纳米药物治疗肝纤维化的研究进展
DOI: 10.3969/j.issn.1001-5256.2023.02.026
-
摘要: 肝纤维化是由肝脏慢性损伤和炎症反应引起肝星状细胞(HSC)活化和细胞外基质过度沉积的病理过程。HSC活化是肝纤维化形成的核心机制,抑制HSC激活是促进肝纤维化逆转的关键。近年来,应用靶向HSC的纳米药物来治疗肝纤维化取得了快速发展。本文主要介绍纳米药物、纳米药物在肝纤维化中的作用机制及可能存在的潜在靶点。纳米药物有望成为治疗肝纤维化的新方法。Abstract: Liver fibrosis (LF) is a pathological process of hepatic stellate cell (HSC) activation and excessive deposition of extracellular matrix caused by chronic liver injury and inflammation. HSC activation is the core mechanism of LF, and inhibiting HSC activation is the key to promoting the reversal of LF. In recent years, rapid development has been achieved for the application of nanomedicine targeting HSC in the treatment of LF. This article mainly introduces nanomedicine, the mechanism of action of nanomedicine in the treatment of LF, and potential targets, and it is pointed out that nanomedicine may become a new method for the treatment of LF.
-
Key words:
- Liver Cirrhosis /
- Nanoparticles /
- Drug Therapy
-
表 1 已注册的部分纳米药物干预肝纤维化的临床试验
Table 1. Clinical trial of some registered nano drugs for intervention of liver fibrosis
登记号 疾病 阶段 纳入人数 分配/盲法 干预模式 试验药物 靶点 开始时间/状态 NCT02227459 肝纤维化、肝硬化 Ⅰ/Ⅱ 25 随机/开放标签 单组分配 ND-L02-s0201 SERPINH1 2014年10月/已完成 NCT03142165 纤维化 I 33 随机/四人组(参与者、护理者、研究者、结果评估员) 平行分配 BMS-986263、法莫替丁、苯海拉明 SERPINH1、IFNAR、HRH2、HRH1 2017年5月/已完成 NCT03241264 纤维化 I 12 随机/开放标签 交叉分配 ND-L02-s0201 SERPINH1 2016年8月/已完成 NCT03420768 肝硬化、肝纤维化 Ⅱ 61 随机/四人组(参与者、护理者、研究者、结果评估员) 平行分配 BMS-986263 SERPINH1 2018年2月/已完成 NCT04225936 肝病 Ⅰ 40 非随机/开放标签 顺序分配 BMS-986263 SERPINH1 2020年1月/已完成 NCT04267393 非酒精性脂肪性肝炎、肝硬化 Ⅱ 270 随机/四人组(参与者、护理者、研究者、结果评估员) 平行分配 BMS-986263 SERPINH1 2021年3月/进行中 NCT04682847 肝硬化、肝癌等 - 25 _ _ 纳米氧化铁 _ 2020年11月/进行中 注:ND-L02-s0201、BMS-986263,含有siRNA对抗HSP47的脂质纳米颗粒。 -
[1] FAN J, TONG G, CHEN X, et al. CK2 blockade alleviates liver fibrosis by suppressing activation of hepatic stellate cells via the Hedgehog pathway[J]. Br J Pharmacol, 2023, 180(1): 44-61. DOI: 10.1111/bph.15945. [2] GU L, ZHANG F, WU J, et al. Nanotechnology in drug delivery for liver fibrosis[J]. Front Mol Biosci, 2021, 8: 804396. DOI: 10.3389/fmolb.2021.804396. [3] AHMED T, LIU FF, HE C, et al. Optimizing the design of blood-brain barrier-penetrating polymer-lipid-hybrid nanoparticles for delivering anticancer drugs to glioblastoma[J]. Pharm Res, 2021, 38(11): 1897-1914. DOI: 10.1007/s11095-021-03122-9. [4] DANAEI M, DEHGHANKHOLD M, ATAEI S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems[J]. Pharmaceutics, 2018, 10(2): 57. DOI: 10.3390/pharmaceutics10020057. [5] YUAN S, ZHANG Q. Application of one-dimensional nanomaterials in catalysis at the single-molecule and single-particle scale[J]. Front Chem, 2021, 9: 812287. DOI: 10.3389/fchem.2021.812287. [6] KOERNER J, HORVATH D, GROETTRUP M. Harnessing dendritic cells for poly (D, L-lactide-co-glycolide) microspheres (PLGA MS)-mediated anti-tumor therapy[J]. Front Immunol, 2019, 10: 707. DOI: 10.3389/fimmu.2019.00707. [7] GIANNITRAPANI L, SORESI M, BONDÌ ML, et al. Nanotechnology applications for the therapy of liver fibrosis[J]. World J Gastroenterol, 2014, 20(23): 7242-7251. DOI: 10.3748/wjg.v20.i23.7242. [8] ZHANG A, MENG K, LIU Y, et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences[J]. Adv Colloid Interface Sci, 2020, 284: 102261. DOI: 10.1016/j.cis.2020.102261. [9] ZHANG YN, POON W, TAVARES AJ, et al. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination[J]. J Control Release, 2016, 240: 332-348. DOI: 10.1016/j.jconrel.2016.01.020. [10] BARTNECK M, WARZECHA KT, TACKE F. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine[J]. Hepatobiliary Surg Nutr, 2014, 3(6): 364-376. DOI: 10.3978/j.issn.2304-3881.2014.11.02. [11] PENG W, CHENG S, BAO Z, et al. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis[J]. Biomed Pharmacother, 2021, 137: 111342. DOI: 10.1016/j.biopha.2021.111342. [12] SHEVTSOV M, ZHAO L, PROTZER U, et al. Applicability of metal nanoparticles in the detection and monitoring of hepatitis b virus infection[J]. Viruses, 2017, 9(7): 193. DOI: 10.3390/v9070193. [13] RIBERA J, VILCHES C, SANZ V, et al. Treatment of hepatic fibrosis in mice based on targeted plasmonic hyperthermia[J]. ACS Nano, 2021, 15(4): 7547-7562. DOI: 10.1021/acsnano.1c00988. [14] EL-BENDARY MA, AFIFI SS, MOHARAM ME, et al. Biosynthesis of silver nanoparticles using isolated Bacillus subtilis: characterization, antimicrobial activity, cytotoxicity, and their performance as antimicrobial agent for textile materials[J]. Prep Biochem Biotechnol, 2021, 51(1): 54-68. DOI: 10.1080/10826068.2020.1789992. [15] GAD SS, ABDELRAHIM DS, ISMAIL SH, et al. Selenium and silver nanoparticles: A new approach for treatment of bacterial and viral hepatic infections via modulating oxidative stress and DNA fragmentation[J]. J Biochem Mol Toxicol, 2022, 36(3): e22972. DOI: 10.1002/jbt.22972. [16] PENG F, TEE JK, SETYAWATI MI, et al. Inorganic nanomaterials as highly efficient inhibitors of cellular hepatic fibrosis[J]. ACS Appl Mater Interfaces, 2018, 10(38): 31938-31946. DOI: 10.1021/acsami.8b10527. [17] TEE JK, NG LY, KOH HY, et al. Titanium dioxide nanoparticles enhance leakiness and drug permeability in primary human hepatic sinusoidal endothelial cells[J]. Int J Mol Sci, 2018, 20(1): 35. DOI: 10.3390/ijms20010035. [18] KURNIAWAN DW, BOOIJINK R, PATER L, et al. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo[J]. J Control Release, 2020, 328: 640-652. DOI: 10.1016/j.jconrel.2020.09.041. [19] CORNU R, BÉDUNEAU A, MARTIN H. Influence of nanoparticles on liver tissue and hepatic functions: A review[J]. Toxicology, 2020, 430: 152344. DOI: 10.1016/j.tox.2019.152344. [20] GHARIEH A, KHOEE S, MAHDAVIAN AR. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics[J]. Adv Colloid Interface Sci, 2019, 269: 152-186. DOI: 10.1016/j.cis.2019.04.010. [21] CHEN XF, JI S. Sorafenib attenuates fibrotic hepatic injury through mediating lysine crotonylation[J]. Drug Des Devel Ther, 2022, 16: 2133-2144. DOI: 10.2147/DDDT.S368306. [22] SUNG YC, LIU YC, CHAO PH, et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development[J]. Theranostics, 2018, 8(4): 894-905. DOI: 10.7150/thno.21168. [23] LI M, DU C, GUO N, et al. Composition design and medical application of liposomes[J]. Eur J Med Chem, 2019, 164: 640-653. DOI: 10.1016/j.ejmech.2019.01.007. [24] ULLAH A, CHEN G, YIBANG Z, et al. A new approach based on CXCR4-targeted combination liposomes for the treatment of liver fibrosis[J]. Biomater Sci, 2022, 10(10): 2650-2664. DOI: 10.1039/d2bm00242f. [25] KESHARWANI SS, KAUR S, TUMMALA H, et al. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors[J]. Colloids Surf B Biointerfaces, 2019, 173: 581-590. DOI: 10.1016/j.colsurfb.2018.10.022. [26] DOU JY, JIANG YC, HU ZH, et al. Betulin targets lipin1/2-meidated P2X7 receptor as a therapeutic approach to attenuate lipid accumulation and metaflammation[J]. Biomol Ther (Seoul), 2022, 30(3): 246-256. DOI: 10.4062/biomolther.2021.136. [27] XU J, WANG X, ZHANG H, et al. Synthesis of triterpenoid derivatives and their anti-tumor and anti-hepatic fibrosis activities[J]. Nat Prod Res, 2020, 34(6): 766-772. DOI: 10.1080/14786419.2018.1499642. [28] LIU XY, LI D, LI TY, et al. Vitamin A - modified Betulin polymer micelles with hepatic targeting capability for hepatic fibrosis protection[J]. Eur J Pharm Sci, 2022, 174: 106189. DOI: 10.1016/j.ejps.2022.106189. [29] BAI X, SU G, ZHAI S. Recent advances in nanomedicine for the diagnosis and therapy of liver fibrosis[J]. Nanomaterials (Basel), 2020, 10(10): 1945. DOI: 10.3390/nano10101945. [30] ZAVORKA ME, CONNELLY CM, GROSELY R, et al. Inhibition of insulin-like growth factor II (IGF-II)-dependent cell growth by multidentate pentamannosyl 6-phosphate-based ligands targeting the mannose 6-phosphate/IGF-II receptor[J]. Oncotarget, 2016, 7(38): 62386-62410. DOI: 10.18632/oncotarget.11493. [31] KUMAR V, MONDAL G, DUTTA R, et al. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis[J]. Biomaterials, 2016, 76: 144-156. DOI: 10.1016/j.biomaterials.2015.10.047. [32] LI F, LI QH, WANG JY, et al. Effects of interferon-gamma liposomes targeted to platelet-derived growth factor receptor-beta on hepatic fibrosis in rats[J]. J Control Release, 2012, 159(2): 261-270. DOI: 10.1016/j.jconrel.2011.12.023. [33] ZHANG J, SHEN H, XU J, et al. Liver-targeted siRNA lipid nanoparticles treat hepatic cirrhosis by dual antifibrotic and anti-inflammatory activities[J]. ACS Nano, 2020, 14(5): 6305-6322. DOI: 10.1021/acsnano.0c02633. [34] ZHENG Y, LEFTHERIS K. Insights into protein-ligand interactions in integrin complexes: advances in structure determinations[J]. J Med Chem, 2020, 63(11): 5675-5696. DOI: 10.1021/acs.jmedchem.9b01869. [35] XU T, LU Z, XIAO Z, et al. Myofibroblast induces hepatocyte-to-ductal metaplasia via laminin-ɑvβ6 integrin in liver fibrosis[J]. Cell Death Dis, 2020, 11(3): 199. DOI: 10.1038/s41419-020-2372-9. [36] KITSUGI K, NORITAKE H, MATSUMOTO M, et al. Arg-Gly-Asp-binding integrins activate hepatic stellate cells via the hippo signaling pathway[J]. Cell Signal, 2022, 99: 110437. DOI: 10.1016/j.cellsig.2022.110437. [37] ZHOU L, LI Y, LIANG Q, et al. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: a review[J]. J Drug Target, 2022, 30(6): 577-588. DOI: 10.1080/1061186X.2022.2044485. [38] EL-MEZAYEN NS, EL-HADIDY WF, EL-REFAIE WM, et al. Oral vitamin-A-coupled valsartan nanomedicine: High hepatic stellate cell receptors accessibility and prolonged enterohepatic residence[J]. J Control Release, 2018, 283: 32-44. DOI: 10.1016/j.jconrel.2018.05.021. [39] CARRILLO-SEPULVEDA MA, KEEN HL, DAVIS DR, et al. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension[J]. PLoS One, 2014, 9(8): e103786. DOI: 10.1371/journal.pone.0103786. [40] UNO K, MIYAJIMA K, TOMA M, et al. CD44 expression in the bile duct epithelium is related to hepatic fibrosis in nonalcoholic steatohepatitis rats induced by a choline-deficient, methionine-lowered, L-amino acid diet[J]. J Toxicol Pathol, 2022, 35(2): 149-157. DOI: 10.1293/tox.2021-0069. [41] LUO J, ZHANG P, ZHAO T, et al. Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis[J]. ACS Nano, 2019, 13(4): 3910-3923. DOI: 10.1021/acsnano.8b06924. [42] LIANG H, LI Z, REN Z, et al. Light-triggered NO-releasing nanoparticles for treating mice with liver fibrosis[J]. Nano Research, 2020, 13(8): 2197-2202. DOI: 10.1007/s12274-020-2833-6.
计量
- 文章访问数: 965
- HTML全文浏览量: 396
- PDF下载量: 116
- 被引次数: 0