中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ACAT1和MTNR1B基因多态性与非酒精性脂肪性肝病易感性的关系

马磊 胡欣欣 赵波 万强 周林 赵真真 辛永宁

马磊, 胡欣欣, 赵波, 等 . ACAT1 和 MTNR1B 基因多态性与非酒精性脂肪性肝病易感性的关系[J]. 临床肝胆病杂志, 2024, 40(4): 700-705. DOI: 10.12449/JCH240410.
引用本文: 马磊, 胡欣欣, 赵波, 等 . ACAT1 和 MTNR1B 基因多态性与非酒精性脂肪性肝病易感性的关系[J]. 临床肝胆病杂志, 2024, 40(4): 700-705. DOI: 10.12449/JCH240410.
MA L, HU XX, ZHAO B, et al. Association of polymorphisms of the acetyl-coA acetyltransferase 1 gene and the melatonin receptor 1B gene with the susceptibility to nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2024, 40(4): 700-705. DOI: 10.12449/JCH240410.
Citation: MA L, HU XX, ZHAO B, et al. Association of polymorphisms of the acetyl-coA acetyltransferase 1 gene and the melatonin receptor 1B gene with the susceptibility to nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2024, 40(4): 700-705. DOI: 10.12449/JCH240410.

ACAT1和MTNR1B基因多态性与非酒精性脂肪性肝病易感性的关系

DOI: 10.12449/JCH240410
基金项目: 

国家自然科学基金 (32171277)

伦理学声明:本研究遵守国家所有相关法规、机构政策和赫尔辛基宣言,并于2017年10月11日经由青岛市市立医院伦理委员会审批,批号:2017临审字第20号(快)。所纳入患者均签署知情同意书。
利益冲突声明:本研究不存在任何利益冲突。
作者贡献声明:马磊、胡欣欣、辛永宁等负责课题设计,资料分析,撰写论文;赵波、万强、周林、赵真真等参与收集数据,修改论文;马磊负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    辛永宁, xinyongning@163.com (ORCID: 0000-0002-3692-7655)

Association of polymorphisms of the acetyl-coA acetyltransferase 1 gene and the melatonin receptor 1B gene with the susceptibility to nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (32171277)

More Information
  • 摘要:   目的  本研究拟探讨乙酰辅酶A乙酰转移酶1(ACAT1)和褪黑激素受体1B(MTNR1B)基因多态性与非酒精性脂肪性肝病(NAFLD)疾病易感性的关系。  方法  本研究共纳入2020年12月—2022年6月就诊于青岛市市立医院的健康体检者164例、NAFLD患者228例。采用PCR及测序的方法对ACAT1 rs1044925、rs1157651和MTNR1B rs10830963基因多态性进行基因分型,并采集空腹静脉血进行生化检测。符合正态分布的计量资料两组间比较采用成组t检验;非正态分布的计量资料两组间比较采用Mann-Whitney U非参数检验;计数资料两组间比较采用χ2检验。  结果  ACAT1 rs1044925、rs1157651和MTNR1B rs10830963基因型分布在NAFLD及健康对照组间无统计学差异(P值均>0.05),ACAT1 rs1044925 AA基因型携带者的LDL水平明显高于C等位基因携带者(Z=-2.08,P=0.04),MTNR1B rs10830963 G等位基因携带者空腹血糖水平明显高于CC基因型携带者(Z=-3.01,P<0.01)。  结论  ACAT1 rs1044925、rs1157651和MTNR1B rs10830963多态性与NAFLD易感性无明显相关,ACAT1 rs1044925和MTNR1B rs10830963位点分别与LDL和空腹血糖水平有关。

     

  • 肝脏是维持人体内脂质和糖代谢稳态的重要器官,肝代谢异常可诱导非酒精性脂肪性肝病(NAFLD)的发生,并可能进展为非酒精性脂肪性肝炎、肝硬化和肝癌1-3。肝脏脂质积累一方面增加活性氧的产生,从而导致肝组织损伤和炎症4-5,另一方面NAFLD中游离脂肪酸的增加可能引发肝脏胰岛素抵抗6-7。NAFLD不仅仅局限于肝脏病变,更是一种与机体整体代谢密切相关的疾病,且与遗传因素密切相关8-9

