中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HBV DNA聚合酶在介导HBV相关肝细胞癌肿瘤细胞免疫逃逸中的作用

李鸿侠 孙一萌 张鸿涛 韩树旺 张德林 尚海涛 郭午 刘军舰 李忠廉

引用本文:
Citation:

HBV DNA聚合酶在介导HBV相关肝细胞癌肿瘤细胞免疫逃逸中的作用

DOI: 10.3969/j.issn.1001-5256.2023.12.017
基金项目: 

国家自然科学基金面上项目 (81273952);

天津市卫生健康委员会中医中西医结合科研课题 (2021042);

天津市教委科研计划项目 (2022KJ271)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:李忠廉、李鸿侠负责设计论文框架,起草论文;孙一萌、郭午负责实验操作,研究过程的实施;尚海涛、张鸿涛负责数据收集,统计学分析,绘制图表;韩树旺、张德林负责论文修改;李忠廉、刘军舰负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    刘军舰, nkyyljj2022@163.com (ORCID: 0000-0002-2754-8602)

    李忠廉, nkyylzl@163.com (ORCID: 0000-0001-5211-7612)

Role of HBV DNA polymerase in mediating the immune escape of tumor cells in HBV-related hepatocellular carcinoma

Research funding: 

General Project of National Natural Science Foundation of China (81273952);

Tianjin Municipal Health and Health Commission of Traditional Chinese Medicine and Integrative Medicine Research Project (2021042);

Tianjin Municipal Education Commission Research Program Project (2022KJ271)

More Information
  • 摘要:   目的  本研究旨在明确HBV DNA聚合酶是否与T淋巴细胞功能衰竭相关,进而介导HBV相关肝细胞癌(HCC)肿瘤细胞的免疫逃逸以及探寻具体的分子机制。  方法  稳定转染带有Flag标签的HBV DNA聚合酶表达质粒(Flag-HBV-P)和细胞间黏附分子-1(ICAM1)的肝癌细胞系Huh7、HepG2与Jurkat细胞共培养,MTT、qRT-PCR、酶联免疫吸附测定(ELISA)实验分别检测Jurkat细胞增殖、活化(CD69表达)以及细胞因子IFN-γ分泌情况。RNA-seq筛选稳转细胞系与对照细胞中表达差异的免疫相关分子,mRNA半衰期及蛋白半衰期实验确定HBV DNA聚合酶对免疫相关分子具体在何种水平产生影响。网站预测此免疫相关分子启动子区域可能结合的转录因子,Western Blot实验验证转录因子对免疫相关分子的影响,挽救实验确定HBV DNA聚合酶是否通过此转录因子影响免疫相关分子的表达水平。两组间比较采用成组t检验。  结果  与对照组相比,实验组细胞(Huh7、HepG2)增殖、活化及细胞因子分泌明显降低(P值均<0.01)。与对照细胞相比,实验组细胞(Huh7、HepG2)的ICAM1 mRNA和蛋白水平均降低(P值均<0.01)。网站预测ICAM1启动子并初步筛选锚定了NFKB1、RELA和STAT3。与对照组相比,实验组细胞(Huh7、HepG2)p65蛋白的表达水平明显降低(P值均<0.01)。过表达p65后,ICAM1蛋白表达水平明显升高,降表达p65后,ICAM1蛋白表达水平明显降低(P值均<0.01),挽救实验中过表达p65后,对照组与实验组细胞的ICAM1表达水平无明显差异(P值均>0.05)。过表达ICAM1后,对照组与实验组细胞(Huh7、HepG2)的增殖、活化及细胞因子分泌无明显差异(P值均>0.05)。  结论  HBV DNA聚合酶通过抑制NF-κB中p65的表达来下调ICAM1的水平以介导HCC免疫逃逸。

     

  • 图  1  稳定表达HBV DNA聚合酶的人HCC细胞抑制了Jurkat细胞的增殖、CD69表达和IFN-γ分泌

    注: a、c、e,Huh7;b、d、f,HepG2。a、b,MTT法检测Jurkat细胞的增殖;c、d,RT-qPCR检测Jurkat细胞CD69的表达;e、f,ELISA法检测Jurkat细胞IFN-γ的分泌。

    Figure  1.  Human HCC cells stably expressing HBV DNA polymerase inhibit proliferation, CD69 expression and IFN-γ secretion in Jurkat cells

    图  2  HBV DNA聚合酶下调ICAM1表达

    注: a,RNA-seq分析差异表达分子;b、c,GO富集分析免疫相关分子;d,TIMER数据库对肝癌的ICAM1表达和免疫细胞滤过水平的相关性分析;e,RT-qPCR检测ICAM1 mRNA水平;f,Western Blot检测ICAM1蛋白水平。

    Figure  2.  HBV DNA polymerase downregulates ICAM1 expression

    图  3  网站预测与ICAM1启动子区域结合的可能转录因子

    注: a,UCSC预测的ICAM1启动子区域可能的转录因子结合情况。b、c,JASPAR预测的ICAM1启动子区域中NFKB1、RELA和STAT3可能结合的区域位点和序列。

