中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中药抗肝纤维化机制研究进展

潘旭旺 叶坚虹 包剑锋

引用本文:
Citation:

中药抗肝纤维化机制研究进展

DOI: 10.12449/JCH251004
基金项目: 

杭州市农业和社会发展重点项目 (20231203A10);

杭州市科技局生物医药企业项目 (2021WJCY362);

杭州市科技局生物医药企业项目 (2021WJCY186);

杭州市科技局生物医药企业项目 (2023WJC316);

浙江省医药卫生科技计划 (2025KY1134);

杭州市医学高峰学科(中西医结合肝病学) (2025HZGF09)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:潘旭旺负责设计论文框架,起草论文;叶坚虹负责对文章初稿进行审阅和修订;包剑锋负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    包剑锋, zjbjf1972@aliyun.com (ORCID: 0000-0002-1130-8057)

Research advances in the mechanism of traditional Chinese medicine for treatment of hepatic fibrosis

Research funding: 

Hangzhou Key Projects in Agriculture and Social Development (20231203A10);

Hangzhou Science and Technology Bureau Biomedical Enterprise Project (2021WJCY362);

Hangzhou Science and Technology Bureau Biomedical Enterprise Project (2021WJCY186);

Hangzhou Science and Technology Bureau Biomedical Enterprise Project (2023WJC316);

Zhejiang Provincial Medical and Health Science and Technology Program (2025KY1134);

Construction Fund of Key Medical Disciplines of Hangzhou (2025HZGF09)

More Information
  • 摘要: 肝纤维化是多种慢性肝病向肝硬化乃至肝癌发展的关键中间环节。中药对肝纤维化有较好的疗效,但其作用机制尚未明确。本文概述了肝纤维化的病理机制,包括中医学病因病机和西医学机制(如肝星状细胞活化、代谢重编程驱动肝纤维化、肝纤维化关键信号通路等)。在此基础上,重点分析中药抗肝纤维化的核心作用机制,主要包括抑制肝星状细胞的活化和增殖、减轻肝脏炎症与免疫调节、抗脂质过氧化损伤、调控促纤维化因子的合成与分泌、维持细胞外基质代谢平衡、干预相关信号通路、调节肠道菌群以及抑制肝窦毛细血管化等多个方面。本文旨在系统总结中药抗肝纤维化的作用机制,为更好地开发肝纤维化治疗中药奠定基础。

     

  • 图  1  中药抗肝纤维化核心机制

    Figure  1.  Core mechanisms of traditional Chinese medicine against hepatic fibrosis

  • [1] TARU V, SZABO G, MEHAL W, et al. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation[J]. J Hepatol, 2024, 81( 5): 895- 910. DOI: 10.1016/j.jhep.2024.06.016.
    [2] Liver Disease Committee, Chinese Association of Integrative Medicine. Guidelines for the diagnosis and treatment of liver fibrosis in integrative medicine practice(2019)[J]. J Clin Hepatol, 2019, 35( 7): 1444- 1449. DOI: 10.3969/j.issn.1001-5256.2019.07.007.

    中国中西医结合学会肝病专业委员会. 肝纤维化中西医结合诊疗指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35( 7): 1444- 1449. DOI: 10.3969/j.issn.1001-5256.2019.07.007.
    [3] DAWOOD RM, EL-MEGUID MA, SALUM GM, et al. Key players of hepatic fibrosis[J]. J Interferon Cytokine Res, 2020, 40( 10): 472- 489. DOI: 10.1089/jir.2020.0059.
    [4] KIM HY, SAKANE S, EGUILEOR A, et al. The origin and fate of liver myofibroblasts[J]. Cell Mol Gastroenterol Hepatol, 2024, 17( 1): 93- 106. DOI: 10.1016/j.jcmgh.2023.09.008.
    [5] ZHANG ZT, YU Y, PANG JA, et al. Metabolic reprogramming in liver fibrosis: Focusing on the metabolic network of hepatic macrophages and hepatic stellate cells[J]. Adv Clin Med, 2025, 15( 5): 931- 940. DOI: 10.12677/acm.2025.1551452.

