中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体圆指数对代谢相关脂肪性肝病发生风险的预测价值

张琪振 刘素彤 张丽慧 刘鸣昊

引用本文:
Citation:

体圆指数对代谢相关脂肪性肝病发生风险的预测价值

DOI: 10.12449/JCH251015
基金项目: 

国家自然科学基金 (81904154);

国家自然科学基金 (82205086);

河南省科技攻关计划 (242102310500);

河南省“双一流”创建学科中医学科学研究专项 (HSRP-DFCTCM-2023-1-10);

河南省科技研发计划联合基金(优势学科培育类) (242301420096);

河南省科技研发计划联合基金(优势学科培育类) (242301420021);

河南省卫生健康委员会中医药传承创新专项 (2023ZXZX1162)

伦理学声明:本研究所用数据来源于NHANES,该项目已获得美国国家卫生统计中心(NCHS)研究伦理审查委员会(ERB)批准,NCHS IRB/ERB协议编号:Protocol #2011-17、Protocol #2018-01。所有调查对象均签署了书面知情同意书。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:张琪振负责论文撰写,统计学分析,绘制图表;刘素彤、张丽慧参与研究数据的获取;刘鸣昊负责拟定写作思路,指导论文撰写并提供研究经费。
详细信息
    通信作者:

    刘鸣昊, liumh015@163.com (ORCID: 0009-0001-7712-4605)

Value of body roundness index in predicting the risk of metabolic dysfunction-associated fatty liver disease

Research funding: 

National Natural Science Foundation of China (81904154);

National Natural Science Foundation of China (82205086);

Henan Province Science and Technology Research Program (242102310500);

Special Scientific Research Project on Traditional Chinese Medicine under the “Double First-Class” Initiative in Henan Province (HSRP-DFCTCM-2023-1-10);

Joint Fund of the Henan Provincial Science and Technology Research Program (Project of Advantageous Discipline Cultivation) (242301420096);

Joint Fund of the Henan Provincial Science and Technology Research Program (Project of Advantageous Discipline Cultivation) (242301420021);

Traditional Chinese Medicine Inheritance and Innovation Project of Henan Provincial Health Commission (2023ZXZX1162)

More Information
    Corresponding author: LIU Minghao, liumh015@163.com (ORCID: 0009-0001-7712-4605)
  • 摘要:   目的  基于美国国家健康与营养调查(NHANES)数据库,系统评估体圆指数(BRI)与代谢相关脂肪性肝病(MAFLD)风险的关联性,并探讨BRI作为非侵入性风险预测工具的临床应用价值。  方法  利用2015—2020年NHANES数据,将纳入人群(n=4 573)分为 MAFLD组(n=2 508)和non-MAFLD组(n=2 065),计算各参与者的BRI。为确保数据质量并减少异常值对分析结果的干扰,本研究采用箱线图方法对BRI进行异常值剔除,从而提高数据的稳健性。计量资料两组间比较采用Wilcoxon秩和检验;计数资料两组间比较采用χ2检验。为探讨BRI与MAFLD之间的关系,构建多重调整的Logistic回归模型。将BRI根据四分位数分为4组,以第1个四分位数(Q1)为参考并计算3个模型中的比值比(OR)和95%可信区间(95%CI)。应用限制性立方样条分析探讨BRI与MAFLD之间的效应剂量关系。为评估BRI对MAFLD的诊断效能,绘制受试者操作特征曲线(ROC曲线),并计算曲线下面积(AUC)。采用决策曲线分析评估模型在实际应用中的潜在临床价值。通过交互作用分析和亚组分析,探讨不同人群中BRI与MAFLD关联的差异。采用Lasso回归进行特征变量筛选与分析。  结果  与non-MAFLD组相比,MAFLD组受试者的BRI显著升高(Z=36.29,P<0.001)。在完全校正Logistic回归模型(调整年龄、性别、种族、受教育程度、贫困收入比、婚姻状况、吸烟状况、高血压、糖尿病、ALT、AST、GGT及高密度脂蛋白胆固醇等变量)中,BRI与MAFLD患病风险呈显著正相关(OR=2.53,95%CI:2.28~2.80,P<0.001)。此外,BRI最高四分位数(Q4)组MAFLD风险明显高于Q1组(OR=83.45,95%CI:51.87~134.26,P<0.001)。限制性立方样条分析进一步确认了BRI与MAFLD之间存在显著的非线性关系(P for nonlinear<0.001)。交互作用与亚组分析显示,高血压与BRI之间的交互作用具有统计学意义(P交互=0.003);与无高血压者相比,在高血压人群中,BRI与MAFLD的关联性更强(OR=1.60,95%CI:1.23~2.08,P<0.001)。ROC曲线分析显示,以BRI为核心构建的完全校正模型在区分MAFLD与非MAFLD方面具有较高判别力,AUC为0.887(95%CI:0.877~0.896)。决策曲线分析显示,在临床常用的风险阈值0.10~0.75范围内,完全校正模型具有较好的净获益。Lasso回归筛选关键变量后建立的模型AUC为0.882(95%CI:0.872~0.892),验证了预测结果的稳定性。  结论  BRI与MAFLD风险存在显著的正向关联,且在高血压人群中相关性更强。BRI作为反映腹型肥胖和内脏脂肪积聚的体型指标,在MAFLD的风险评估中具有良好的应用前景。