    乙酰辅酶A乙酰转移酶(acetyl-CoA acetyltransferase,ACAT)基因与脂质代谢密切相关,其编码两种同工酶,即ACAT1和ACAT2,其通过将游离胆固醇转化为胆固醇酯在胆固醇稳态中发挥重要作用10。多项研究表明,ACAT1基因多态性可调节血清脂质浓度,与高血脂11、冠脉粥样硬化12、肥胖13等代谢相关疾病密切相关。而目前尚无ACAT1基因多态性与NAFLD的相关性研究。褪黑激素受体1B(melatonin receptor 1B,MTNR1B)基因编码褪黑激素受体,褪黑激素是一种控制生物节律的激素。褪黑激素分泌或生物钟基因表达的破坏可能促进炎症或癌症的发展,因此可能与多种疾病(如阿尔茨海默病、肝病)有关14-15。遗传学研究16-18表明,MTNR1B基因的变异是影响2型糖尿病(T2DM)病理生理的因素之一,其中单核苷酸多态性rs10830963表现出最强的相关性。鉴于NAFLD与T2DM具有相同的代谢危险因素(遗传因素、胰岛素抵抗、血脂异常、肥胖和生活方式等)19。因此rs10830963与NAFLD的相关性需在人群内进行研究。

    本文拟在山东青岛地区汉族人群中探讨NAFLD易感性与ACAT1 rs1044925、rs1157651和MTNR1B rs10830963的相关性,旨在丰富NAFLD遗传易感性因素,为NAFLD的个体化预防和治疗奠定理论基础。

    选取2020年12月—2022年6月就诊于青岛市市立医院的NAFLD患者,根据《非酒精性脂肪性肝病防治指南(2018年更新)》20,采用超声诊断的方法,纳入NAFLD(228例)患者,同时排除糖尿病,乙型、丙型肝炎等,自身免疫性肝病,药物性肝病等其他可能导致脂肪肝的疾病,并除外每周饮酒量>140 g者。本研究纳入的NAFLD患者均未被诊断为糖尿病。由体检中心随机收集健康体检人群作为对照组。两组均为长期生活于青岛地区的汉族人群,无血缘关系。

    通过问卷调查收集参与者信息,如年龄、性别、病史等。测量身高、体质量计算体质量指数(BMI)。所有受试者,抽取空腹静脉血4 mL,用于核酸提取和检测血液相关指标(青岛市市立医院检验科)。

    采用全血DNA提取试剂盒(博淼生物科技有限公司,北京)提取基因组DNA。采用PCR结合测序的方法对3个多态性位点进行检测(rs1044925、rs1157651、rs10830963)。流程参见参考文献[21],引物见表1

    表  1  FTO基因引物序列
    Table  1.  Primer sequence of FTO gene
    位点 引物 引物序列(5′-3′)
    rs1044925 primer 1 ACGTTGGATGTGAGCAAATGCAGAAGCCAG
    primer 2 ACGTTGGATGTATTTTGCAGACTAGTGAG
    rs9992651 primer 1 ACGTTGGATGCTCGCAAGAAATAATTCGGG
    primer 2 ACGTTGGATGGAGTAGCTGTTCTCTACTCC
    rs10830963 primer 1 ACGTTGGATGTCCCAGGCAGTTACTGGTTC
    primer 2 ACGTTGGATGTGTCTATGCTGGCAAAGCTG
    下载: 导出CSV 
    | 显示表格

    统计学分析均采用SPSS 25.0软件进行。符合正态分布的计量资料采用x¯±s描述,两组间比较采用成组t检验;非正态分布的计量资料采用MP25P75)描述,两组间比较采用Mann-Whitney U非参数检验;计数资料两组间比较采用χ2检验。P<0.05为差异有统计学意义。

    共纳入志愿者392例,其中NAFLD患者228例,健康对照164例,对两组基本信息进行比较,两组间年龄、BMI、ALT、AST、GGT、ALP、FPG、TG及HDL差异均具有统计学意义(P值均<0.05)(表2)。

    表  2  两组一般临床资料及相关指标比较
    Table  2.  Comparison of general clinical data and related indicators between NAFLD and control group
    指标 NAFLD组(n=228) 对照组(n=164) 统计值 P
    男/女(例) 120/108 90/74 χ2=0.66 0.68
    年龄(岁) 52(41~63) 39(30~52) Z=-6.50 <0.01
    BMI(kg/m2 27.57±4.67 24.75±3.89 t=-5.25 <0.01
    TBil(μmol/L) 12.50(10.30~16.78) 13.20(10.38~16.50) Z=-0.34 0.73
    ALT(U/L) 28.22(18.00~42.00) 17.59(12.96~26.96) Z=-5.55 <0.01
    AST(U/L) 24.25(19.58~32.89) 20.00(16.07~24.23) Z=-5.20 <0.01
    ALP(U/L) 86.47(72.32~105.99) 74.66(59.60~87.06) Z=-3.60 <0.01
    GGT(U/L) 30.75(22.00~48.92) 18.00(12.00~26.25) Z=-7.16 <0.01
    FPG(mmol/L) 5.12(4.59~6.03) 4.92(4.49~5.22) Z=-2.67 <0.01
    TC(mmol/L) 5.09(4.34~5.81) 4.88(4.27~5.49) Z=-1.57 0.12
    TG(mmol/L) 1.79(1.19~2.49) 1.04(0.79~1.45) Z=-7.33 <0.01
    LDL(mmol/L) 3.15(2.62~3.61) 3.00(2.47~3.45) Z=-1.57 0.12
    HDL(mmol/L) 1.15(1.02~1.32) 1.30(1.13~1.49) Z=-4.08 <0.01
    下载: 导出CSV 
    | 显示表格

