PI3K/Akt/mTOR signal transduction pathway and digestive system tumors
-
-
全世界有超过1.85亿人感染HCV[1],但随着丙型肝炎治愈率的提高,感染者总数呈逐年下降趋势。除继发肝硬化、肝癌外,HCV感染也影响肝外疾病如心血管疾病、肾病的发病率及死亡率[2]。直接抗病毒药物(direct-acting antiviral agents,DAAs)作为目前丙型肝炎抗病毒治疗的首选,尽管在清除病毒方面非常有效,但经该方案治愈后宿主新陈代谢的变化仍然是一个尚未完全明确的问题。本文就DAAs治疗后患者合并肝外疾病的变化作一综述。
1. DAAs对HCV感染者糖代谢的影响
大量流行病学调查显示,超过30%的慢性HCV感染者血糖异常[3],继而出现胰岛素抵抗、2型糖尿病等代谢疾病。目前研究[4]认为可能的原因主要与HCV核心蛋白、NS5A通过抑制PI3K/Akt介导的胰岛素释放信号通路导致肝脏糖代谢异常有关,病毒也可以直接作用胰腺细胞影响胰岛功能进而引起糖代谢平衡紊乱[5]。在丙型肝炎肝硬化患者中,2型糖尿病发生率更高[6],这可能是由于HCV引起氧化应激导致肝纤维化使灭活胰岛素能力降低,从而形成胰岛素抵抗[7]。徐兰芝等[8]研究发现基因1型、3型及高病毒载量对HCV感染者血糖水平影响明显,反之,糖代谢异常也会促进病毒复制进而加重肝损伤[5],甚至促进肝纤维化进展及增加肝癌发生率。
既往干扰素治疗方案对糖代谢及β细胞功能改善已得到大量研究证实,而目前使用的DAAs方案上市较晚,清除病毒后血糖变化情况的研究相对较少且尚未形成统一意见。有研究[9-10]显示,病毒清除后,胰岛素受体底物表达增强,信号传导及糖代谢恢复,同时IL-6等细胞因子水平也显著改善,提示清除HCV对糖尿病患者的炎症状态及血糖水平具有潜在的改善作用。Lapumnuaypol等[11]对纳入的4项队列研究进行Meta分析,结果显示经DAAs治疗获得持续病毒学应答(SVR)的合并2型糖尿病HCV感染者糖化血红蛋白(HbA1c)水平明显下降。Mada等[3]在此基础上进一步研究发现基线无纤维化或纤维化较轻的患者HbA1c下降更明显。Weidner等[12]研究表明,治疗前已经发生肝硬化的人群血糖水平未得到改善。意大利学者对部分肝硬化人群进行前瞻性研究[13]发现,患有2型糖尿病的代偿期肝硬化人群在病毒清除1年后HbA1c水平显著下降,但在之后的2~3年这一改善未能保持。这可能与肝源性糖尿病的发生机制有关[6],肝硬化引起的神经激素改变、内毒素血症、肌少症、高氨血症等可能是造成患者长期预后不良的原因。另有研究[14-15]显示无糖尿病家族史、糖尿病病程短亦对血糖改善有积极影响,而未经DAAs治疗或治疗后未获得SVR的患者HbA1c升高。病毒清除后肝纤维化程度也会发生相应变化,Graf等[16]发现DAAs治疗前后血糖水平与无创性肝纤维化参数变化呈正相关,但受坏死性炎症活动减少的影响,并不能完全解释胰岛素抵抗改善与纤维化逆转的关系。除此之外,众多研究[15,17-18]表明DAAs治疗后的糖尿病患者易出现低血糖现象,超过1/4的患者治疗过程中需要减少胰岛素或降糖药物剂量,部分病例甚至可以停止降糖治疗。不同的是,队列研究[5]中的非糖尿病患者在抗病毒治疗后血糖水平反而升高,预示糖尿病前期状态,这与病毒所致的慢性肝脏炎症有关。但也有研究[12]显示,这只是暂时性的改变,在治疗结束后又回到基础水平。
成功清除HCV对糖尿病相关并发症也产生一定作用。一项队列研究[19]发现,DAAs抗病毒治疗获得SVR后,2型糖尿病相关的急性冠脉综合征、终末期肾病、缺血性中风和视网膜病变等并发症发生风险显著降低,即使治疗失败,发生缺血性卒中的风险也有所降低。然而,也有研究[20]发现慢性丙型肝炎患者糖尿病视网膜病变发生率低于无HCV感染者,这可能与病毒引起低脂血症有关,清除病毒反而会使这种保护作用消失,但具体的机制还需进一步探究。
尽管目前大多数研究都倾向于DAAs抗病毒治疗对血糖改善具有积极作用,但仍有一些研究表明,经DAAs治疗成功清除HCV后血糖水平并无明显改善[3],或者只是暂时性的改变[21],未能实现长期控制。因此,获得SVR后仍需要定期监测血糖水平,同时也需要大量前瞻性研究证实抗病毒治疗后血糖改善是否能长期维持。
2. DAAs对HCV感染者心血管疾病的影响
据统计,半数以上的HCV感染者均存在肝脂肪变性,其中约10%的患者具有非酒精性脂肪性肝炎的特征[22]。HCV核心蛋白可通过促进肝细胞过度摄取脂肪酸、干扰线粒体β-氧化、抑制转运蛋白及相关酶活性等导致肝脏积累形成脂肪肝及血清低脂血症,常见于基因1型和基因3型HCV,其中基因3型HCV直接引起病毒性肝脂肪变性。
由于DAAs对HCV核心蛋白的快速抑制,肝细胞中脂滴生成减少、循环低密度脂蛋白胆固醇(LDL-C)大规模反弹。但在整体慢性丙型肝炎患者中,病毒清除后并未发生脂肪变性逆转[16],甚至有多项前瞻性研究[23-24]表明,治愈后不同阶段均出现肝脏CAP值升高,发生心血管疾病风险增加,这与病毒对血管的直接作用有关。清除HCV可引起血脂水平反弹上升,且各项脂质参数中以LDL-C变化显著且发生较早[25-26]。有研究[27]发现获得SVR的患者1年后LDL-C明显增加,提示动脉粥样硬化等心血管疾病发生风险增加,部分患者甚至达到降脂、降胆固醇治疗的标准。日本一项研究[28]发现获得SVR24的患者CAP、LDL-C等指标增加,但基线脂质参数高的患者在HCV清除后明显下降,表明有脂肪肝基础的患者在清除HCV后血脂得到改善,确切机制尚不清楚。