     

  • 图  1  BRI与MAFLD的剂量-反应关系曲线

    Figure  1.  Dose-response relationship between BRI and MAFLD

    注: a,ROC曲线;b,决策曲线。

    图  2  BRI预测MAFLD的ROC曲线与决策曲线分析

    Figure  2.  ROC curve and decision curve analysis for BRI in predicting MAFLD

    注: a,Lasso回归模型中各变量系数随λ值变化的路径图;b,Lasso回归模型的交叉验证损失均值随λ值变化的折线图,红色虚线为最优λ;c,Lasso回归模型与完全校正模型预测MAFLD的ROC曲线比较。

    图  3  Lasso回归分析与完全校正模型预测性能比较

    Figure  3.  Comparison of predictive performance between Lasso regression and the fully adjusted model

    表  1  研究队列的基线特征

    Table  1.   Baseline characteristics of the study cohort

    变量 总计(n=4 573) non-MAFLD组(n=2 065) MAFLD组(n=2 508) 统计值 P
    年龄(岁) 50.00(35.00~63.00) 45.00(31.00~62.00) 54.00(40.00~64.00) Z=8.23 <0.001
    性别[例(%)] χ2=21.82 <0.001
    2 300(50.30) 960(46.49) 1 340(53.43)
    2 273(49.70) 1 105(53.51) 1 168(46.57)
    种族[例(%)] χ2=34.95 <0.001
    墨西哥裔美国人 634(13.86) 233(11.28) 401(15.99)
    非西班牙裔白人 1 646(35.99) 708(34.29) 938(37.40)
    非西班牙裔黑人 1 015(22.20) 498(24.12) 517(20.61)
    其他种族 1 278(27.95) 626(30.31) 652(26.00)
    教育程度[例(%)] χ2=16.06 <0.001
    高中以下学历 857(18.74) 360(17.43) 497(19.82)
    高中或同等学历 1 055(23.07) 437(21.16) 618(24.64)
    高中以上学历 2 661(58.19) 1 268(61.40) 1 393(55.54)
    婚姻状况[例(%)] χ2=53.60 <0.001
    已婚/与伴侣同居 2 782(60.84) 1 195(57.87) 1 587(63.28)
    离婚/分居/丧偶 980(21.43) 410(19.85) 570(22.73)
    从未结婚 811(17.73) 460(22.28) 351(14.00)
    PIR[例(%)] χ2=4.58 0.101
    <1.3 1 267(27.71) 581(28.14) 686(27.35)
    1.3~3.5 1 834(40.10) 794(38.45) 1 040(41.47)
    >3.5 1 472(32.19) 690(33.41) 782(31.18)
    BMI(kg/m2 28.30(24.50~32.80) 24.70(22.20~27.70) 31.60(28.25~35.80) Z=37.31 <0.001
    WC(cm) 98.50(88.50~109.70) 88.80(80.80~96.20) 107.20(98.90~116.70) Z=40.39 <0.001
    BRI 5.21(3.94~6.77) 3.99(3.06~5.00) 6.35(5.17~7.85) Z=36.29 <0.001
    ALT(U/L) 19.00(14.00~27.00) 17.00(13.00~23.00) 22.00(16.00~32.00) Z=13.43 <0.001
    AST(U/L) 21.00(17.00~26.00) 20.00(17.00~25.00) 21.00(17.00~27.00) Z=3.93 <0.001
    GGT(U/L) 20.00(15.00~31.00) 17.00(12.00~24.00) 24.00(17.00~38.00) Z=18.80 <0.001
    HDL-C(mg/dL) 52.00(42.00~63.00) 58.00(48.00~70.00) 47.00(40.00~57.00) Z=-17.72 <0.001
    高血压[例(%)] χ2=238.33 <0.001
    2 266(49.55) 1 283(62.13) 983(39.19)
    2 307(50.45) 782(37.87) 1 525(60.81)
    糖尿病[例(%)] χ2=250.65 <0.001
    3 628(79.34) 1 854(89.78) 1 774(70.73)
    945(20.66) 211(10.22) 734(29.27)
    吸烟状况[例(%)] χ2=42.69 <0.001
    从未吸烟 2 556(55.89) 1 215(58.84) 1 341(53.47)
    既往吸烟 1 130(24.71) 416(20.15) 714(28.47)
    当前吸烟 887(19.40) 434(21.02) 453(18.06)
    下载: 导出CSV

    表  2  BRI与MAFLD的Logistic回归分析

    Table  2.   Logistic regression analysis of BRI and MAFLD

    变量 模型1 模型2 模型3
    OR(95%CI P OR(95%CI P OR(95%CI P
    BRI 2.66(2.44~2.91) <0.001 2.90(2.63~3.20) <0.001 2.53(2.28~2.80) <0.001
    BRI分类
    Q1 1.00 1.00 1.00
    Q2 6.52(4.77~8.92) <0.001 6.36(4.61~8.77) <0.001 4.47(3.20~6.26) <0.001
    Q3 20.39(14.78~28.12) <0.001 22.73(16.08~32.14) <0.001 13.43(9.27~19.46) <0.001
    Q4 105.22(68.81~160.90) <0.001 159.89(101.24~252.50) <0.001 83.45(51.87~134.26) <0.001

    注:模型1中未调整变量;模型2中调整年龄、性别、种族、教育程度、PIR、婚姻状况等人口学变量;模型3为完全校正模型,在模型2的基础上进一步调整了吸烟状况、高血压、糖尿病、HDL-C、ALT、AST及GGT等变量。

