中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械力在肝脏类器官形成中的调控作用

王宁 吕文良

引用本文:
Citation:

机械力在肝脏类器官形成中的调控作用

DOI: 10.3969/j.issn.1001-5256.2023.12.030
基金项目: 

国家自然科学基金 (81774282);

国家重点研发计划 (2018YFC1705700);

中国中医科学院科技创新工程 (C12021A00801);

中国中医科学院科技创新工程 (C12021A00802)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:王宁负责起草和修订论文;吕文良负责论文框架设计,终审论文并最后定稿。
详细信息
    通信作者:

    吕文良, lvwenliang@sohu.com (ORCID: 0000-0002-4552-919X)

Regulatory role of mechanical forces in the formation of liver organoids

Research funding: 

National Natural Science Foundation of China (81774282);

National Key Research and Development Program of China (2018YFC1705700);

Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences (C12021A00801);

Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences (C12021A00802)

More Information
  • 摘要: 近年来,材料科学和技术的不断进步,使得模拟体内器官结构和功能特征的肝脏类器官技术得以建立并发展,除了对传统生物因素的研究,构建具有不同机械线索的微环境来研究力学刺激对肝脏类器官生长的影响也成为研究重点。本文论述肝脏类器官的发展,并对不同性质机械力在肝脏类器官形成过程中的作用进行综述,为体外构建更加复杂有序的肝脏类器官奠定基础,也为理解肝脏类器官形成过程中生物因素和机械因素之间的相互作用提供理想的研究模型。

     

  • 图  1  类器官形成过程中涉及不同类型机械力示意图

    注: a,诱导培养的类器官和胚胎的局部张力和收缩力的微模式;b,诱导培养类器官流动剪切力的微流控装置;c,不同硬度类器官培养的合成水凝胶。

    Figure  1.  Schematic diagram of the different types of mechanical forces involved in organoid formation

  • [1] TREFTS E, GANNON M, WASSERMAN DH. The liver[J]. Curr Biol, 2017, 27( 21): R1147- R1151. DOI: 10.1016/j.cub.2017.09.019.
    [2] COLLINO A, TERMANINI A, NICOLI P, et al. Sustained activation of detoxification pathways promotes liver carcinogenesis in response to chronic bile acid-mediated damage[J]. PLoS Genet, 2018, 14( 5): e1007380. DOI: 10.1371/journal.pgen.1007380.
    [3] ROBINSON MW, HARMON C, O’FARRELLY C. Liver immunology and its role in inflammation and homeostasis[J]. Cell Mol Immunol, 2016, 13( 3): 267- 276. DOI: 10.1038/cmi.2016.3.
    [4] LI WP, LI L, HUI LJ. Cell plasticity in liver regeneration[J]. Trends Cell Biol, 2020, 30( 4): 329- 338. DOI: 10.1016/j.tcb.2020.01.007.
    [5] LI C, ZHANG ZT, DONG SS, et al. Applications of liver organoids[J]. Sci Sin Vitae, 2023, 53( 2): 175- 184.