    张沚汀, 俞渊, 庞浇安, 等. 肝纤维化的代谢重编: 聚焦于肝巨噬细胞与肝星状细胞的代谢网络[J]. 临床医学进展, 2025, 15( 5): 931- 940. DOI: 10.12677/acm.2025.1551452.
    [6] HE MJ, ZHAO CP, HU HH, et al. Research progress on action mechanism of TGF-β1/smad signaling pathway in liver fibrosis and TCM regulation[J]. Acta Chin Med, 2024, 39( 1): 114- 121. DOI: 10.16368/j.issn.1674-8999.2024.01.019.

    和梦静, 赵长普, 胡慧慧, 等. TGF-β1/Smad信号通路在肝纤维化中的作用机制及中医药调控研究进展[J]. 中医学报, 2024, 39( 1): 114- 121. DOI: 10.16368/j.issn.1674-8999.2024.01.019.
    [7] KOCH PS, SANDORSKI K, HEIL J, et al. Imbalanced activation of wnt-/ β-catenin-signaling in liver endothelium alters normal sinusoidal differentiation[J]. Front Physiol, 2021, 12: 722394. DOI: 10.3389/fphys.2021.722394.
    [8] WANG JC, HU KL, CAI XY, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022, 12( 1): 18- 32. DOI: 10.1016/j.apsb.2021.07.023.
    [9] PING DB, SUN X, PENG Y, et al. Cyp4a12-mediated retinol metabolism in stellate cells is the antihepatic fibrosis mechanism of the Chinese medicine Fuzheng Huayu recipe[J]. Chin Med, 2023, 18( 1): 51. DOI: 10.1186/s13020-023-00754-4.
    [10] QI JS, PING DB, SUN X, et al. A herbal product inhibits carbon tetrachloride-induced liver fibrosis by suppressing the epidermal growth factor receptor signaling pathway[J]. J Ethnopharmacol, 2023, 311: 116419. DOI: 10.1016/j.jep.2023.116419.
    [11] SHAO C, XU HH, SUN XG, et al. Jiawei Taohe Chengqi decoction inhibition of the Notch signal pathway affects macrophage reprogramming to inhibit HSCs activation for the treatment of hepatic fibrosis[J]. J Ethnopharmacol, 2024, 321: 117486. DOI: 10.1016/j.jep.2023.117486.
    [12] ZHANG JB, JIN HL, FENG XY, et al. The combination of Lonicerae Japonicae Flos and Forsythiae Fructus herb-pair alleviated inflammation in liver fibrosis[J]. Front Pharmacol, 2022, 13: 984611. DOI: 10.3389/fphar.2022.984611.
    [13] SHANG XF, YUAN HX, DAI LX, et al. Anti-liver fibrosis activity and the potential mode of action of Ruangan Granules: Integrated network pharmacology and metabolomics[J]. Front Pharmacol, 2022, 12: 754807. DOI: 10.3389/fphar.2021.754807.
    [14] ZHANG ZW, WU JY, GAO MY. Therapeutic effect and mechanism of modified Chaihu Danggui decoction on liver fibrosis rat[J]. Henan Med Res, 2024, 33( 21): 3872- 3876. DOI: 10.3969/j.issn.1004-437X.2024.21.008.

    张正伟, 吴佳玉, 高梦月. 加味柴胡当归汤对大鼠肝纤维化的治疗效果及其机制[J]. 河南医学研究, 2024, 33( 21): 3872- 3876. DOI: 10.3969/j.issn.1004-437X.2024.21.008.
    [15] LI YR, ZHAO YF, CHENG GL, et al. Therapeutic effect of Jingfang Granules on CCl4-induced liver fibrosis in mice and its mechanism[J]. China J Chin Mater Med, 2022, 47( 22): 6127- 6136. DOI: 10.19540/j.cnki.cjcmm.20220530.402.