    对照组中3种多态性的基因型分布均符合H-W平衡:rs1044925 (χ2=0.891,P=0.345)、rs1157651(χ2=0.016,P=0.900)和rs10830963(χ2=0.964,P=0.326)。

    ACAT1 rs1044925具有AA、AC、CC 3种基因型,rs1157651具有GG、GC、CC 3种基因型,MTNR1B rs10830963具有GG、GC、CC 3种基因型。NAFLD和对照组基因型比较,分布差异均无统计学意义(P值均>0.05)(表3)。

    表  3  rs1044925、rs1157651、rs10830963基因型分布
    Table  3.  Distribution of rs1044925, rs1157651, rs10830963 genotypes
    基因型 NAFLD组(n=228) 对照组(n=164) χ2 P
    rs1044925[例(%)] 0.285 0.593
    AA 183(80.26) 128(78.05)
    CC 4(1.75) 2(1.22)
    AC 41(17.98) 34(20.73)
    rs1157651[例(%)] 0.967 0.326
    GG 177(77.63) 134(81.71)
    CC 3(1.32) 0(0)
    GC 48(21.05) 30(18.29)
    rs10830963[例(%)] 0.531 0.767
    GG 47(20.80) 30(18.40)
    CC 75(33.19) 59(36.20)
    GC 104(46.02) 74(45.40)
    注:rs1044925和rs1157651的CC基因型比例低,不适用于χ2检验,因此将其与杂合子合并后进行χ2检验。不同位点因检出率差异,检测数略小于总例数。
    下载: 导出CSV 
    | 显示表格

    对rs1044925、rs1157651、rs10830963不同等位基因携带者生化指标进行比较(表46)。ACAT1 rs1044925 AA基因型携带者的LDL水平明显高于C等位基因携带者(P<0.05)(表4)。而ACAT1 rs1157651各指标间比较均无明显差异(P值均>0.05)(表5)。MTNR1B rs10830963 G等位基因携带者FPG水平明显高于CC基因型携带者(P<0.05)(表6)。