    李春, 章正涛, 董双舒, 等. 肝脏类器官的应用[J]. 中国科学: 生命科学, 2023, 53( 2): 175- 184.
    [6] NESHAT SY, QUIROZ VM, WANG YJ, et al. Liver disease: Induction, progression, immunological mechanisms, and therapeutic interventions[J]. Int J Mol Sci, 2021, 22( 13): 6777. DOI: 10.3390/ijms22136777.
    [7] WANG FS, FAN JG, ZHANG Z, et al. The global burden of liver disease: The major impact of China[J]. Hepatology, 2014, 60( 6): 2099- 2108. DOI: 10.1002/hep.27406.
    [8] DUVAL K, GROVER H, HAN LH, et al. Modeling physiological events in 2D vs. 3D cell culture[J]. Physiology, 2017, 32( 4): 266- 277. DOI: 10.1152/physiol.00036.2016.
    [9] BAXTER M, WITHEY S, HARRISON S, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes[J]. J Hepatol, 2015, 62( 3): 581- 589. DOI: 10.1016/j.jhep.2014.10.016.
    [10] MARIOTTI V, STRAZZABOSCO M, FABRIS L, et al. Animal models of biliary injury and altered bile acid metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1254- 1261. DOI: 10.1016/j.bbadis.2017.06.027.
    [11] CAMP JG, SEKINE K, GERBER T, et al. Multilineage communication regulates human liver bud development from pluripotency[J]. Nature, 2017, 546( 7659): 533- 538. DOI: 10.1038/nature22796.
    [12] AZIMIAN ZAVAREH V, RAFIEE L, SHEIKHOLESLAM M, et al. Three-dimensional in vitro models: A promising tool to scale-up breast cancer research[J]. ACS Biomater Sci Eng, 2022, 8( 11): 4648- 4672. DOI: 10.1021/acsbiomaterials.2c00277.
    [13] TAGHDOUINI A EL, SØRENSEN AL, REINER AH, et al. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells[J]. Oncotarget, 2015, 6( 29): 26729- 26745. DOI: 10.18632/oncotarget.4925.
    [14] SHINOZAWA T, KIMURA M, CAI YQ, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids[J]. Gastroenterology, 2021, 160( 3): 831- 846. DOI: 10.1053/j.gastro.2020.10.002.
    [15] NERO C, VIZZIELLI G, LORUSSO D, et al. Patient-derived organoids and high grade serous ovarian cancer: From disease modeling to personalized medicine[J]. J Exp Clin Cancer Res, 2021, 40( 1): 116. DOI: 10.1186/s13046-021-01917-7.
    [16] LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: Modeling development and disease using organoid technologies[J]. Science, 2014, 345( 6194): 1247125. DOI: 10.1126/science.1247125.
    [17] HUCH M, GEHART H, VAN BOXTEL R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160( 1-2): 299- 312. DOI: 10.1016/j.cell.2014.11.050.
    [18] AKBARI S, SEVINÇ GG, ERSOY N, et al. Robust, long-term culture of endoderm-derived hepatic organoids for disease modeling[J]. Stem Cell Reports, 2019, 13( 4): 627- 641. DOI: 10.1016/j.stemcr.2019.08.007.
    [19] HU HL, GEHART H, ARTEGIANI B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids[J]. Cell, 2018, 175( 6): 1591- 1606.e19. DOI: 10.1016/j.cell.2018.11.013.
    [20] TAKASATO M, ER PX, CHIU HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526( 7574): 564- 568. DOI: 10.1038/nature15695.
    [21] SCHUTGENS F, ROOKMAAKER MB, MARGARITIS T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling[J]. Nat Biotechnol, 2019, 37( 3): 303- 313. DOI: 10.1038/s41587-019-0048-8.
    [22] CHUA CW, SHIBATA M, LEI M, et al. Single luminal epithelial progenitors can generate prostate organoids in culture[J]. Nat Cell Biol, 2014, 16( 10): 951- 961, 1- 4. DOI: 10.1038/ncb3047.
    [23] SACHS N, PAPASPYROPOULOS A, ZOMER-VAN OMMEN DD, et al. Long-term expanding human airway organoids for disease modeling[J]. EMBO J, 2019, 38( 4): e100300. DOI: 10.15252/embj.2018100300.
    [24] JO J, XIAO YX, SUN AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19( 2): 248- 257. DOI: 10.1016/j.stem.2016.07.005.
    [25] BROUTIER L, MASTROGIOVANNI G, VERSTEGEN MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23( 12): 1424- 1435. DOI: 10.1038/nm.4438.
    [26] ZHANG YJ, HUANG SB, LIU J, et al. Construction and application of innovation gene-edited rats and intestinal 3D organoids models in drug metabolism and pharmacokinetics[J]. Chin J Clin Pharmacol Ther, 2021, 26( 8): 914- 922. DOI: 10.12092/j.issn.1009-2501.2021.08.006.