    李郁茹, 赵亚芳, 程国良, 等. 荆防颗粒对CCl4诱导小鼠肝纤维化的治疗作用及其机制研究[J]. 中国中药杂志, 2022, 47( 22): 6127- 6136. DOI: 10.19540/j.cnki.cjcmm.20220530.402.
    [16] QIN SL, WU M, ZHOU Y, et al. Effects of fuzheng Huayu formula on peripheral blood and hepatic lymphocyte subsets in mice with liver fibrosis[J]. Liaoning J Tradit Chin Med, 2025, 52( 5): 185- 189, 227. DOI: 10.13192/j.issn.1000-1719.2025.05.048.

    钦圣兰, 吴眉, 周扬, 等. 扶正化瘀方对肝纤维化小鼠外周血及肝内淋巴细胞亚群的影响[J]. 辽宁中医杂志, 2025, 52( 5): 185- 189, 227. DOI: 10.13192/j.issn.1000-1719.2025.05.048.
    [17] HUANG H, XU LM, PING J, et al. Value of Fuzheng Huayu prescription in preventing liver fibrosis by altering the phenotypic function of CD8+ T lymphocytes in the liver of mice with acute liver injury[J]. J Clin Hepatol, 2022, 38( 2): 342- 346. DOI: 10.3969/j.issn.1001-5256.2022.02.017.

    黄辉, 徐列明, 平键, 等. 扶正化瘀方通过改变急性肝损伤小鼠模型肝脏CD8+T淋巴细胞表型功能预防肝纤维化的价值分析[J]. 临床肝胆病杂志, 2022, 38( 2): 342- 346. DOI: 10.3969/j.issn.1001-5256.2022.02.017.
    [18] WU TH, WANG PW, LIN TY, et al. Antioxidant properties of red raspberry extract alleviate hepatic fibrosis via inducing apoptosis and transdifferentiation of activated hepatic stellate cells[J]. Biomed Pharmacother, 2021, 144: 112284. DOI: 10.1016/j.biopha.2021.112284.
    [19] WU XX, LU XL, JIANG YY, et al. Mechanistic study of ZeXie decoction in intervening NASH-related liver fibrosis via antioxidant stress pathways[J]. Lishizhen Med Mater Med Res, 2022, 33( 1): 39- 43. DOI: 10.3969/j.issn.1008-0805.2022.01.09.

    吴小溪, 陆孝良, 蒋元烨, 等. 泽泻汤通过抗氧化应激干预NASH肝纤维化的机制研究[J]. 时珍国医国药, 2022, 33( 1): 39- 43. DOI: 10.3969/j.issn.1008-0805.2022.01.09.
    [20] AN ZX, LI JF, DAI HZ, et al. Study on protective effect and mechanism of kiwifruit vine aqueous extract on hepatic fibrosis model rats[J]. Tradit Chin Drug Res Clin Pharmacol, 2022, 33( 4): 426- 432. DOI: 10.19378/j.issn.1003-9783.2022.04.002.

    安祯祥, 李金芳, 戴鸿志, 等. 猕猴桃藤水提物对肝纤维化模型大鼠的保护作用及机制研究[J]. 中药新药与临床药理, 2022, 33( 4): 426- 432. DOI: 10.19378/j.issn.1003-9783.2022.04.002.
    [21] SUN X, XIONG F, HUANG YS, et al. Effect of Gexia Zhuyu decoction on CCl4-induced liver fibrosis in rats and the mechanism[J]. World J Integr Tradit West Med, 2022, 17( 10): 1970- 1973, 1979. DOI: 10.13935/j.cnki.sjzx.221011.