    下载: 导出CSV

    表  3  BRI与MAFLD风险交互作用和亚组分析

    Table  3.   Subgroup and interaction analysis of BRI and MAFLD

    变量 例数 OR(95%CI P交互
    年龄 0.506
    >59岁 1 539 1.00
    18~44岁 1 835 0.73(0.54~0.98)
    45~59岁 1 199 1.40(1.01~1.95)
    性别 0.320
    2 273 1.00
    2 300 1.81(1.37~2.39)
    种族 0.140
    墨西哥裔美国人 634 1.00
    非西班牙裔黑人 1 015 0.71(0.50~1.00)
    非西班牙裔白人 1 646 1.19(0.89~1.59)
    其他种族 1 278 1.01(0.73~1.40)
    教育程度 0.580
    高中以上学历 2 661 1.00
    高中以下学历 857 0.83(0.60~1.14)
    高中或同等学历 1 055 1.14(0.85~1.54)
    PIR 0.126
    <1.3 1 267 1.00
    >3.5 1 472 1.56(1.13~2.15)
    1.3~3.5 1 834 1.20(0.88~1.63)
    婚姻状况 0.195
    已婚/与伴侣同居 2 782 1.00
    离婚/分居/丧偶 980 0.65(0.48~0.89)
    从未结婚 811 0.48(0.36~0.66)
    高血压 0.003
    2 266 1.00
    2 307 1.60(1.23~2.08)
    糖尿病 0.222
    3 628 1.00
    945 1.34(0.94~1.90)
    吸烟状况 0.066
    当前吸烟 887 1.00
    从未吸烟 2 556 1.00(0.71~1.40)
    既往吸烟 1 130 1.29(0.87~1.90)
    下载: 导出CSV
  • [1] ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73( 1): 202- 209. DOI: 10.1016/j.jhep.2020.03.039.
    [2] GOFTON C, UPENDRAN Y, ZHENG MH, et al. MAFLD: How is it different from NAFLD[J]. Clin Mol Hepatol, 2023, 29( Suppl): S17- S31. DOI: 10.3350/cmh.2022.0367.
    [3] WANG YK, WEI SY, LIU C, et al. A new definition of fatty liver disease: from nonalcoholic fatty liver disease to metabolic associated fatty liver disease[J]. Chin J Dig Surg, 2023, 22( S1): 117- 121. DOI: 10.3760/cma.j.cn115610-20230909-00080.

    王永康, 魏诗雨, 刘昌, 等. 脂肪性肝病新定义:从非酒精性脂肪性肝病到代谢功能障碍相关脂肪性肝病[J]. 中华消化外科杂志, 2023, 22( S1): 117- 121. DOI: 10.3760/cma.j.cn115610-20230909-00080.
    [4] LIM GEH, TANG A, NG CH, et al. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD[J]. Clin Gastroenterol Hepatol, 2023, 21( 3): 619- 629. DOI: 10.1016/j.cgh.2021.11.038.
    [5] BAE SDW, GEORGE J, QIAO L. From MAFLD to hepatocellular carcinoma and everything in between[J]. Chin Med J(Engl), 2022, 135( 5): 547- 556. DOI: 10.1097/CM9.0000000000002089.
    [6] CHENG YM, KAO JH, WANG CC. The metabolic profiles and body composition of lean metabolic associated fatty liver disease[J]. Hepatol Int, 2021, 15( 2): 405- 412. DOI: 10.1007/s12072-021-10147-0.
    [7] HAGSTRÖM H, NASR P, EKSTEDT M, et al. Risk for development of severe liver disease in lean patients with nonalcoholic fatty liver disease: A long-term follow-up study[J]. Hepatol Commun, 2017, 2( 1): 48- 57. DOI: 10.1002/hep4.1124.