    张远金, 黄盛博, 刘洁, 等. 药物代谢创新模型:基因编辑大鼠和小肠3D类器官[J]. 中国临床药理学与治疗学, 2021, 26( 8): 914- 922. DOI: 10.12092/j.issn.1009-2501.2021.08.006.
    [27] WANG YQ, WANG P, QIN JH. Human organoids and organs-on-chips for addressing COVID-19 challenges[J]. Adv Sci, 2022, 9( 10): e2105187. DOI: 10.1002/advs.202105187.
    [28] GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159( 1): 176- 187. DOI: 10.1016/j.cell.2014.08.016.
    [29] CLEVERS H. Modeling development and disease with organoids[J]. Cell, 2016, 165( 7): 1586- 1597. DOI: 10.1016/j.cell.2016.05.082.
    [30] MICHALOPOULOS GK, BOWEN WC, MULÈ K, et al. Histological organization in hepatocyte organoid cultures[J]. Am J Pathol, 2001, 159( 5): 1877- 1887. DOI: 10.1016/S0002-9440(10)63034-9.
    [31] LIN L, LEI M, LIN JM, et al. Advances and applications in liver organoid technology[J]. Sci Sin Vitae, 2023, 53( 2): 185- 195.

    林丽, 雷妙, 林佳漫, 等. 肝脏类器官的研究进展及应用[J]. 中国科学: 生命科学, 2023, 53( 2): 185- 195.
    [32] HUCH M, DORRELL C, BOJ SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration[J]. Nature, 2013, 494( 7436): 247- 250. DOI: 10.1038/nature11826.
    [33] OGAWA M, OGAWA S, BEAR CE, et al. Directed differentiation of cholangiocytes from human pluripotent stem cells[J]. Nat Biotechnol, 2015, 33( 8): 853- 861. DOI: 10.1038/nbt.3294.
    [34] SAMPAZIOTIS F, DE BRITO MC, MADRIGAL P, et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation[J]. Nat Biotechnol, 2015, 33( 8): 845- 852. DOI: 10.1038/nbt.3275.
    [35] DIANAT N, DUBOIS-POT-SCHNEIDER H, STEICHEN C, et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells[J]. Hepatology, 2014, 60( 2): 700- 714. DOI: 10.1002/hep.27165.
    [36] WU FF, WU D, REN Y, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells[J]. J Hepatol, 2019, 70( 6): 1145- 1158. DOI: 10.1016/j.jhep.2018.12.028.
    [37] LI YW, WONG IY, GUO M. Reciprocity of cell mechanics with extracellular stimuli: Emerging opportunities for translational medicine[J]. Small, 2022, 18( 36): e2107305. DOI: 10.1002/smll.202107305.
    [38] HERRERA J, HENKE CA, BITTERMAN PB. Extracellular matrix as a driver of progressive fibrosis[J]. J Clin Invest, 2018, 128( 1): 45- 53. DOI: 10.1172/JCI93557.
    [39] FAN QH, ZHENG Y, WANG XC, et al. Dynamically re-organized collagen fiber bundles transmit mechanical signals and induce strongly correlated cell migration and self-organization[J]. Angew Chem Int Ed Engl, 2021, 60( 21): 11858- 11867. DOI: 10.1002/anie.202016084.
    [40] NIA HT, DATTA M, SEANO G, et al. In vivo compression and imaging in mouse brain to measure the effects of solid stress[J]. Nat Protoc, 2020, 15( 8): 2321- 2340. DOI: 10.1038/s41596-020-0328-2.
    [41] PRIYA R, ALLANKI S, GENTILE A, et al. Tension heterogeneity directs form and fate to pattern the myocardial wall[J]. Nature, 2020, 588( 7836): 130- 134. DOI: 10.1038/s41586-020-2946-9.
    [42] MUNCIE JM, AYAD NME, LAKINS JN, et al. Mechanical tension promotes formation of gastrulation-like nodes and patterns mesoderm specification in human embryonic stem cells[J]. Dev Cell, 2020, 55( 6): 679- 694.e11. DOI: 10.1016/j.devcel.2020.10.015.