    孙旭, 熊芬, 黄育生, 等. 膈下逐瘀汤对四氯化碳致大鼠肝纤维化的改善作用及机制初探[J]. 世界中西医结合杂志, 2022, 17( 10): 1970- 1973, 1979. DOI: 10.13935/j.cnki.sjzx.221011.
    [22] ZHANG GK, JIANG YY, LIU X, et al. Lingonberry anthocyanins inhibit hepatic stellate cell activation and liver fibrosis via TGFβ/smad/ERK signaling pathway[J]. J Agric Food Chem, 2021, 69( 45): 13546- 13556. DOI: 10.1021/acs.jafc.1c05384.
    [23] SHENG JP, ZHANG BH, CHEN YF, et al. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages[J]. Immunopharmacol Immunotoxicol, 2020, 42( 6): 556- 563. DOI: 10.1080/08923973.2020.1811308.
    [24] HUANG Y, XIA L, LEI QS, et al. Protective effects and mechanism of saikosaponin D on immune hepatic fibrosis in rats[J]. J Army Med Univ, 2022, 44( 14): 1410- 1420. DOI: 10.16016/j.2097-0927.202111062.

    黄祎, 夏莉, 雷青松, 等. 柴胡皂苷D对大鼠免疫性肝纤维化的保护作用及其机制研究[J]. 陆军军医大学学报, 2022, 44( 14): 1410- 1420. DOI: 10.16016/j.2097-0927.202111062.
    [25] GUO XL, JIA ZS, ZHANG J. Molecular mechanisms of traditional Chinese medicine in reversing liver fibrosis[J]. J Clin Hepatol, 2025, 41( 1): 170- 175. DOI 10.12449/JCH250126. DOI: 10.12449/JCH250126

    郭晓玲, 贾战生, 张静. 中药逆转肝纤维化的分子机制[J]. 临床肝胆病杂志, 2025, 41( 1): 170- 175. DOI: 10.12449/JCH250126.
    [26] LI Q, WU HC, TAN JX, et al. Study on machanism of Rougan Formula in anti-hepatic fibrosis by inhibiting fibrosin[J]. Chin J Immunol, 2022, 38( 3): 263- 269. DOI: 10.3969/j.issn.1000-484X.2022.03.002.

    李茜, 吴惠春, 谭家鑫, 等. 柔肝方通过抑制纤维化蛋白抗肝纤维化的机制研究[J]. 中国免疫学杂志, 2022, 38( 3): 263- 269. DOI: 10.3969/j.issn.1000-484X.2022.03.002.
    [27] LI ZB, JIANG L, NI JD, et al. Salvianolic acid B suppresses hepatic fibrosis by inhibiting ceramide glucosyltransferase in hepatic stellate cells[J]. Acta Pharmacol Sin, 2023, 44( 6): 1191- 1205. DOI: 10.1038/s41401-022-01044-9.
    [28] WU HY, GU YQ, ZHOU HC, et al. Effects of cycloastragenol on carbon tetrachloride-induced hepatic fibrosis and glycolysis in mice[J]. China Pharm, 2022, 33( 14): 1677- 1681, 1687. DOI: 10.6039/j.issn.1001-0408.2022.14.03.

    吴红雁, 顾亚琴, 周红成, 等. 环黄芪醇对四氯化碳致小鼠肝纤维化及糖酵解的影响[J]. 中国药房, 2022, 33( 14): 1677- 1681, 1687. DOI: 10.6039/j.issn.1001-0408.2022.14.03.
    [29] XU LJ, ZHANG YR, JI NB, et al. Tanshinone IIA regulates the TGF-β1/Smad signaling pathway to ameliorate non-alcoholic steatohepatitis-related fibrosis[J]. Exp Ther Med, 2022, 24( 1): 486. DOI: 10.3892/etm.2022.11413.
    [30] LIU ZL, XU BG, DING YP, et al. Guizhi Fuling pill attenuates liver fibrosis in vitro and in vivo via inhibiting TGF-β1/Smad2/3 and activating IFN-γ/Smad7 signaling pathways[J]. Bioengineered, 2022, 13( 4): 9357- 9368. DOI: 10.1080/21655979.2022.2054224.
    [31] ZHOU D, DONG JJ, CHENG N, et al. Study on the mechanism of Gandou decoction Ⅱ in regulating TGF-β1/smad pathway to inhibit hepatic fibrosis in Wilson disease mice[J]. Chin J Inf Tradit Chin Med, 2024, 31( 5): 61- 67. DOI: 10.19879/j.cnki.1005-5304.202310283.