    Figure  3.  Website prediction of possible transcription factors bound to the ICAM1 promoter region

    图  4  HBV DNA聚合酶通过抑制NF-κB表达而下调ICAM1水平

    注: a~c,Western Blot检测STAT3、p65和p50蛋白水平;d、e,质粒转染后,Western Blot检测ICAM1蛋白水平。

    Figure  4.  HBV DNA polymerase downregulates ICAM1 levels by inhibiting NF-κB expression

    图  5  ICAM1的过量表达部分缓解了HBV DNA聚合酶对免疫细胞功能的抑制

    注: a、b,MTT法检测Jurkat细胞的增殖;c、d,RT-qPCR检测Jurkat细胞CD69的表达;e、f,ELISA法检测Jurkat细胞IFN-γ的分泌。

    Figure  5.  Overexpression of ICAM1 partially alleviates the suppression of immune cell function by HBV DNA polymerase

    表  1  引物序列

    Table  1.   Primer Sequences

    基因 上游引物(5′-3′) 下游引物(5′-3′)
    Flag-HBV-P GCCGGTACCATGCCCCTATCCTATCAACA ATAAGAATGCGGCCGCCGGTGGTCTCCATGCGAC
    pcDNA3-ICAM1 CTAGAATTCATGGCTCCCAGCAGCCCCCG GCTCTAGAGGGAGGCGTGGCTTGTGTGT
    pcDNA3-p65 CCCAAGCTTATGGACGAACTGTTC GCTCTAGAGGAGCTGATCTGACT
    shR-p65 ATAGGATCCCCGGAGAAACGTAAAAGGACATTCAAGAGATGTCCTTTTACGTTTCTCCTTTTTAAGCTTATA TATAAGCTTAAAAAGGAGAAACGTAAAAGGACATCTCTTGAATGTCCTTTTACGTTTCTCCGGGGATCCTAT
    下载: 导出CSV
  • [1] MODY K, ABOU-ALFA GK. Systemic therapy for advanced hepatocellular carcinoma in an evolving landscape[J]. Curr Treat Options Oncol, 2019, 20( 2): 3. DOI: 10.1007/s11864-019-0601-1.
    [2] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68( 6): 394- 424. DOI: 10.3322/caac.21492.
    [3] SCHLABE S, ROCKSTROH JK. Advances in the treatment of HIV/HCV coinfection in adults[J]. Expert Opin Pharmacother, 2018, 19( 1): 49- 64. DOI: 10.1080/14656566.2017.1419185.
    [4] CHEN Z, XIE H, HU M, et al. Recent progress in treatment of hepatocellular carcinoma[J]. Am J Cancer Res, 2020, 10( 9): 2993- 3036.
    [5] NORDENSTEDT H, WHITE DL, EL-SERAG HB. The changing pattern of epidemiology in hepatocellular carcinoma[J]. Dig Liver Dis, 2010, 42( Suppl 3): S206- S214. DOI: 10.1016/S1590-8658(10)60507-5.
    [6] SCHWEITZER A, HORN J, MIKOLAJCZYK RT, et al. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013[J]. Lancet, 2015, 386( 10003): 1546- 1555. DOI: 10.1016/S0140-6736(15)61412-X.
    [7] WILD CP, MILLER JD, GROOPMAN JD, et al. Mycotoxin control in low-and middle-income countries[M]. Lyon(FR): International Agency for Research on Cancer © International Agency for Research on Cancer, 2015.
    [8] BARTENSCHLAGER R, SCHALLER H. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome[J]. EMBO J, 1992, 11( 9): 3413- 3420. DOI: 10.1002/j.1460-2075.1992.tb05420.x.
    [9] HIRSCH RC, LOEB DD, POLLACK JR, et al. cis-acting sequences required for encapsidation of duck hepatitis B virus pregenomic RNA[J]. J Virol, 1991, 65( 6): 3309- 3316. DOI: 10.1128/JVI.65.6.3309-3316.1991.
    [10] WEI L, PLOSS A. Hepatitis B virus cccDNA is formed through distinct repair processes of each strand[J]. Nat Commun, 2021, 12( 1): 1591. DOI: 10.1038/s41467-021-21850-9.
    [11] SELZER L, ZLOTNICK A. Assembly and release of hepatitis B virus[J]. Cold Spring Harb Perspect Med, 2015, 5( 12): a021394. DOI: 10.1101/cshperspect.a021394.
    [12] ZLOTNICK A, VENKATAKRISHNAN B, TAN Z, et al. Core protein: A pleiotropic keystone in the HBV lifecycle[J]. Antiviral Res, 2015, 121: 82- 93. DOI: 10.1016/j.antiviral.2015.06.020.
    [13] INOUE T, TANAKA Y. The Role of hepatitis B core-related antigen[J]. Genes(Basel), 2019, 10( 5): 357. DOI: 10.3390/genes10050357.
    [14] BOUCHARD MJ, SCHNEIDER RJ. The enigmatic X gene of hepatitis B virus[J]. J Virol, 2004, 78( 23): 12725- 12734. DOI: 10.1128/JVI.78.23.12725-12734.2004.
    [15] BENHENDA S, COUGOT D, BUENDIA MA, et al. Hepatitis B virus X protein molecular functions and its role in virus life cycle and pathogenesis[J]. Adv Cancer Res, 2009, 103: 75- 109. DOI: 10.1016/S0065-230X(09)03004-8.
    [16] SLAGLE BL, BOUCHARD MJ. Role of HBx in hepatitis B virus persistence and its therapeutic implications[J]. Curr Opin Virol, 2018, 30: 32- 38. DOI: 10.1016/j.coviro.2018.01.007.