    [8] LEE SW, SON JY, KIM JM, et al. Body fat distribution is more predictive of all-cause mortality than overall adiposity[J]. Diabetes Obes Metab, 2018, 20( 1): 141- 147. DOI: 10.1111/dom.13050.
    [9] THOMAS DM, BREDLAU C, BOSY-WESTPHAL A, et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model[J]. Obesity(Silver Spring), 2013, 21( 11): 2264- 2271. DOI: 10.1002/oby.20408.
    [10] CAI XT, SONG SW, HU JL, et al. Body roundness index improves the predictive value of cardiovascular disease risk in hypertensive patients with obstructive sleep apnea: A cohort study[J]. Clin Exp Hypertens, 2023, 45( 1): 2259132. DOI: 10.1080/10641963.2023.2259132.
    [11] ZHANG Y, GAO WX, REN R, et al. Body roundness index is related to the low estimated glomerular filtration rate in Chinese population: A cross-sectional study[J]. Front Endocrinol(Lausanne), 2023, 14: 1148662. DOI: 10.3389/fendo.2023.1148662.
    [12] GAO WX, JIN LJ, LI DC, et al. The association between the body roundness index and the risk of colorectal cancer: A cross-sectional study[J]. Lipids Health Dis, 2023, 22( 1): 53. DOI: 10.1186/s12944-023-01814-2.
    [13] CHUNG TH, KIM JK, KIM JH, et al. Fatty liver index as a simple and useful predictor for 10-year cardiovascular disease risks determined by Framingham risk score in the general Korean population[J]. J Gastrointestin Liver Dis, 2021, 30( 2): 221- 226. DOI: 10.15403/jgld-3404.
    [14] HUANG ZM, NG K, CHEN HY, et al. Validation of controlled attenuation parameter measured by FibroScan as a novel surrogate marker for the evaluation of metabolic derangement[J]. Front Endocrinol(Lausanne), 2022, 12: 739875. DOI: 10.3389/fendo.2021.739875.
    [15] STEBBINS RC, NOPPERT GA, AIELLO AE, et al. Persistent socioeconomic and racial and ethnic disparities in pathogen burden in the United States, 1999-2014[J]. Epidemiol Infect, 2019, 147: e301. DOI: 10.1017/S0950268819001894.
    [16] LIU CF, CHIEN LW. Predictive role of neutrophil-percentage-to-albumin ratio(NPAR) in nonalcoholic fatty liver disease and advanced liver fibrosis in nondiabetic US adults: Evidence from NHANES 2017-2018[J]. Nutrients, 2023, 15( 8): 1892. DOI: 10.3390/nu15081892.
    [17] MU BS, LIU X, ZHU WY. Application of processing abnormal values in deformation monitoring based on N-standard-deviation method and boxplot method[J]. J Nantong Vocat Univ, 2023, 37( 2): 100- 104. DOI: 10.3969/j.issn.1008-5327.2023.02.022.