    表  4  ACAT1 rs1044925不同等位基因携带生化指标比较
    Table  4.  Comparison of biochemical indices of different alleles of ACAT1 rs1044925
    指标 AA基因型携带者 C等位基因携带者 统计值 P
    BMI(kg/m2 26.70±4.85 26.69±3.64 t=0.02 0.99
    TBil(μmol/L) 12.75(10.33~16.68) 13.00(9.98~16.75) Z=-0.07 0.94
    ALT(U/L) 22.97(14.56~35.16) 26.10(17.09~43.52) Z=-1.23 0.22
    AST(U/L) 22.02(18.08~28.67) 22.09(18.64~32.13) Z=-0.71 0.48
    ALP(U/L) 84.91(69.04~100.89) 84.07(69.29~99.70) Z=-0.14 0.89
    GGT(U/L) 25.82(17.07~42.94) 30.00(17.71~48.02) Z=-0.53 0.60
    FPG(mmol/L) 5.04(4.52~5.76) 5.19(4.62~5.87) Z=-1.14 0.25
    TC(mmol/L) 5.09(4.31~5.76) 4.92(4.27~5.56) Z=-1.07 0.29
    TG(mmol/L) 1.42(0.94~2.1) 1.47(1.04~2.2) Z=-0.78 0.44
    LDL(mmol/L) 3.13(2.63~3.57) 2.81(2.32~3.45) Z=-2.08 0.04
    HDL(mmol/L) 1.21(1.05~1.40) 1.16(1.03~1.34) Z=-0.38 0.38
    下载: 导出CSV 
    | 显示表格
    表  5  ACAT1 rs1157651不同等位基因携带生化指标比较
    Table  5.  Comparison of biochemical indices of different alleles of ACAT1 rs1157651
    指标 GG携带者 C等位基因携带者 统计值 P
    BMI(kg/m2 26.47±4.46 27.51±5.14 t=-1.65 0.10
    TBil(μmol/L) 13.05(10.30~16.80) 12.20(10.45~15.90) Z=-0.90 0.37
    ALT(U/L) 23.00(14.65~37.05) 23.17(16.46~35.35) Z=-0.40 0.69
    AST(U/L) 22.06(18.62~29.85) 22.07(18.02~28.25) Z=-0.31 0.76
    ALP(U/L) 84.75(68.98~101.77) 84.70(73.16~100.35) Z=-0.15 0.88
    GGT(U/L) 24.91(16.86~43.23) 28.00(19.05~47.76) Z=-1.44 0.15
    FPG(mmol/L) 5.06(4.55~5.74) 5.12(4.50~6.59) Z=-1.19 0.23
    TC(mmol/L) 5.00(4.34~5.77) 5.10(4.21~5.66) Z=-0.74 0.46
    TG(mmol/L) 1.38(0.94~2.12) 1.67(1.05~2.20) Z=-0.96 0.34
    LDL(mmol/L) 3.10(2.56~3.56) 3.12(2.54~3.51) Z=-0.44 0.66
    HDL(mmol/L) 1.22(1.06~1.40) 1.12(0.99~1.33) Z=-1.94 0.05
    下载: 导出CSV 
    | 显示表格
    表  6  MTNR1B rs10830963不同等位基因携带生化指标比较
    Table  6.  Comparison of biochemical indices of different alleles of MTNR1B rs10830963
    指标 G等位基因携带者 CC携带者 统计值 P
    BMI(kg/m2 26.50±4.05 26.90±5.25 t=-0.75 0.45
    TBil(μmol/L) 13.20(10.60~16.80) 12.15(10.13~16.58) Z=-0.89 0.37
    ALT(U/L) 23.00(15.19~37.43) 23.30(14.47~36.34) Z=-0.17 0.87
    AST(U/L) 22.28(18.13~30.43) 21.77(18.64~28.13) Z=-0.45 0.65
    ALP(U/L) 84.58(70.61~102.29) 84.36(68.34~100.35) Z=-0.23 0.82
    GGT(U/L) 27.00(17.95~44.21) 24.22(16.22~44.17) Z=-0.98 0.33
    FPG(mmol/L) 5.14(4.65~5.88) 4.90(4.39~5.39) Z=-3.01 <0.01
    TC(mmol/L) 4.98(4.28~5.70) 5.09(4.64~5.77) Z=-0.96 0.49
    TG(mmol/L) 1.46(1.04~2.12) 1.42(0.89~2.21) Z=-0.56 0.58
    LDL(mmol/L) 3.08(2.53~3.51) 3.16(2.61~3.60) Z=-0.88 0.38
    HDL(mmol/L) 1.18(1.05~1.38) 1.22(1.03~1.38) Z=-0.08 0.94
    下载: 导出CSV 
    | 显示表格

    大量研究表明NAFLD的易感性与基因多态性有关,本文探索了山东青岛地区392例受试者的3个多态性位点(ACAT1 rs1044925、rs1157651和MTNR1B rs10830963)与NAFLD易感性的相关性。

    ACAT1是一种参与胆固醇酯形成的酶,在胆固醇稳态中起重要作用22,胆固醇是动物细胞中一种重要的脂质分子。然而,过多的胆固醇在肝脏或血液中积累(高胆固醇血症)可导致肝脏脂肪变性和动脉粥样硬化等病理后果23。由于NAFLD可以被认为是代谢综合征的肝脏表现,因此它与高脂血症密切相关,肝游离胆固醇的积累和肝脏胆固醇稳态的破坏与NAFLD的发病机制密切相关24-25。ACAT1将胆固醇转化为胆固醇酯,储存在吞噬细胞细胞质中的脂滴中,经中性胆固醇水解酶水解释放胆固醇外排22。脂质代谢相关基因的遗传变异可能影响相应蛋白的表达水平,从而导致脂质代谢异常,进而影响NAFLD的发生发展。本研究首次探讨了ACAT1 rs1044925、rs1157651基因型分布与NAFLD易感性的相关性,然而并未发现有统计学差异(P值均>0.05)。然而ACAT1 rs1044925 AA基因型携带者LDL水平明显高于C等位基因携带者,这与李琴等26的研究结果相一致。Wu等27报道ACAT1 rs1044925 C等位基因携带者在高脂血症患者血清中HDL-C水平较高。尽管ACAT1 rs1044925与血脂水平的研究结论不完全一致,但均表明AA基因型携带是血脂异常的危险因素。