    周丹, 董健健, 程楠, 等. 肝豆汤Ⅱ号调控TGF-β1/Smad通路抑制肝豆状核变性小鼠肝纤维化的机制研究[J]. 中国中医药信息杂志, 2024, 31( 5): 61- 67. DOI: 10.19879/j.cnki.1005-5304.202310283.
    [32] SUN X, XIONG F, HUANG YS, et al. Effect of Gexia Zhuyu decoction on the Wnt/β-catenin pathway in carbon tetrachloride-induced hepatic fibrosis rats[J]. Chin Tradit Pat Med, 2022, 44( 6): 1945- 1950. DOI: 10.3969/j.issn.1001-1528.2022.06.039.

    孙旭, 熊芬, 黄育生, 等. 膈下逐瘀汤对四氯化碳诱导的肝纤维化大鼠Wnt/β-catenin通路的影响[J]. 中成药, 2022, 44( 6): 1945- 1950. DOI: 10.3969/j.issn.1001-1528.2022.06.039.
    [33] TANG Y, LIANG JY, SIMA L, et al. Exploration of the effect and mechanism of Shuangzhu Kangxian prescription in improving carbon tetrachloride-induced hepatitic fibrosis in rats based on Wnt/β-catenin signaling pathway[J]. Tradit Chin Drug Res Clin Pharmacol, 2024, 35( 3): 334- 341. DOI: 10.19378/j.issn.1003-9783.2024.03.004.

    唐燕, 梁瀞云, 司马玲, 等. 基于Wnt/β-catenin信号通路探讨双术抗纤方改善四氯化碳诱导大鼠肝纤维化的作用及机制[J]. 中药新药与临床药理, 2024, 35( 3): 334- 341. DOI: 10.19378/j.issn.1003-9783.2024.03.004.
    [34] SONG WS, YU Y. Diosgenin reduces liver fibrosis induced by carbon tetrachloride and its mechanism[J]. Pharm Biotechnol, 2022, 29( 3): 261- 266. DOI: 10.19526/j.cnki.1005-8915.20220308.

    宋维珊, 俞岩. 薯蓣皂苷降低四氯化碳致大鼠肝纤维化作用及其机制的研究[J]. 药物生物技术, 2022, 29( 3): 261- 266. DOI: 10.19526/j.cnki.1005-8915.20220308.
    [35] XIE JC, MENG J, GOU SY, et al. Exploring the mechanism of Xuefuzhuyu Decoction in treating liver fibrosis based on network pharmacology and animal experiments[J]. Chin J Integr Tradit West Med Liver Dis, 2025, 35( 4): 430- 437. DOI: 10.3969/j.issn.1005-0264.2025.004.008.

    谢金池, 孟捷, 苟思媛, 等. 基于网络药理学与动物实验探究血府逐瘀汤治疗肝纤维化的作用机制[J]. 中西医结合肝病杂志, 2025, 35( 4): 430- 437. DOI: 10.3969/j.issn.1005-0264.2025.004.008.
    [36] LI MQ, WANG YH, ZHAO XL, et al. Mechanism of total flavonoids of Carthamus tinctorius L. against hepatic fibrosis based on LC-MS/MS combined with network pharmacology and pharmacology experiments[J]. Chin J Clin Pharmacol Ther, 2025, 30( 5): 586- 598. DOI: 10.12092/j.issn.1009-2501.2025.05.002.