    穆宝胜, 刘欣, 朱文艳. 基于n个标准差法和箱线图法识别变形监测中异常值的应用探究[J]. 南通职业大学学报, 2023, 37( 2): 100- 104. DOI: 10.3969/j.issn.1008-5327.2023.02.022.
    [18] LI HJ, ZHANG Y, LUO HC, et al. The lipid accumulation product is a powerful tool to diagnose metabolic dysfunction-associated fatty liver disease in the United States adults[J]. Front Endocrinol(Lausanne), 2022, 13: 977625. DOI: 10.3389/fendo.2022.977625.
    [19] JIANG NN, ZHANG SG, CHU JG, et al. Association between body roundness index and non-alcoholic fatty liver disease detected by Fibroscan in America[J]. J Clin Lab Anal, 2023, 37( 19-20): e24973. DOI: 10.1002/jcla.24973.
    [20] ZHAO EF, WEN XL, QIU WQ, et al. Association between body roundness index and risk of ultrasound-defined non-alcoholic fatty liver disease[J]. Heliyon, 2023, 10( 1): e23429. DOI: 10.1016/j.heliyon.2023.e23429.
    [21] MANSOUR A, POURHASSAN S, GERAMI H, et al. Regional fat distribution and hepatic fibrosis and steatosis severity in patients with nonalcoholic fatty liver disease and type 2 diabetes[J]. Obes Sci Pract, 2024, 10( 4): e777. DOI: 10.1002/osp4.777.
    [22] TIAN XY, DING N, SU YJ, et al. Comparison of obesity-related indicators for nonalcoholic fatty liver disease diagnosed by transient elastography[J]. Turk J Gastroenterol, 2023, 34( 10): 1078- 1087. DOI: 10.5152/tjg.2023.23101.
    [23] XIE FF, PEI YY, ZHOU Q, et al. Comparison of obesity-related indices for identifying nonalcoholic fatty liver disease: A population-based cross-sectional study in China[J]. Lipids Health Dis, 2021, 20( 1): 132. DOI: 10.1186/s12944-021-01560-3.
    [24] KHANMOHAMMADI S, FALLAHTAFTI P, HABIBZADEH A, et al. Effectiveness of body roundness index for the prediction of nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Lipids Health Dis, 2025, 24( 1): 117. DOI: 10.1186/s12944-025-02544-3.
    [25] LIU JR, FAN DM, WANG X, et al. Association of two novel adiposity indicators with visceral fat area in type 2 diabetic patients: Novel adiposity indexes for type 2 diabetes[J]. Medicine(Baltimore), 2020, 99( 19): e20046. DOI: 10.1097/MD.0000000000020046.
    [26] ELGUEZABAL RODELO RG, PORCHIA LM, TORRES-RASGADO E, et al. Visceral and subcutaneous abdominal fat is associated with non-alcoholic fatty liver disease while augmenting Metabolic Syndrome’s effect on non-alcoholic fatty liver disease: A cross-sectional study of NHANES 2017-2018[J]. PLoS One, 2024, 19( 2): e0298662. DOI: 10.1371/journal.pone.0298662.