    [17] BELLONI L, POLLICINO T, de NICOLA F, et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function[J]. Proc Natl Acad Sci U S A, 2009, 106( 47): 19975- 19979. DOI: 10.1073/pnas.0908365106.
    [18] HU J, FLORES D, TOFT D, et al. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function[J]. J Virol, 2004, 78( 23): 13122- 13131. DOI: 10.1128/JVI.78.23.13122-13131.2004.
    [19] KIM S, WANG H, RYU WS. Incorporation of eukaryotic translation initiation factor eIF4E into viral nucleocapsids via interaction with hepatitis B virus polymerase[J]. J Virol, 2010, 84( 1): 52- 58. DOI: 10.1128/JVI.01232-09.
    [20] JONES SA, HU J. Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention[J]. Emerg Microbes Infect, 2013, 2( 9): e56. DOI: 10.1038/emi.2013.56.
    [21] YU S, CHEN J, WU M, et al. Hepatitis B virus polymerase inhibits RIG-I- and Toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulatory factor 3 activation and dampening of the interaction between TBK1/IKKepsilon and DDX3[J]. J Gen Virol, 2010, 91( Pt 8): 2080- 2090. DOI: 10.1099/vir.0.020552-0.
    [22] WANG H, RYU WS. Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion[J]. PLoS Pathog, 2010, 6( 7): e1000986. DOI: 10.1371/journal.ppat.1000986.
    [23] LIU Y, LI J, CHEN J, et al. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways[J]. J Virol, 2015, 89( 4): 2287- 2300. DOI: 10.1128/JVI.02760-14.
    [24] SUN Y, YU M, QU M, et al. Hepatitis B virus-triggered PTEN/β-catenin/c-Myc signaling enhances PD-L1 expression to promote immune evasion[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318( 1): G162- G173. DOI: 10.1152/ajpgi.00197.2019.
    [25] LIU M, WU H, LIU T, et al. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma[J]. Cell Res, 2009, 19( 7): 828- 837. DOI: 10.1038/cr.2009.72.
    [26] CHEN Y, XU Y, ZHAO M, et al. High-throughput T cell receptor sequencing reveals distinct repertoires between tumor and adjacent non-tumor tissues in HBV-associated HCC[J]. Oncoimmunology, 2016, 5( 10): e1219010. DOI: 10.1080/2162402X.2016.1219010.
    [27] STAUNTON DE, MARLIN SD, STRATOWA C, et al. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families[J]. Cell, 1988, 52( 6): 925- 933. DOI: 10.1016/0092-8674(88)90434-5.
    [28] HUBBARD AK, ROTHLEIN R. Intercellular adhesion molecule-1(ICAM-1) expression and cell signaling cascades[J]. Free Radic Biol Med, 2000, 28( 9): 1379- 1386. DOI: 10.1016/s0891-5849(00)00223-9.
    [29] WEE H, OH HM, JO JH, et al. ICAM-1/LFA-1 interaction contributes to the induction of endothelial cell-cell separation: implication for enhanced leukocyte diapedesis[J]. Exp Mol Med, 2009, 41( 5): 341- 348. DOI: 10.3858/emm.2009.41.5.038.
    [30] GORINA R, LYCK R, VESTWEBER D, et al. β2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier[J]. J Immunol, 2014, 192( 1): 324- 337. DOI: 10.4049/jimmunol.1300858.
    [31] BACHMANN MF, MCKALL-FAIENZA K, SCHMITS R, et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation[J]. Immunity, 1997, 7( 4): 549- 557. DOI: 10.1016/s1074-7613(00)80376-3.
    [32] JENKINSON SR, WILLIAMS NA, MORGAN DJ. The role of intercellular adhesion molecule-1/LFA-1 interactions in the generation of tumor-specific CD8+ T cell responses[J]. J Immunol, 2005, 174( 6): 3401- 3407. DOI: 10.4049/jimmunol.174.6.3401.
    [33] POGGI A, PREVOSTO C, ZANCOLLI M, et al. NKG2D and natural cytotoxicity receptors are involved in natural killer cell interaction with self-antigen presenting cells and stromal cells[J]. Ann N Y Acad Sci, 2007, 1109: 47- 57. DOI: 10.1196/annals.1398.007.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  77
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 录用日期:  2023-05-25
  • 出版日期:  2023-12-12
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回