    鉴于MTNR1B基因的变异是T2DM重要危险因素,其中单核苷酸多态性rs10830963相关性研究最多,也表现出强相关性16-18。褪黑素可以通过降低内质网应激和其表达提高肝胰岛素抵抗和肝脂肪变性28。胰岛素抵抗与NAFLD之间的密切关系通过空腹游离脂肪酸水平升高和胰岛素给药后脂肪分解抑制减弱得到证实,这与肝脏脂肪浸润程度密切相关29。已有文献30证明褪黑激素抑制胰岛素分泌,这种抑制作用在rs10830963 C/G多态性的G等位基因的携带者中更为明显。本研究未发现MTNR1B rs10830963基因型分布在NAFLD组和健康对照组中的差异(P值均>0.05)。而MTNR1B rs10830963 G等位基因携带者FPG水平明显高于CC基因型携带者(P<0.05)。本研究人群均为山东青岛地区NAFLD及正常人群,均无糖尿病史。尽管未发现该位点与NAFLD的相关性,然而该结果表明,MTNR1B rs10830963 G等位基因携带是T2DM的危险因素。

    本研究筛选了3个多态性位点(ACAT1 rs1044925、rs1157651和MTNR1B rs10830963),尽管均未发现NAFLD易感性位点,然而,ACAT1 rs1044925和MTNR1B rs10830963位点分别与LDL和PFG水平有关。因此本研究仍对NAFLD易感基因的筛选工作以及糖尿病易感因素的筛选做出了一定贡献。此外,本研究存在一定的局限性。首先,本研究仅纳入青岛地区汉族人群,该结果具有地域种族局限性。其次,本研究未纳入NAFLD合并T2DM人群,后续将补充相关研究,进一步探索MTNR1B rs10830963位点的作用。

  • 表  1  FTO基因引物序列

    Table  1.   Primer sequence of FTO gene

    位点 引物 引物序列(5′-3′)
    rs1044925 primer 1 ACGTTGGATGTGAGCAAATGCAGAAGCCAG
    primer 2 ACGTTGGATGTATTTTGCAGACTAGTGAG
    rs9992651 primer 1 ACGTTGGATGCTCGCAAGAAATAATTCGGG
    primer 2 ACGTTGGATGGAGTAGCTGTTCTCTACTCC
    rs10830963 primer 1 ACGTTGGATGTCCCAGGCAGTTACTGGTTC
    primer 2 ACGTTGGATGTGTCTATGCTGGCAAAGCTG
    下载: 导出CSV

    表  2  两组一般临床资料及相关指标比较

    Table  2.   Comparison of general clinical data and related indicators between NAFLD and control group

    指标 NAFLD组(n=228) 对照组(n=164) 统计值 P
    男/女(例) 120/108 90/74 χ2=0.66 0.68
    年龄(岁) 52(41~63) 39(30~52) Z=-6.50 <0.01
    BMI(kg/m2 27.57±4.67 24.75±3.89 t=-5.25 <0.01
    TBil(μmol/L) 12.50(10.30~16.78) 13.20(10.38~16.50) Z=-0.34 0.73
    ALT(U/L) 28.22(18.00~42.00) 17.59(12.96~26.96) Z=-5.55 <0.01
    AST(U/L) 24.25(19.58~32.89) 20.00(16.07~24.23) Z=-5.20 <0.01
    ALP(U/L) 86.47(72.32~105.99) 74.66(59.60~87.06) Z=-3.60 <0.01
    GGT(U/L) 30.75(22.00~48.92) 18.00(12.00~26.25) Z=-7.16 <0.01
    FPG(mmol/L) 5.12(4.59~6.03) 4.92(4.49~5.22) Z=-2.67 <0.01
    TC(mmol/L) 5.09(4.34~5.81) 4.88(4.27~5.49) Z=-1.57 0.12
    TG(mmol/L) 1.79(1.19~2.49) 1.04(0.79~1.45) Z=-7.33 <0.01
    LDL(mmol/L) 3.15(2.62~3.61) 3.00(2.47~3.45) Z=-1.57 0.12
    HDL(mmol/L) 1.15(1.02~1.32) 1.30(1.13~1.49) Z=-4.08 <0.01
    下载: 导出CSV