    [27] EMAMAT H, JAMSHIDI A, FARHADI A, et al. The association between the visceral to subcutaneous abdominal fat ratio and the risk of cardiovascular diseases: A systematic review[J]. BMC Public Health, 2024, 24( 1): 1827. DOI: 10.1186/s12889-024-19358-0.
    [28] KAHN D, MACIAS E, ZARINI S, et al. Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: Implications for metabolic disease[J]. Endocrinology, 2022, 163( 11): bqac140. DOI: 10.1210/endocr/bqac140.
    [29] MOREIRA VC, SILVA CMS, WELKER AF, et al. Visceral adipose tissue influence on health problem development and its relationship with serum biochemical parameters in middle-aged and older adults: A literature review[J]. J Aging Res, 2022, 2022: 8350527. DOI: 10.1155/2022/8350527.
    [30] TILG H, IANIRO G, GASBARRINI A, et al. Adipokines: Masterminds of metabolic inflammation[J]. Nat Rev Immunol, 2025, 25( 4): 250- 265. DOI: 10.1038/s41577-024-01103-8.
    [31] LIAO J, QIU MH, LI J, et al. Association of visceral adipose tissue with hypertension: Results from the NHANES 2011-2018 and mendelian randomization analyses[J]. J Clin Hypertens(Greenwich), 2025, 27( 1): e14953. DOI: 10.1111/jch.14953.
    [32] SERAVALLE G, GRASSI G. Obesity and hypertension[J]. Pharmacol Res, 2017, 122: 1- 7. DOI: 10.1016/j.phrs.2017.05.013.
    [33] THETHI T, KAMIYAMA M, KOBORI H. The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome[J]. Curr Hypertens Rep, 2012, 14( 2): 160- 169. DOI: 10.1007/s11906-012-0245-z.
    [34] SHARIQ OA, MCKENZIE TJ. Obesity-related hypertension: A review of pathophysiology, management, and the role of metabolic surgery[J]. Gland Surg, 2020, 9( 1): 80- 93. DOI: 10.21037/gs.2019.12.03.
    [35] GARCÍA-SÁNCHEZ A, GÁMEZ-NAVA JI, DÍAZ-DE LA CRUZ EN, et al. The effect of visceral abdominal fat volume on oxidative stress and proinflammatory cytokines in subjects with normal weight, overweight and obesity[J]. Diabetes Metab Syndr Obes, 2020, 13: 1077- 1087. DOI: 10.2147/DMSO.S245494.
    [36] LOPERENA R, HARRISON DG. Oxidative stress and hypertensive diseases[J]. Med Clin North Am, 2017, 101( 1): 169- 193. DOI: 10.1016/j.mcna.2016.08.004.
    [37] LOPERENA R, VAN BEUSECUM JP, ITANI HA, et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: Roles of STAT3, interleukin 6 and hydrogen peroxide[J]. Cardiovasc Res, 2018, 114( 11): 1547- 1563. DOI: 10.1093/cvr/cvy112.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  22
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-23
  • 录用日期:  2025-07-21
  • 出版日期:  2025-10-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回