HCV可通过IL-1β等细胞因子介导慢性炎症和氧化应激,引起内皮功能障碍,进一步促进动脉粥样硬化的形成。除此之外,HCV引起的内毒素血症、冷球蛋白血症也与血管炎及心血管事件有关。目前大量研究结果表明,HCV感染已成为动脉粥样硬化发生的独立危险因素,且肝损伤程度高的患者伴随心血管疾病发生的风险更高,也更为严重。
HCV感染与心脏代谢疾病之间的关系已被广泛研究,而对抗病毒治疗后心血管疾病发生风险意见尚未统一。近期研究[29-31]提示,DAAs清除HCV可改善血管功能,降低内皮功能障碍的血清标志物水平,增强了内皮功能,且肝硬化或基线纤维化程度高的患者改善更明显,但也有研究[32]认为无纤维化患者预后更好。因此,肝纤维化对血管内皮功能的长期影响还需进一步研究。一项意大利多中心研究[33]通过对HCV感染晚期纤维化及代偿期肝硬化治疗前后的颈动脉内膜进行评估,认为病毒清除可改善颈动脉粥样硬化,同时通过对心血管危险因素分层发现晚期动脉粥样硬化患者治疗效果不佳。不同的是,Revuelto等[34]随访了85例结束抗病毒治疗的肝纤维化患者,发现动脉内膜厚度及粥样硬化斑块的成分均无明显改变,且与纤维化程度无关。另外,对于获得SVR患者死亡等临床终点的研究相对较少,一项大型队列研究[35]对接受DAAs治疗的HCV感染者进行了96周长期随访,发现无论是否有肝硬化,获得SVR后均有更好的心血管相关存活率。HCV也可引起其他心脏相关疾病,一项回顾性研究[36]显示,HCV引起的急性或慢性炎症反应同样可导致心房颤动的发生,其发生率约为未感染人群的1.27倍,抗病毒治疗通过控制炎症能够显著降低此类心律失常再发的风险。
3. DAAs对HCV感染者肾功能变化的影响
HCV主要通过直接病毒损伤肾实质和免疫介导机制这两种方式引起肾损伤[37],最常见的为伴有混合冷球蛋白血症的膜性增生性肾小球肾炎,与健康人群相比,HCV感染者发生慢性肾脏病的风险更高,向终末期肾病进展更快。有Meta分析[38]显示,HCV感染还与肾细胞癌风险增加显著相关。
DAAs的出现不仅达到了清除病毒的目的,其安全性也得到了论证[39]。一项大型多中心研究[40]对轻中度慢性肾脏病患者进行DAAs治疗,证实了无干扰素方案的良好耐受性。2020年通过对不同肝纤维化程度的HCV感染者的前瞻性研究[41]发现,经DAAs抗病毒治疗后,患者肌酐、肾小球滤过率均得到改善,但在高胆固醇血症及基础肾功能差的患者中未见明显变化。而Villani等[42]研究发现,在中重度肾功能不全患者中,抗病毒治疗后肌酐水平下降明显,且老年人效果更佳。因此,DAAs治疗后对不同基础肾功能患者的影响还需大量临床证据进一步论证。
4. DAAs对HCV感染者自身免疫性疾病的影响
HCV感染的许多肝外表现可能被认为是异常免疫反应的结果,其中混合冷球蛋白血症被广泛研究。HCV的慢性免疫刺激导致免疫反应失调,致使血清出现多种自身抗体,以抗核抗体(ANA)、抗平滑肌细胞抗体多见,甚至表现为自身免疫性疾病,而这与病毒基因型无关。另外,具有“棒状”和“环状”细胞质型的慢性HCV感染者出现ANA抗体阳性的比例更高,其主要与干扰素经治有关[43]。
Romano等[44]研究表明在经DAAs治疗清除病毒后,慢性免疫刺激停止,感染者体内多种抗体消失或者滴度明显下降,但对于极少数SVR后自身抗体保持阳性的患者,有报道[45]称2年内出现冷球蛋白血症性血管炎复发。瑞士对获得SVR后的丙型肝炎患者进行了6个月的随访研究[46],发现治疗前自身免疫相关抗体阴性的患者在DAAs诱导的HCV清除后产生自身抗体。因此对该类患者应进行长期随访,以便早期发现其肝外自身免疫性疾病并治疗。
5. DAAs对HCV感染者神经、精神系统的影响
HCV可穿过血脑屏障进入中枢神经系统影响传导通路及代谢,通过引起星形胶质细胞等炎症反应导致急性或亚急性脑病,从而引起脑功能障碍,通常表现为运动感觉障碍、认知障碍、周围神经病变、焦虑、抑郁等精神障碍。
DAAs清除病毒后,患者的心理状况、认知功能和生活质量均得到改善,且在治疗的前4周内改善最明显,这可能与治疗早期病毒被快速抑制有关。有报道[47]称,与未接受治疗或未达到SVR的HCV感染者相比,达到SVR的HCV感染者的胆碱/肌酸和肌醇/肌酸比值显著降低,认知功能显著增强。但Kleefeld等[48]的研究表明HCV感染者治疗前后记忆方面未发现差异,有假说表示病毒在中枢神经系统中的分区化可能是病毒重新激活的一个潜在来源,从而解释了DAAs治疗结束时一些认知症状的持续存在。
6. 总结与展望
HCV感染者在临床上除肝脏受损外,还可出现多器官系统受累的临床表现,如合并糖尿病、心血管疾病、肾病、自身免疫性疾病、神经或精神疾病等,高达74%的慢性HCV感染者至少有一种肝外表现。DAAs治疗可快速抑制及清除病毒,使绝大多数患者原有合并疾病得到明显改善,但病毒的清除改变了宿主代谢状态,因此存在糖脂代谢紊乱的可能,甚至可能出现糖尿病、脂肪肝等不良预后。另外,多项研究发现获得SVR后肝外疾病的改善只是暂时性的,数年后仍回到基线水平,甚至出现新发自身免疫性疾病。因此,对于丙型肝炎治愈者,尤其是合并肝外表现人群仍需要长期随访、监测各项指标变化,及时干预,降低合并症发生风险。
-