    表  3  rs1044925、rs1157651、rs10830963基因型分布

    Table  3.   Distribution of rs1044925, rs1157651, rs10830963 genotypes

    基因型 NAFLD组(n=228) 对照组(n=164) χ2 P
    rs1044925[例(%)] 0.285 0.593
    AA 183(80.26) 128(78.05)
    CC 4(1.75) 2(1.22)
    AC 41(17.98) 34(20.73)
    rs1157651[例(%)] 0.967 0.326
    GG 177(77.63) 134(81.71)
    CC 3(1.32) 0(0)
    GC 48(21.05) 30(18.29)
    rs10830963[例(%)] 0.531 0.767
    GG 47(20.80) 30(18.40)
    CC 75(33.19) 59(36.20)
    GC 104(46.02) 74(45.40)
    注:rs1044925和rs1157651的CC基因型比例低,不适用于χ2检验,因此将其与杂合子合并后进行χ2检验。不同位点因检出率差异,检测数略小于总例数。
    下载: 导出CSV

    表  4  ACAT1 rs1044925不同等位基因携带生化指标比较

    Table  4.   Comparison of biochemical indices of different alleles of ACAT1 rs1044925

    指标 AA基因型携带者 C等位基因携带者 统计值 P
    BMI(kg/m2 26.70±4.85 26.69±3.64 t=0.02 0.99
    TBil(μmol/L) 12.75(10.33~16.68) 13.00(9.98~16.75) Z=-0.07 0.94
    ALT(U/L) 22.97(14.56~35.16) 26.10(17.09~43.52) Z=-1.23 0.22
    AST(U/L) 22.02(18.08~28.67) 22.09(18.64~32.13) Z=-0.71 0.48
    ALP(U/L) 84.91(69.04~100.89) 84.07(69.29~99.70) Z=-0.14 0.89
    GGT(U/L) 25.82(17.07~42.94) 30.00(17.71~48.02) Z=-0.53 0.60
    FPG(mmol/L) 5.04(4.52~5.76) 5.19(4.62~5.87) Z=-1.14 0.25
    TC(mmol/L) 5.09(4.31~5.76) 4.92(4.27~5.56) Z=-1.07 0.29
    TG(mmol/L) 1.42(0.94~2.1) 1.47(1.04~2.2) Z=-0.78 0.44
    LDL(mmol/L) 3.13(2.63~3.57) 2.81(2.32~3.45) Z=-2.08 0.04
    HDL(mmol/L) 1.21(1.05~1.40) 1.16(1.03~1.34) Z=-0.38 0.38
    下载: 导出CSV

    表  5  ACAT1 rs1157651不同等位基因携带生化指标比较

    Table  5.   Comparison of biochemical indices of different alleles of ACAT1 rs1157651

    指标 GG携带者 C等位基因携带者 统计值 P
    BMI(kg/m2 26.47±4.46 27.51±5.14 t=-1.65 0.10
    TBil(μmol/L) 13.05(10.30~16.80) 12.20(10.45~15.90) Z=-0.90 0.37
    ALT(U/L) 23.00(14.65~37.05) 23.17(16.46~35.35) Z=-0.40 0.69
    AST(U/L) 22.06(18.62~29.85) 22.07(18.02~28.25) Z=-0.31 0.76
    ALP(U/L) 84.75(68.98~101.77) 84.70(73.16~100.35) Z=-0.15 0.88
    GGT(U/L) 24.91(16.86~43.23) 28.00(19.05~47.76) Z=-1.44 0.15
    FPG(mmol/L) 5.06(4.55~5.74) 5.12(4.50~6.59) Z=-1.19 0.23
    TC(mmol/L) 5.00(4.34~5.77) 5.10(4.21~5.66) Z=-0.74 0.46
    TG(mmol/L) 1.38(0.94~2.12) 1.67(1.05~2.20) Z=-0.96 0.34
    LDL(mmol/L) 3.10(2.56~3.56) 3.12(2.54~3.51) Z=-0.44 0.66
    HDL(mmol/L) 1.22(1.06~1.40) 1.12(0.99~1.33) Z=-1.94 0.05
    下载: 导出CSV

    表  6  MTNR1B rs10830963不同等位基因携带生化指标比较

    Table  6.   Comparison of biochemical indices of different alleles of MTNR1B rs10830963