    李明奇, 王映荷, 赵晓璐, 等. 基于LC-MS/MS结合网络药理学、分子对接及体内外实验探究红花总黄酮抗肝纤维化的作用机制[J]. 中国临床药理学与治疗学, 2025, 30( 5): 586- 598. DOI: 10.12092/j.issn.1009-2501.2025.05.002.
    [37] SUN JR, LU BJ, ZHENG JL, et al. Effect and mechanism of Fuzheng Huaxian prescription on hepatic fibrosis mice by regulating PI3K/AKT/BAD signaling pathway[J]. Tradit Chin Drug Res Clin Pharmacol, 2024, 35( 11): 1652- 1660. DOI: 10.19378/j.issn.1003-9783.2024.11.003.

    孙竞然, 卢秉久, 郑佳连, 等. 扶正化纤方调控PI3K/AKT/BAD信号通路对肝纤维化小鼠的作用及机制[J]. 中药新药与临床药理, 2024, 35( 11): 1652- 1660. DOI: 10.19378/j.issn.1003-9783.2024.11.003.
    [38] HE XY, LIANG JT, LI X, et al. Dahuang Zhechong pill ameliorates hepatic fibrosis by regulating gut microbiota and metabolites[J]. J Ethnopharmacol, 2024, 321: 117402. DOI: 10.1016/j.jep.2023.117402.
    [39] ZHAO YH, ZHAO M, ZHANG YM, et al. Bile acids metabolism involved in the beneficial effects of Danggui Shaoyao San via gut microbiota in the treatment of CCl4 induced hepatic fibrosis[J]. J Ethnopharmacol, 2024, 319( Pt 3): 117383. DOI: 10.1016/j.jep.2023.117383.
    [40] TRANAH TH, EDWARDS LA, SCHNABL B, et al. Targeting the gut-liver-immune axis to treat cirrhosis[J]. Gut, 2021, 70( 5): 982- 994. DOI: 10.1136/gutjnl-2020-320786.
    [41] JIA KX, ZHANG YH, LUO RY, et al. Acteoside ameliorates hepatic ischemia-reperfusion injury via reversing the senescent fate of liver sinusoidal endothelial cells and restoring compromised sinusoidal networks[J]. Int J Biol Sci, 2023, 19( 15): 4967- 4988. DOI: 10.7150/ijbs.87332.
    [42] SUN WQ, HUANG Y, HAN T, et al. To explore mechanism of Qingdu Tiaogan decoction in treating hepatic fibrosis based on sinusoid capillarization[J]. J Xinjiang Med Univ, 2024, 47( 9): 1293- 1300. DOI: 10.3969/j.issn.1009-5551.2024.09.018.

    孙婉卿, 黄勇, 韩涛, 等. 基于肝窦毛细血管化探讨清毒调肝方治疗肝纤维化的作用机制[J]. 新疆医科大学学报, 2024, 47( 9): 1293- 1300. DOI: 10.3969/j.issn.1009-5551.2024.09.018.
    [43] LIU J, XU XY, LIU JB, et al. Mechanism of Qijia Rougan Decoction and its disassembled formulas on regulation of VEGF/SRF/c-FOS pathway and improvement of hepatic sinusoidal capillaryization in rats with hepatic fibrosis[J]. China J Chin Mater Med, 2024, 49( 20): 5528- 5538. DOI: 10.19540/j.cnki.cjcmm.20240710.401.

    刘进, 许欣怡, 刘悸斌, 等. 芪甲柔肝方及其拆方调控VEGF/SRF/c-FOS通路与改善肝纤维化大鼠肝窦毛细血管化的机制研究[J]. 中国中药杂志, 2024, 49( 20): 5528- 5538. DOI: 10.19540/j.cnki.cjcmm.20240710.401.
  • 加载中
图(1)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  29
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-12
  • 录用日期:  2025-08-05
  • 出版日期:  2025-10-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回