Pnpla3 I148M和Tm6sf2 E167K双突变纯合小鼠模型的构建
DOI: 10.3969/j.issn.1001-5256.2022.08.013
-
摘要:
目的 利用Pnpla3148M/M纯合小鼠与Tm6sf2167K/K纯合小鼠杂交方法构建Pnpla3148M/M Tm6sf2167K/K双突变小鼠模型。 方法 利用Pnpla3 Ⅰ 148M和Tm6sf2 E 167K单突变纯合小鼠交配出Pnpla3148M/M Tm6sf2167K/K双突变杂合小鼠,再通过自交得到Pnpla3148M/M Tm6sf2167K/K双突变纯合小鼠。选取同窝的Pnpla3148M/M Tm6sf2167K/K(n=6)、Pnpla3148M/M Tm6sf2167E/E(n=6)、Pnpla3148I/I Tm6sf2167K/K(n=6)和野生(Wt)(n=6)雄性小鼠普通饮食喂养8周,在第8周检测小鼠葡萄糖及脂质代谢等指标。多组间比较采用方差分析,进一步两两比较采用LSD-t检验。 结果 琼脂糖凝胶电泳和核酸测序结果表明Pnpla3148M/M Tm6sf2167K/K双突变小鼠模型构建成功。Pnpla3148M/M Tm6sf2167K/K小鼠体质量与其他3种基因型小鼠比较,差异无统计学意义(P值均>0.05),Pnpla3148M/M Tm6sf2167K/K小鼠肝湿重高于Wt小鼠(P<0.05)。Pnpla3148M/M Tm6sf2167K/K小鼠的空腹血糖低于Tm6sf2167K/K单突变小鼠和Wt小鼠(P值均<0.05),Pnpla3148M/M Tm6sf2167K/K小鼠葡萄糖耐受能力较Tm6sf2167K/K单突变小鼠有所下降(P<0.05),四组基因型小鼠的胰岛素水平无明显差异(P值均>0.05)。Pnpla3148M/M Tm6sf2167K/K双突变小鼠的血浆生化指标与其他三种基因型小鼠比较,差异均无统计学意义(P值均>0.05)。肝脏油红O切片染色结果显示Pnpla3148M/M Tm6sf2167K/K双突变小鼠的肝脏较Pnpla3148M/M单突变小鼠和Wt小鼠更容易发生脂质积累。 结论 Pnpla3148M/M Tm6sf2167K/K双突变小鼠模型构建成功,Pnpla3 Ⅰ 148M和Tm6sf2 E 167K双突变可引起小鼠葡萄糖代谢异常。 Abstract:Objective To construct a Pnpla3148M/M Tm6sf2167K/K double mutant mouse model by crossbreeding Pnpla3148M/M homozygous mice and Tm6sf2167K/K homozygous mice. Methods Pnpla3148I/M Tm6sf2167E/K heterozygous mice were bred by hybridization of Pnpla3148M/M Tm6sf2167E/E and Pnpla3148I/I Tm6sf2167K/K homozygous mice, and the Pnpla3148M/M Tm6sf2167K/K mice were obtained by the self-crossbreeding of Pnpla3148I/M Tm6sf2167E/K mice. Male mice of Pnpla3148M/M Tm6sf2167K/K (n=6), Pnpla3148M/M Tm6sf2167E/E (n=6), and Pnpla3148I/I Tm6sf2167K/K (n=6) genotypes and Wt mice (n=6) were fed with normal diet for 8 weeks, and then the glucose and lipid metabolism indices were measured. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison bewteen two groups. Results Agarose gel electrophoresis and nucleic acid sequencing results showed that the Pnpla3148M/M Tm6sf2167K/K double mutant mouse model was successfully constructed. There were no significant difference in body weight between the Pnpla3148M/M Tm6sf2167K/K mice and the Pnpla3148M/M Tm6sf2167E/E, Pnpla3148I/I Tm6sf2167K/K, and Wt mice (all P > 0.05). The Pnpla3148M/M Tm6sf2167K/K mice had a significantly higher liver wet weight than the Wt mice (P < 0.05). The fasting blood glucose of Pnpla3148M/M Tm6sf2167K/K mice was significantly lower than that of Pnpla3148I/I Tm6sf2167K/K mice and Wt mice (both P < 0.05). The glucose tolerance of Pnpla3148M/M Tm6sf2167K/K mice was significantly reduced compared with the Pnpla3148I/I Tm6sf2167K/K mice (P < 0.05). There were no significant differences in insulin level between the four groups of mice (all P > 0.05). Also, there were no significant differences in the serum levels of biochemical indices between the Pnpla3148M/M Tm6sf2167K/K mice and the Pnpla3148M/M Tm6sf2167E/E, Pnpla3148I/I Tm6sf2167K/K, and Wt mice (all P > 0.05). Oil red O staining of the liver showed that more lipid accumulation was observed in the Pnpla3148M/M Tm6sf2167K/K mice than in the Pnpla3148M/M Tm6sf2167E/E and Wt mice. Conclusion The Pnpla3148M/M Tm6sf2167K/K double mutant mouse model was successfully constructed. Pnpla3 Ⅰ 148M and Tm6sf2 E 167K double mutations can cause abnormal glucose metabolism in mice. -
Key words:
- Non-alcoholic Fatty Liver Disease /
- Point Mutation /
- Models, Animal /
- Mice
-
表 1 小鼠基因型鉴定引物序列
Table 1. Primer sequences for mouse genotypic identification
PCR引物名称 引物序列(5′-3′) Pnpla3-wt-tF1 ATCTCTGTGAGTTCGATTGCCAG Pnpla3-wt-tR1 AGTGTATCCAACAGACAGCAGGC Tm6sf2-wt-tF1 GGCCTTTCCTAGACTCCTCA Tm6sf2-wt-tR1 CCTTCTCAGATGTTCCTCCCT 表 2 Pnpla3小鼠基因型测序引物序列