    指标 G等位基因携带者 CC携带者 统计值 P
    BMI(kg/m2 26.50±4.05 26.90±5.25 t=-0.75 0.45
    TBil(μmol/L) 13.20(10.60~16.80) 12.15(10.13~16.58) Z=-0.89 0.37
    ALT(U/L) 23.00(15.19~37.43) 23.30(14.47~36.34) Z=-0.17 0.87
    AST(U/L) 22.28(18.13~30.43) 21.77(18.64~28.13) Z=-0.45 0.65
    ALP(U/L) 84.58(70.61~102.29) 84.36(68.34~100.35) Z=-0.23 0.82
    GGT(U/L) 27.00(17.95~44.21) 24.22(16.22~44.17) Z=-0.98 0.33
    FPG(mmol/L) 5.14(4.65~5.88) 4.90(4.39~5.39) Z=-3.01 <0.01
    TC(mmol/L) 4.98(4.28~5.70) 5.09(4.64~5.77) Z=-0.96 0.49
    TG(mmol/L) 1.46(1.04~2.12) 1.42(0.89~2.21) Z=-0.56 0.58
    LDL(mmol/L) 3.08(2.53~3.51) 3.16(2.61~3.60) Z=-0.88 0.38
    HDL(mmol/L) 1.18(1.05~1.38) 1.22(1.03~1.38) Z=-0.08 0.94
    下载: 导出CSV
  • [1] DU DY, LIU C, QIN MY, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharm Sin B, 2022, 12( 2): 558- 580. DOI: 10.1016/j.apsb.2021.09.019.
    [2] CHAO HW, CHAO SW, LIN H, et al. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease[J]. Int J Mol Sci, 2019, 20( 2): 298. DOI: 10.3390/ijms20020298.
    [3] LU QR, TIAN XY, WU H, et al. Metabolic changes of hepatocytes in NAFLD[J]. Front Physiol, 2021, 12: 710420. DOI: 10.3389/fphys.2021.710420.
    [4] KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab, 2015, 21( 5): 739- 746. DOI: 10.1016/j.cmet.2015.04.004.
    [5] SUNNY NE, PARKS EJ, BROWNING JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease[J]. Cell Metab, 2011, 14( 6): 804- 810. DOI: 10.1016/j.cmet.2011.11.004.
    [6] TILG H, MOSCHEN AR, RODEN M. NAFLD and diabetes mellitus[J]. Nat Rev Gastroenterol Hepatol, 2017, 14( 1): 32- 42. DOI: 10.1038/nrgastro.2016.147.
    [7] HAAS JT, FRANCQUE S, STAELS B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease[J]. Annu Rev Physiol, 2016, 78: 181- 205. DOI: 10.1146/annurev-physiol-021115-105331.
    [8] JONAS W, SCHÜRMANN A. Genetic and epigenetic factors determining NAFLD risk[J]. Mol Metab, 2021, 50: 101111. DOI: 10.1016/j.molmet.2020.101111.
    [9] WU CM, ZHANG CY, XU HL, et al. Epidemiological research and diagnosis of nonalcoholic fatty liver disease in China[J]. China Med Herald, 2023, 20( 11): 158- 161. DOI: 10.20047/j.issn1673-7210.2023.11.36.

    吴车敏, 张从玉, 徐慧丽, 等. 我国非酒精性脂肪性肝病的流行病学研究和诊断现状分析[J]. 中国医药导报, 2023, 20( 11): 158- 161. DOI: 10.20047/j.issn1673-7210.2023.11.36.
    [10] HAI QM, SMITH JD. Acyl-coenzyme A: Cholesterol acyltransferase(ACAT) in cholesterol metabolism: From its discovery to clinical trials and the genomics era[J]. Metabolites, 2021, 11( 8): 543. DOI: 10.3390/metabo11080543.
    [11] OHTA T, TAKATA K, KATSUREN K, et al. The influence of the acyl-CoA: Cholesterol acyltransferase-1 gene(-77G→A) polymorphisms on plasma lipid and apolipoprotein levels in normolipidemic and hyperlipidemic subjects[J]. Biochim Biophys Acta BBA Mol Cell Biol Lipds, 2004, 1682( 1-3): 56- 62. DOI: 10.1016/j.bbalip.2004.01.008.
    [12] WANG YT, WANG YH, MA YT, et al. ACAT-1 gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: A case-control study[J]. Oncotarget, 2017, 8( 51): 89055- 89063. DOI: 10.18632/oncotarget.21649.
    [13] YIN RX, WU DF, AUNG LHH, et al. Several lipid-related gene polymorphisms interact with overweight/obesity to modulate blood pressure levels[J]. Int J Mol Sci, 2012, 13( 9): 12062- 12081. DOI: 10.3390/ijms130912062.
    [14] WU YH, FISCHER DF, KALSBEEK A, et al. Pineal clock gene oscillation is disturbed in Alzheimer’s disease, due to functional disconnection from the“master clock”[J]. FASEB J, 2006, 20( 11): 1874- 1876. DOI: 10.1096/fj.05-4446fje.
    [15] SATO K, MENG FY, FRANCIS H, et al. Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies[J]. J Pineal Res, 2020, 68( 3): e12639. DOI: 10.1111/jpi.12639.
    [16] LYSSENKO V, NAGORNY CLF, ERDOS MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion[J]. Nat Genet, 2009, 41( 1): 82- 88. DOI: 10.1038/ng.288.
    [17] XIA Q, CHEN ZX, WANG YC, et al. Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: A meta-analysis[J]. PLoS One, 2012, 7( 11): e50107. DOI: 10.1371/journal.pone.0050107.
    [18] MAHAJAN A, TALIUN D, THURNER M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps[J]. Nat Genet, 2018, 50( 11): 1505- 1513. DOI: 10.1038/s41588-018-0241-6.
    [19] QI YY, FAN LR, RAN DC, et al. Main risk factors of type 2 diabetes mellitus with nonalcoholic fatty liver disease and hepatocellular carcinoma[J]. J Oncol, 2021, 2021: 7764817. DOI: 10.1155/2021/7764817.
    [20] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association: Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: a 2018 update[J]. J Clin Hepatol, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

