过调畅情志改善肠道微生物群,进一步改善肝功能。另外,胆碱缺乏饮食的小鼠被认为是MAFLD的代表性模型,减少饮食胆碱会导致肝脂肪增加和肠道细菌改变[54]。胆碱是一种必需的营养物质,也是磷脂酰胆碱的组成成分,磷脂酰胆碱是食物中发现的乙酰胆碱(一种神经递质)的前体。饮食中的胆碱被肠道菌群代谢成三甲胺,后者在肝脏中被代谢并产生TMAO[55]。TMAO循环水平升高与胆碱和磷脂酰胆碱的消耗增加相关[56]。有研究[43]指出,与健康个体相比时,MAFLD患者的TMAO水平与疾病严重程度的增加独立相关。
6. 小结
MAFLD发病机制的阐明对于疾病的预防和治疗至关重要。而病因治疗是疾病诊治的基石。本文从现代医学与中医角度归纳了近年来MAFLD的发病机制研究进展,强调了生活饮食方式对MAFLD的影响及其可能的相关机制。未来有望基于以上机制,制定有效的MAFLD防治方案,合理开发治疗药物,有助于缓解该病的全球公共卫生和经济压力。
-
[1] YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15( 1): 11- 20. DOI: 10.1038/nrgastro.2017.109. [2] ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158( 7): 1999- 2014. e 1. DOI: 10.1053/j.gastro.2019.11.312. [3] DULAI PS, SINGH S, PATEL J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis[J]. Hepatology, 2017, 65( 5): 1557- 1565. DOI: 10.1002/hep.29085. [4] KUCHAY MS, CHOUDHARY NS, MISHRA SK. Pathophysiological mechanisms underlying MAFLD[J]. Diabetes Metab Syndr, 2020, 14( 6): 1875- 1887. DOI: 10.1016/j.dsx.2020.09.026. [5] ROMEO S, KOZLITINA J, XING C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet, 2008, 40( 12): 1461- 1465. DOI: 10.1038/ng.257. [6] SOOKOIAN S, PIROLA CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene(PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease[J]. Hepatology, 2011, 53( 6): 1883- 1894. DOI: 10.1002/hep.24283. [7] VALENTI L, AL-SERRI A, DALY AK, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2010, 51( 4): 1209- 1217. DOI: 10.1002/hep.23622. [8] LUUKKONEN PK, ZHOU Y, NIDHINA HARIDAS PA, et al. Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD[J]. J Hepatol, 2017, 67( 1): 128- 136. DOI: 10.1016/j.jhep.2017.02.014. [9] PIROLA CJ, GARAYCOECHEA M, FLICHMAN D, et al. Splice variant rs72613567 prevents worst histologic outcomes in patients with nonalcoholic fatty liver disease[J]. J Lipid Res, 2019, 60( 1): 176- 185. DOI: 10.1194/jlr.P089953. [10] SU W, PENG J, LI S, et al. Liver X receptor α induces 17β-hydroxysteroid dehydrogenase-13 expression through SREBP-1c[J]. Am J Physiol Endocrinol Metab, 2017, 312( 4): E357- E367. DOI: 10.1152/ajpendo.00310.2016. [11] ABUL-HUSN NS, CHENG XP, LI AH, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease[J]. N Engl J Med, 2018, 378( 12): 1096- 1106. DOI: 10.1056/NEJMoa1712191. [12] LUUKKONEN PK, TUKIAINEN T, JUUTI A, et al. Hydroxysteroid 17-β dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease[J]. JCI Insight, 2020, 5( 5): e132158. DOI: 10.1172/jci.insight.132158. [13] ROBERTSON G, LECLERCQ I, FARRELL GC. Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress[J]. Am J Physiol Gastrointest Liver Physiol, 2001, 281( 5): G1135- G1139. DOI: 10.1152/ajpgi.2001.281.5.G1135. [14] ROLO AP, TEODORO JS, PALMEIRA CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis[J]. Free Radic Biol Med, 2012, 52( 1): 59- 69. DOI: 10.1016/j.freeradbiomed.2011.10.003. [15] YESILOVA Z, YAMAN H, OKTENLI C, et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic Fatty liver disease[J]. Am J Gastroenterol, 2005, 100( 4): 850- 855. DOI: 10.1111/j.1572-0241.2005.41500.x. [16] PARADIES G, PARADIES V, RUGGIERO FM, et al. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20( 39): 14205- 14218. DOI: 10.3748/wjg.v20.i39.14205. [17] ZHOU ZK, WANG YY, JIANG YM, et al. Deep-fried oil consumption in rats impairs glycerolipid metabolism, gut histology and microbiota structure[J]. Lipds Health Dis, 2016, 15( 1): 86. DOI: 10.1186/s12944-016-0252-1. [18] XUE LJ, HAN JQ, ZHOU YC, et al. Untargeted metabolomics characteristics of nonobese nonalcoholic fatty liver disease induced by high-temperature-processed feed in Sprague-Dawley rats[J]. World J Gastroenterol, 2020, 26( 46): 7299- 7311. DOI: 10.3748/wjg.v26.i46.7299. [19] RINALDO-MATTHIS A, HAEGGSTRÖM JZ. Structures and mechanisms of enzymes in the leukotriene cascade[J]. Biochimie, 2010, 92( 6): 676- 681. DOI: 10.1016/j.biochi.2010.01.010. [20] ZHANG NP, LIU XJ, XIE L, et al. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis[J]. Lab Invest, 2019, 99( 6): 749- 763. DOI: 10.1038/s41374-018-0177-6. [21] BARBIER-TORRES L, FORTNER KA, IRUZUBIETA P, et al. Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease(NAFLD) by increasing mitochondrial fatty acid oxidation[J]. Nat Commun, 2020, 11( 1): 3360. DOI: 10.1038/s41467-020-16991-2. [22] LI CG, HSIEH MC, CHANG SJ. Metabolic syndrome, diabetes, and hyperuricemia[J]. Curr Opin Rheumatol, 2013, 25( 2): 210- 216. DOI: 10.1097/BOR.0b013e32835d951e. [23] FORLANI G, GIORDA C, MANTI R, et al. The burden of NAFLD and its characteristics in a nationwide population with type 2 diabetes[J]. J Diabetes Res, 2016, 2016: 2931985. DOI: 10.1155/2016/2931985. [24] SHEN Q, TAN X, WANG WZ. Autonomic nervous dysfunction caused by circadian disruption: research progress[J]. Acad J Naval Med Uni, 2024, 45( 3): 328- 332. DOI: 10.16781/j.CN31-2187/R.20230605.沈琦, 谭兴, 王伟忠. 昼夜节律紊乱导致自主神经功能失衡的研究进展[J]. 海军军医大学学报, 2024, 45( 3): 328- 332. DOI: 10.16781/j.CN31-2187/R.20230605. [25] ZHENG XY, GONG LL, LUO R, et al. Serum uric acid and non-alcoholic fatty liver disease in non-obesity Chinese adults[J]. Lipds Health Dis, 2017, 16( 1): 202. DOI: 10.1186/s12944-017-0531-5. [26] LIU J, WANG C, WANG YT, et al. Hyperuricemia as an independent risk factor for metabolic dysfunction-associated fatty liver disease in nonobese patients without type 2 diabetes mellitus[J]. Am J Physiol Endocrinol Metab, 2023, 325( 1): E62- E71. DOI: 10.1152/ajpendo.00001.2023. [27] JENSEN T, NIWA K, HISATOME I, et al. Increased serum uric acid over five years is a risk factor for developing fatty liver[J]. Sci Rep, 2018, 8( 1): 11735. DOI: 10.1038/s41598-018-30267-2. [28] ZHOU YJ, WEI FF, FAN Y. High serum uric acid and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Clin Biochem, 2016, 49( 7-8): 636- 642. DOI: 10.1016/j.clinbiochem.2015.12.010. [29] SPAHIS S, DELVIN E, BORYS JM, et al. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis[J]. Antioxid Redox Signal, 2017, 26( 10): 519- 541. DOI: 10.1089/ars.2016.6776. [30] LIU N, XU H, SUN QQ, et al. The role of oxidative stress in hyperuricemia and xanthine oxidoreductase(XOR) inhibitors[J]. Oxid Med Cell Longev, 2021, 2021: 1470380. DOI: 10.1155/2021/1470380. [31] VANDANMAGSAR B, YOUM YH, RAVUSSIN A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance[J]. Nat Med, 2011, 17( 2): 179- 188. DOI: 10.1038/nm.2279. [32] CHOE EK, KANG HY, PARK B, et al. The association between nonalcoholic fatty liver disease and CT-measured skeletal muscle mass[J]. J Clin Med, 2018, 7( 10): 310. DOI: 10.3390/jcm7100310. [33] UTZSCHNEIDER KM, KAHN SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab, 2006, 91( 12): 4753- 4761. DOI: 10.1210/jc.2006-0587. [34] ZHAI Y, XIAO Q. The common mechanisms of sarcopenia and NAFLD[J]. Biomed Res Int, 2017, 2017: 6297651. DOI: 10.1155/2017/6297651. [35] NEWGARD CB, AN J, BAIN JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance[J]. Cell Metab, 2009, 9( 4): 311- 326. DOI: 10.1016/j.cmet.2009.02.002. [36] WANG TJ, LARSON MG, VASAN RS, et al. Metabolite profiles and the risk of developing diabetes[J]. Nat Med, 2011, 17( 4): 448- 453. DOI: 10.1038/nm.2307. [37] GOFFREDO M, SANTORO N, TRICÒ D, et al. A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease[J]. Nutrients, 2017, 9( 7): 642. DOI: 10.3390/nu9070642. [38] MASARONE M, TROISI J, AGLITTI A, et al. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis[J]. Metabolomics, 2021, 17( 2): 12. DOI: 10.1007/s11306-020-01756-1. [39] KOLODZIEJCZYK AA, ZHENG DP, SHIBOLET O, et al. The role of the microbiome in NAFLD and NASH[J]. EMBO Mol Med, 2019, 11( 2): e9302. DOI: 10.15252/emmm.201809302. [40] DEN BESTEN G, LANGE K, HAVINGA R, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305( 12): G900- G910. DOI: 10.1152/ajpgi.00265.2013. [41] SUN MM, WU W, LIU ZJ, et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. J Gastroenterol, 2017, 52( 1): 1- 8. DOI: 10.1007/s00535-016-1242-9. [42] KIM M, LEE HA, CHO HM, et al. Histone deacetylase inhibition attenuates hepatic steatosis in rats with experimental Cushing’s syndrome[J]. Korean J Physiol Pharmacol, 2018, 22( 1): 23- 33. DOI: 10.4196/kjpp.2018.22.1.23. [43] CHEN YM, LIU Y, ZHOU RF, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults[J]. Sci Rep, 2016, 6: 19076. DOI: 10.1038/srep19076. [44] KOETH RA, WANG ZN, LEVISON BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19( 5): 576- 585. DOI: 10.1038/nm.3145. [45] ZHANG H, SUN H, LIAO H. Mechanism of inducing microglial inflammatory response in patients with depression[J]. Basic Clin Med, 2024, 44( 7): 1029- 1033. DOI: 10.16352/j.issn.1001-6325.2024.07.1029.张昊, 孙浩, 廖红. 诱导抑郁症患者小胶质细胞炎性反应的机制[J]. 基础医学与临床, 2024, 44( 7): 1029- 1033. DOI: 10.16352/j.issn.1001-6325.2024.07.1029. [46] WEI Y, CHANG LJ, HASHIMOTO K. Molecular mechanisms underlying the antidepressant actions of arketamine: Beyond the NMDA receptor[J]. Mol Psychiatry, 2022, 27: 559- 573. DOI: 10.1038/s41380-021-01121-1. [47] TILG H, ADOLPH TE, TRAUNER M. Gut-liver axis: Pathophysiological concepts and clinical implications[J]. Cell Metab, 2022, 34( 11): 1700- 1718. DOI: 10.1016/j.cmet.2022.09.017. [48] ZHU LX, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis(NASH) patients: A connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57( 2): 601- 609. DOI: 10.1002/hep.26093. [49] VOLYNETS V, KÜPER MA, STRAHL S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease(NAFLD)[J]. Dig Dis Sci, 2012, 57( 7): 1932- 1941. DOI: 10.1007/s10620-012-2112-9. [50] YUAN J, CHEN C, CUI JH, et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae[J]. Cell Metab, 2019, 30( 4): 675- 688. e 7. DOI: 10.1016/j.cmet.2019.08.018. [51] KAKIYAMA G, PANDAK WM, GILLEVET PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58( 5): 949- 955. DOI: 10.1016/j.jhep.2013.01.003. [52] CHÁVEZ-TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152( 7): 1679- 1694. e 3. DOI: 10.1053/j.gastro.2017.01.055. [53] RIDLON JM, KANG DJ, HYLEMON PB, et al. Bile acids and the gut microbiome[J]. Curr Opin Gastroenterol, 2014, 30( 3): 332- 338. DOI: 10.1097/MOG.0000000000000057. [54] SPENCER MD, HAMP TJ, REID RW, et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency[J]. Gastroenterology, 2011, 140( 3): 976- 986. DOI: 10.1053/j.gastro.2010.11.049. [55] ARON-WISNEWSKY J, CLÉMENT K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders[J]. Nat Rev Nephrol, 2016, 12( 3): 169- 181. DOI: 10.1038/nrneph.2015.191. [56] TANG WH, WANG ZN, LEVISON BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J]. N Engl J Med, 2013, 368( 17): 1575- 1584. DOI: 10.1056/NEJMoa1109400. -