Table 2. Primer sequences for Pnpla3 mouse genotype sequencing
PCR引物名称 引物序列(5′-3′) Pnpla3-wt-tR1 AGTGTATCCAACAGACAGCAGGC 表 3 Pnpla3148I/M Tm6sf2167E/K小鼠自交后子代各基因型数量
Table 3. Number of progenies with each genotype after Pnpla3148I/ MTM6SF2167E/K mice self-breeding
小鼠基因型 数量 占总体的百分比(%) Pnpla3148M/M Tm6sf2167K/K 13 6.2 杂合小鼠 151 71.9 Pnpla3148M/M Tm6sf2167E/E 11 5.2 Pnpla3148I/I Tm6sf2167K/K 18 8.6 Wt小鼠 17 8.1 -
[1] FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922. DOI: 10.1038/s41591-018-0104-9. [2] YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109. [3] ARON-WISNEWSKY J, VIGLIOTTI C, WITJES J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(5): 279-297. DOI: 10.1038/s41575-020-0269-9. [4] WATT MJ, MIOTTO PM, de NARDO W, et al. The liver as an endocrine organ-linking NAFLD and insulin resistance[J]. Endocr Rev, 2019, 40(5): 1367-1393. DOI: 10.1210/er.2019-00034. [5] POWELL EE, WONG VW, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224. DOI: 10.1016/S0140-6736(20)32511-3. [6] TILG H, MOSCHEN AR, RODEN M. NAFLD and diabetes mellitus[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 32-42. DOI: 10.1038/nrgastro.2016.147. [7] TRÉPO E, ROMEO S, ZUCMAN-ROSSI J, et al. PNPLA3 gene in liver diseases[J]. J Hepatol, 2016, 65(2): 399-412. DOI: 10.1016/j.jhep.2016.03.011. [8] BASU RAY S. PNPLA3-I148M: a problem of plenty in non-alcoholic fatty liver disease[J]. Adipocyte, 2019, 8(1): 201-208. DOI: 10.1080/21623945.2019.1607423. [9] KOZLITINA J, SMAGRIS E, STENDER S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet, 2014, 46(4): 352-356. DOI: 10.1038/ng.2901. [10] O'HARE EA, YANG R, YERGES-ARMSTRONG LM, et al. TM6SF2 rs58542926 impacts lipid processing in liver and small intestine[J]. Hepatology, 2017, 65(5): 1526-1542. DOI: 10.1002/hep.29021. [11] STEFAN N, HÄRING HU, CUSI K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies[J]. Lancet Diabetes Endocrinol, 2019, 7(4): 313-324. DOI: 10.1016/S2213-8587(18)30154-2. [12] IOANNOU GN. Epidemiology and risk-stratification of NAFLD-associated HCC[J]. J Hepatol, 2021, 75(6): 1476-1484. DOI: 10.1016/j.jhep.2021.08.012. [13] LI JF, ZHENG EQ, XIE M. Association between rs738409 polymorphism in patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene and hepatocellular carcinoma susceptibility: Evidence from case-control studies[J]. Gene, 2019, 685: 143-148. DOI: 10.1016/j.gene.2018.11.012. [14] WANG X, LIU Z, WANG K, et al. Additive effects of the risk alleles of PNPLA3 and TM6SF2 on non-alcoholic fatty liver disease (NAFLD) in a Chinese population[J]. Front Genet, 2016, 7: 140. DOI: 10.3389/fgene.2016.00140. [15] XU M, LI Y, ZHANG S, et al. Interaction of TM6SF2 E167K and PNPLA3 I148M variants in NAFLD in northeast China[J]. Ann Hepatol, 2019, 18(3): 456-460. DOI: 10.1016/j.aohep.2018.10.005. [16] ZHANG J, MA XF, WANG YF, et al. Hepatocyte-specific TM6SF2 knockout aggravates hepatic steatosis in mice with nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2021, 37(11): 2612-2616. DOI: 10.3969/j.issn.1001-5256.2021.11.024.张杰, 马学峰, 王艺奋, 等. 肝脏TM6SF2特异性敲除促进非酒精性脂肪性肝病小鼠肝脏脂肪变性[J]. 临床肝胆病杂志, 2021, 37(11): 2612-2616. DOI: 10.3969/j.issn.1001-5256.2021.11.024. [17] LAZARUS JV, ANSTEE QM, HAGSTRÖM H, et al. Defining comprehensive models of care for NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(10): 717-729. DOI: 10.1038/s41575-021-00477-7. [18] CHEN L, DU S, LU L, et al. The additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism[J]. Oncotarget, 2017, 8(43): 74209-74216. DOI: 10.18632/oncotarget.18474.