    中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
    [21] LIU Q, LIU SS, ZHAO ZZ, et al. TRIB1 rs17321515 gene polymorphism increases the risk of coronary heart disease in general population and non-alcoholic fatty liver disease patients in Chinese Han population[J]. Lipids Health Dis, 2019, 18( 1): 165. DOI: 10.1186/s12944-019-1108-2.
    [22] GHOSH S, ZHAO B, BIE JH, et al. Macrophage cholesteryl ester mobilization and atherosclerosis[J]. Vascul Pharmacol, 2010, 52( 1-2): 1- 10. DOI: 10.1016/j.vph.2009.10.002.
    [23] MIN HK, KAPOOR A, FUCHS M, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease[J]. Cell Metab, 2012, 15( 5): 665- 674. DOI: 10.1016/j.cmet.2012.04.004.
    [24] KIM CH, YOUNOSSI ZM. Nonalcoholic fatty liver disease: a manifestation of the metabolic syndrome[J]. Cleve Clin J Med, 2008, 75( 10): 721- 728. DOI: 10.3949/ccjm.75.10.721.
    [25] LUDWIG J, MCGILL DB, LINDOR KD. Review: nonalcoholic steatohepatitis[J]. J Gastroenterol Hepatol, 1997, 12( 5): 398- 403. DOI: 10.1111/j.1440-1746.1997.tb00450.x.
    [26] LI Q, BAI H, FAN P, et al. Analysis of acyl-coenzyme A: cholesterol acyltransferase 1 polymorphism in patients with endogenous hypertriglyceridemia in Chinese population[J]. Chin J Med Genetics, 2008, 25( 2): 206- 210.

    李琴, 白怀, 范平, 等. 正常中国人及内源性高甘油三酯血症患者酰基辅酶A: 胆固醇酰基转移酶基因多态性的研究[J]. 中华医学遗传学杂志, 2008, 25( 2): 206- 210.
    [27] WU DF, YIN RX, CAO XL, CHEN WX. Association between single nucleotide polymorphism rs1044925 and the risk of coronary artery disease and ischemic stroke[J]. Int J Mol Sci, 2014, 15( 3): 3546- 3559. DOI: 10.3390/ijms15033546.
    [28] JI HEO, YOON DW, YU JH, et al. Melatonin improves insulin resistance and hepatic steatosis through attenuation of alpha-2-HS-glycoprotein[J]. J Pineal Res, 2018, 65( 2): e12493. DOI: 10.1111/jpi.12493
    [29] GASTALDELLI A. Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD?[J]. Clin Sci(Lond), 2017, 131( 22): 2701- 2704. DOI: 10.1042/CS20170987.
    [30] TUOMI T, NAGORNY CLF, SINGH P, et al. Increased melatonin signaling is a risk factor for type 2 diabetes[J]. Cell Metab, 2016, 23( 6): 1067- 1077. DOI: 10.1016/j.cmet.2016.04.009.
  • 期刊类型引用(1)

    1. 何聪,王慧超,周秉舵,孔婧,王晓素. 祛湿化瘀方治疗湿热蕴结型非酒精性脂肪肝临床疗效. 中国实验方剂学杂志. 2024(18): 139-145 . 百度学术

    其他类型引用(0)

  • 加载中
表(6)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  184
  • PDF下载量:  36
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-08-05
  • 录用日期:  2023-09-04
  • 出版日期:  2024-04-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回