[1]Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism[J]. Cell, 2006, 124 (2) ∶ 471-484. [2]OldhamS, Montagne J, Radimerski T, et al.Genetic and biochemi-cal characterization of dTOR, the Drosophila homolog of the target ofrapamycin[J].Genes Dev, 2000, 14 (4) ∶2689-2694. [3]Fingar DC, Salama S, Tsou C, et al.Mammalian cell size is con-trolled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E[J].Genes Dev, 2002, 16 (12) ∶1472-1487. [4]Gingras AC, Raught B, Sonenberg N.mTOR signaling to translation[J]. Curr Top Microbiol Immunol, 2004, 279∶ 169-197. [5]Hay N, Sonenberg N. Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18 (16) ∶ 1926-1945. [6]Tsang C K, Zheng X F. TOR-in (g) the nucleus[J]. Cell Cycle, 2007, 6 (1) ∶25-29. [7]Guertin D A, Sabatini D M. An expanding role for mTOR in cancer[J]. Trends Mol Med, 2005, 11 (8) ∶ 353-361. [8]Schmelzle T, Hall MN.TOR, a central controller of cell growth[J]. Cell, 2000, 103 (2) ∶253-262. [9]Kim S, Wong P, Coulombe PA.A keratin cytoskeletal protein regu-lates protein synthesis and epithelial cell growth[J].Nature, 2006, 441 (7091) ∶362-365. [10]Huang S, Houghton PJ.Targeting mTOR signaling for cancer therapy[J]. Curr Opin Pharmacol, 2003, 3 (4) ∶371-377. [11]Vignot S, Faivre S, Aguirre D, et al.mTOR-targeted therapy of cancer with rapamycin derivatives[J]. Ann Oncol, 2005, 16 (4) ∶525-537. [12]Abraham RT. Identification of TOR signaling complexes:more TORC for the cell growth engine[J]. Cell, 2002, 111 (1) ∶9-12. [13]Gingras AC, Raught B, Sonenberg N, et al.Regulation of translation ini-tiation by FRAP/mTOR[J].Genes Dev, 2001, 15 (7) ∶807-826. [14]Jacinto E, Hall MN.TOR signaling in bugs, brain and brawn[J]. Nat Rev Mol Cell Biol, 2003, 4 (2) ∶117-126. [15]Katso R, Okkenhaug K, Ahmadi K, et al.Cellular function of phos-phoinositide 3-kinases:implications for development, homeostasis, andcancer[J].Annu Rev Cell Dev Biol, 2001, 17 (4) ∶615-675. [16]Aoki M, Batista O, Bellacosa A, et al.The Akt kinase:molecular de-terminants of oncogenicity[J].Proc Natl Acad Sci US A, 1998, 95 (3) ∶14950-14955. [17]Cantrell DA.Phosphoinositide 3-kinase signalling pathways[J]. J Cell Sci, 2001, 114 (6) ∶1439-1445. [18]Samuels Y, Diaz LA, Sehlnidt-Kittler O, et al.Mutant PIK3CApromotes cell growth and invasion of human cancer cells[J].Canc-er Cell, 2005, 7 (2) ∶561-573. [19]Lee JW, Soung YH, Kim SY, et al.PIK3CAgene is frequently muta-ted in breast carcinomas and hepatocellular carcinomas[J].Onco-gene, 2005, 24 (4) ∶1477-1480. [20]Hartmann C, Bartel G, Gehlhaar C, et al.PIK3CAmutations in glio-blastoma multiforme[J].Acta Neuropathol, 2005, 109 (5) ∶639-642. [21]Levine DA, Bogomolniy F, Yee CJ, et al.Frequent mutation of the PIK3CA gene in ovarian and breast cancers[J]. Clin Cancer Res, 2005, 11 (2) ∶2875-2878. [22]Bader AG, Kang S, Vogt PK.Cancer-specific mutations in PIK3CA are oncogenic in vivo[J]. Proc Natl Acad Sci U S A, 2006, 103 (2) ∶1475-1479. [23]Carson JD, Van Aller G, Lehr R, et al.Effects of oncogenic P110 al-pha subunit mutations on the lipid kinase activity of phosphoinosit-ide3-kinase[J].Biochem J, 2008, 409 (6) ∶519-524. [24]Fingar DC, Richardson CJ, Tee AR, et al.mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/Eukaryotic translation initiation factor 4E[J]. Mol Cell Biol, 2004, 24 (1) ∶200-216. [25]Hay N, Sonenberg N.Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18 (2) ∶1926-1945. [26]Gingras AC, Raught B, Sonenberg N, et al.Regulation of transla-tion initiation by FRAP/mTOR[J].Genes Dev, 2001, 15 (7) ∶807-826. [27]Fingar DC, Blenis J.Target of rapamycin (TOR) : an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression[J]. Oncogene, 2004, 23 (18) ∶ 3151-3171. [28]Proud CG.Regulation of mammalian translation factors by nutrients[J]. Eur J Biochem, 2002, 269 (8) ∶5338-5349. [29]Hay N, Sonenberg N.Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18 (5) ∶1926-1945. [30]Wullschleger S, Loewith R, Hall MN.TOR signaling in growth and metabolism[J]. Cell, 2006, 124 (7) ∶471-484. [31]Eguchi S, Tokunaga C, Hidayat S, et al.Different roles for the TOSand RAIP motifs of the translation regulator protein 4E-BP1 in theassociation with raptor and phosphorylation by mTOR in the regula-tion of cell size[J].Genes Cells, 2006, 11 (1) ∶757-766. [32]Rebholz H, Panasyuk G, Fenton T, et al.Receptor association and tyrosine phosphorylation of S6 kinases[J]. FEBS J, 2006, 273 (2) ∶2023-2036. [33]Phin S, Kupferwasser D, Lam J, et al.Mutational analysis of riboso-mal S6 kinase 2 shows differential regulation of its kinase activityfrom that of ribosomal S6 kinase 1[J].Biochem J, 2003, 373 (3) ∶583-591. [34]Pene F, Claessens YE, Muller O, et al.Role of the phosphatidyli-nositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in theproliferation and apoptosis in multiple myeloma[J].Oncogene, 2002, 21 (6) ∶6587-6597. [35]Hay N, Sonenberg N.Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18 (16) ∶1926-1945. [36]Fingar DC, Blenis J. Target of rapamycin (TOR) : an integrator of nutrient and growth factorsignals and coordinator of cell growth and cell cycle progression[J]. Oncogene, 2004, 23 (18) ∶ 3151-3171. [37]Suzuki Y, Toquenaga Y. Effects of information and group structure on evolution of altruism: analysis of two-score model by covariance and contextual analyses[J]. J Theor Bio l, 2005, 232 (2) ∶ 191-201. [38]Zhang H, Bajraszewski N, Wu E, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR[J]. J Clin Invest, 2007, 117 (3) ∶ 730-738. [39]Panner A, James CD, Berger MS, et al. mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells[J]. Mol Cell Bio l, 2005, 25 (20) ∶ 8809-8823. [40]Herberser B, Puhalla H, Lehnert M, et al.Activated manunalian tar-get of Rapamycin is an adverse prognostie factor in patients with bil-iary tract adenocarcinoma[J].Clin Cancer Res, 2007, 13 (16) ∶4795-4799. [41]Law BK.Rapamycin:an anti-cancer immunosuppressant?[J]. Crit Rev Oncol Hematol, 2005, 56 (l) ∶47-60. [42]Suzuki Y, Toquenaga Y. Effects of information and group structure on evolution of altruism:analysis of two-score model by covariance and contextual analyses[J]. J Theor Biol, 2005, 232 (2) ∶191-201. [43]Shaw RJ, Bardeesy N, Manning BD, et al.The LKBl tumor suppres-sor negatively regulates MTOR signaling[J].Cancer Cell, 2004, 6 (l) ∶91-99. [44]Jimeno A, Kulesaza P, Cusatis G, et al.Pharmacodynamic-guided, modified continuous reassessment method (mCRM) -based, dose finding study of rapamycin in adults patientswith solid tumors[J]. ProcAm Soc Clin Onco l, 2006, 24 (4) ∶ 125. [45]Sharon BC, Penelope M, Alexander M, et al.Rapamycin inhibits proliferation of estrogen-receptor-positive breast cancer cells[J]. J SurgRes, 2007, 138 (3) ∶ 37-44. [46]Amato RJ, Misellati A, Khan M, et al. A phase II trial of RAD001 in patients with metastatic renal cell carcinoma[J]. J Clin Oncol, 2006, 24 (A4530) ∶ 18. [47]Mita MM, Rowinsky EK, Goldston ML, et al.Phase I, pharmacoki-netic (PK) , and pharmacodynamic (PD) study of AP23573, anmTOR inhibitor, administered IV daily X 5 every other week in pa-tients (pts) with refractory or advanced malignancies[J].Clin On-col, 2004, 30 (3) ∶76. 期刊类型引用(1)
1. 龚卫锋,张养民. 比较不同免疫分型丙型肝炎的治疗效果. 中西医结合肝病杂志. 2025(01): 33-35 . 百度学术
其他类型引用(1)
-