    [43] XUE XF, SUN YB, RESTO-IRIZARRY AM, et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells[J]. Nat Mater, 2018, 17( 7): 633- 641. DOI: 10.1038/s41563-018-0082-9.
    [44] ABHILASH AS, BAKER BM, TRAPPMANN B, et al. Remodeling of fibrous extracellular matrices by contractile cells: Predictions from discrete fiber network simulations[J]. Biophys J, 2014, 107( 8): 1829- 1840. DOI: 10.1016/j.bpj.2014.08.029.
    [45] POLING HM, WU D, BROWN N, et al. Mechanically induced development and maturation of human intestinal organoids in vivo[J]. Nat Biomed Eng, 2018, 2( 6): 429- 442. DOI: 10.1038/s41551-018-0243-9.
    [46] LI YW, CHEN MR, HU JL, et al. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β-catenin signaling[J]. Cell Stem Cell, 2021, 28( 1): 63- 78. DOI: 10.1016/j.stem.2020.09.012.
    [47] WANG L, LUO JY, LI BC, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow[J]. Nature, 2016, 540( 7634): 579- 582. DOI: 10.1038/nature20602.
    [48] STEWART MP, HELENIUS J, TOYODA Y, et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding[J]. Nature, 2011, 469( 7329): 226- 230. DOI: 10.1038/nature09642.
    [49] CAI DF, FELICIANO D, DONG P, et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression[J]. Nat Cell Biol, 2019, 21( 12): 1578- 1589. DOI: 10.1038/s41556-019-0433-z.
    [50] DABAGH M, JALALI P, BUTLER PJ, et al. Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow[J]. J R Soc Interface, 2017, 14( 130): 20170185. DOI: 10.1098/rsif.2017.0185.
    [51] DASH A, SIMMERS MB, DEERING TG, et al. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro[J]. Am J Physiol Cell Physiol, 2013, 304( 11): C1053- C1063. DOI: 10.1152/ajpcell.00331.2012.
    [52] WANG YQ, WANG H, DENG PW, et al. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system[J]. Lab Chip, 2018, 18( 23): 3606- 3616. DOI: 10.1039/c8lc00869h.
    [53] ZHENG Y, XUE XF, SHAO Y, et al. Controlled modelling of human epiblast and amnion development using stem cells[J]. Nature, 2019, 573( 7774): 421- 425. DOI: 10.1038/s41586-019-1535-2.
    [54] HOMAN KA, GUPTA N, KROLL KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro[J]. Nat Methods, 2019, 16( 3): 255- 262. DOI: 10.1038/s41592-019-0325-y.
    [55] KANG YBA, SODUNKE TR, LAMONTAGNE J, et al. Liver sinusoid on a chip: Long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms[J]. Biotechnol Bioeng, 2015, 112( 12): 2571- 2582. DOI: 10.1002/bit.25659.
    [56] HOFER M, LUTOLF MP. Engineering organoids[J]. Nat Rev Mater, 2021, 6( 5): 402- 420. DOI: 10.1038/s41578-021-00279-y.
    [57] JUNG DJ, BYEON JH, JEONG GS. Flow enhances phenotypic and maturation of adult rat liver organoids[J]. Biofabrication, 2020, 12( 4): 045035. DOI: 10.1088/1758-5090/abb538.
    [58] MICHIELIN F, GIOBBE GG, LUNI C, et al. The microfluidic environment reveals a hidden role of self-organizing extracellular matrix in hepatic commitment and organoid formation of hiPSCs[J]. Cell Rep, 2020, 33( 9): 108453. DOI: 10.1016/j.celrep.2020.108453.
    [59] KRATOCHVIL MJ, SEYMOUR AJ, LI TL, et al. Engineered materials for organoid systems[J]. Nat Rev Mater, 2019, 4( 9): 606- 622. DOI: 10.1038/s41578-019-0129-9.
    [60] KANNINEN LK, HARJUMÄKI R, PELTONIEMI P, et al. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells[J]. Biomaterials, 2016, 103: 86- 100. DOI: 10.1016/j.biomaterials.2016.06.054.
    [61] GJOREVSKI N, SACHS N, MANFRIN A, et al. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539( 7630): 560- 564. DOI: 10.1038/nature20168.
    [62] NG S, TAN WJ, PEK MMX, et al. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture[J]. Biomaterials, 2019, 219: 119400. DOI: 10.1016/j.biomaterials.2019.119400.
    [63] ZHANG Y, TANG CL, SPAN PN, et al. Polyisocyanide hydrogels as a tunable platform for mammary gland organoid formation[J]. Adv Sci, 2020, 7( 18): 2001797. DOI: 10.1002/advs.202001797.
    [64] LANGHANS SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning[J]. Front Pharmacol, 2018, 9: 6. DOI: 10.3389/fphar.2018.00006.
    [65] LIU ZX, FU JX, YUAN HB, et al. Polyisocyanide hydrogels with tunable nonlinear elasticity mediate liver carcinoma cell functional response[J]. Acta Biomater, 2022, 148: 152- 162. DOI: 10.1016/j.actbio.2022.06.022.
    [66] SORRENTINO G, REZAKHANI S, YILDIZ E, et al. Mechano-modulatory synthetic niches for liver organoid derivation[J]. Nat Commun, 2020, 11( 1): 3416. DOI: 10.1038/s41467-020-17161-0.
    [67] LIU-CHITTENDEN Y, HUANG B, SHIM JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP[J]. Genes Dev, 2012, 26( 12): 1300- 1305. DOI: 10.1101/gad.192856.112.
    [68] KECHAGIA JZ, IVASKA J, ROCA-CUSACHS P. Integrins as biomechanical sensors of the microenvironment[J]. Nat Rev Mol Cell Biol, 2019, 20( 8): 457- 473. DOI: 10.1038/s41580-019-0134-2.
    [69] CHO S, IRIANTO J, DISCHER DE. Mechanosensing by the nucleus: From pathways to scaling relationships[J]. J Cell Biol, 2017, 216( 2): 305- 315. DOI: 10.1083/jcb.201610042.
    [70] CHARRAS G, SAHAI E. Physical influences of the extracellular environment on cell migration[J]. Nat Rev Mol Cell Biol, 2014, 15( 12): 813- 824. DOI: 10.1038/nrm3897.
    [71] FLETCHER DA, MULLINS RD. Cell mechanics and the cytoskeleton[J]. Nature, 2010, 463( 7280): 485- 492. DOI: 10.1038/nature08908.
    [72] HAN YL, RONCERAY P, XU GQ, et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix[J]. Proc Natl Acad Sci U S A, 2018, 115( 16): 4075- 4080. DOI: 10.1073/pnas.1722619115.
    [73] CHAUDHURI O, GU L, KLUMPERS D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J]. Nat Mater, 2016, 15( 3): 326- 334. DOI: 10.1038/nmat4489.
    [74] RIZWAN M, LING C, GUO CY, et al. Viscoelastic Notch signaling hydrogel induces liver bile duct organoid growth and morphogenesis[J]. Adv Healthc Mater, 2022, 11( 23): e2200880. DOI: 10.1002/adhm.202200880.
    [75] GÜNTHER C, WINNER B, NEURATH MF, et al. Organoids in gastrointestinal diseases: From experimental models to clinical translation[J]. Gut, 2022, 71( 9): 1892- 1908. DOI: 10.1136/gutjnl-2021-326560.
    [76] BEATTY R, MENDEZ KL, SCHREIBER LHJ, et al. Soft robot-mediated autonomous adaptation to fibrotic capsule formation for improved drug delivery[J]. Sci Robot, 2023, 8( 81): eabq4821. DOI: 10.1126/scirobotics.abq4821.
  • 加载中
图(1)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  133
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-24
  • 录用日期:  2023-04-19
  • 出版日期:  2023-12-12
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回