胰岛素样生长因子-Ⅰ(IGF-Ⅰ)在肝硬化预后评估和治疗中的作用
DOI: 10.12449/JCH250628
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:汪彦平负责选题,文献检索与筛选,初稿撰写;张惠芳、王慧敏、马小彤参与文献检索与筛选;郑亚、陈兆峰负责拟定写作思路,指导撰写文章并最后定稿。
Role of insulin-like growth factor-Ⅰ in prognostic evaluation and treatment of liver cirrhosis
-
摘要: 胰岛素样生长因子-Ⅰ(IGF-Ⅰ)作为胰岛素样生长因子家族的关键成员,主要在肝脏合成并广泛分布于人体,参与细胞增殖、分化、代谢及凋亡等生理过程。研究表明,IGF-Ⅰ水平与肝硬化严重程度呈负相关,主要通过抑制肝纤维化、促进DNA损伤修复、调控脂质代谢等多种途径影响肝硬化疾病进程。监测IGF-Ⅰ水平有望为改善肝硬化患者预后提供评估指标;刺激IGF-Ⅰ的作用途径或调节其表达水平有望成为肝硬化的治疗新方法。本文综述了IGF-Ⅰ在肝硬化中的研究进展,以期为肝硬化的诊治提供新思路。Abstract: As a key member of the insulin-like growth factor family, insulin-like growth factor-Ⅰ (IGF-Ⅰ) is mainly synthesized in the liver and is widely distributed in the human body, and it is involved in the physiological processes such as cell proliferation, differentiation, metabolism, and apoptosis. Studies have shown that the level of IGF-Ⅰ is negatively correlated with the severity of liver cirrhosis, and IGF-Ⅰ mainly affects the progression of liver cirrhosis by inhibiting liver fibrosis, promoting DNA damage repair, and regulating lipid metabolism. Monitoring of IGF-Ⅰ level is expected to provide an evaluation indicator for improving the prognosis of patients with liver cirrhosis, and stimulating the action pathway of IGF-Ⅰ or regulating its expression level may become a new method for the treatment of liver cirrhosis. This article reviews the research advances in IGF-Ⅰ in liver cirrhosis, in order to provide new ideas for the diagnosis and treatment of liver cirrhosis.
-
Key words:
- Liver Cirrhosis /
- Hepatic Fibrosis /
- Insulin-Like Growth Factor Ⅰ /
- Prognosis
-
[1] PUCHE JE, SAIMAN Y, FRIEDMAN SL. Hepatic stellate cells and liver fibrosis[J]. Compr Physiol, 2013, 3( 4): 1473- 1492. DOI: 10.1002/cphy.c120035. [2] WANG YK, WANG MQ, LIU CR, et al. Global burden of liver cirrhosis 1990-2019 and 20 years forecast: Results from the global burden of disease study 2019[J]. Ann Med, 2024, 56( 1): 2328521. DOI: 10.1080/07853890.2024.2328521. [3] ASRANI SK, DEVARBHAVI H, EATON J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70( 1): 151- 171. DOI: 10.1016/j.jhep.2018.09.014. [4] NIJENHUIS-NOORT EC, BERK KA, NEGGERS SJCMM, et al. The fascinating interplay between growth hormone, insulin-like growth factor-1, and insulin[J]. Endocrinol Metab(Seoul), 2024, 39( 1): 83- 89. DOI: 10.3803/EnM.2024.101. [5] VALENZUELA-VALLEJO L, CHRYSAFI P, KOUVARI M, et al. Circulating hormones in biopsy-proven steatotic liver disease and steatohepatitis: A multicenter observational study[J]. Metabolism, 2023, 148: 155694. DOI: 10.1016/j.metabol.2023.155694. [6] DICHTEL LE, COREY KE, HAINES MS, et al. The GH/IGF-1 axis is associated with intrahepatic lipid content and hepatocellular damage in overweight/obesity[J]. J Clin Endocrinol Metab, 2022, 107( 9): e3624- e3632. DOI: 10.1210/clinem/dgac405. [7] BAILES J, SOLOVIEV M. Insulin-like growth factor-1(IGF-1) and its monitoring in medical diagnostic and in sports[J]. Biomolecules, 2021, 11( 2): 217. DOI: 10.3390/biom11020217. [8] JENSEN-CODY SO, POTTHOFF MJ. Hepatokines and metabolism: Deciphering communication from the liver[J]. Mol Metab, 2021, 44: 101138. DOI: 10.1016/j.molmet.2020.101138. [9] LEROITH D, HOLLY JMP, FORBES BE. Insulin-like growth factors: Ligands, binding proteins, and receptors[J]. Mol Metab, 2021, 52: 101245. DOI: 10.1016/j.molmet.2021.101245. [10] YAN KY, DENG HL, ZHANG YF, et al. Association between insulin like growth factor-1 and severe hand, foot and mouth disease[J/CD]. Chin J Exp Clin Infect Dis(Electronic Edition), 2023, 17( 3): 151- 157.闫凯悦, 邓慧玲, 张玉凤, 等. 胰岛素样生长因子-1与手足口病重症化的相关性研究[J/CD]. 中华实验和临床感染病杂志(电子版), 2023, 17( 3): 151- 157. [11] HAN B, SHAO Y, WANG Y. Effect of insulin-like growth factor-1 on vascular remodeling and apoptosis of cardiomyocytes in rats with coronary heart disease[J]. Trauma Crit Care Med, 2024, 12( 2): 121- 125. DOI: 10.16048/j.issn.2095-5561.2024.02.13.韩冰, 邵洋, 汪莹. 胰岛素样生长因子-1对冠心病模型大鼠血管重塑及心肌细胞凋亡影响[J]. 创伤与急危重病医学, 2024, 12( 2): 121- 125. DOI: 10.16048/j.issn.2095-5561.2024.02.13. [12] YANAGI S, SATO T, KANGAWA K, et al. The homeostatic force of ghrelin[J]. Cell Metab, 2018, 27( 4): 786- 804. DOI: 10.1016/j.cmet.2018.02.008. [13] ADAMEK A, KASPRZAK A. Insulin-like growth factor(IGF) system in liver diseases[J]. Int J Mol Sci, 2018, 19( 5): 1308. DOI: 10.3390/ijms19051308. [14] van der VELDEN LM, MAAS P, van AMERSFOORT M, et al. Small molecules to regulate the GH/IGF1 axis by inhibiting the growth hormone receptor synthesis[J]. Front Endocrinol(Lausanne), 2022, 13: 926210. DOI: 10.3389/fendo.2022.926210. [15] FANG F, GOLDSTEIN JL, SHI XM, et al. Unexpected role for IGF-1 in starvation: Maintenance of blood glucose[J]. Proc Natl Acad Sci USA, 2022, 119( 32): e2208855119. DOI: 10.1073/pnas.2208855119. [16] SHAN XY, YEO GSH. Central leptin and ghrelin signalling: Comparing and contrasting their mechanisms of action in the brain[J]. Rev Endocr Metab Disord, 2011, 12( 3): 197- 209. DOI: 10.1007/s11154-011-9171-7. [17] SHIMIZU K, NISHIMUTA S, FUKUMURA Y, et al. Liver-specific overexpression of lipoprotein lipase improves glucose metabolism in high-fat diet-fed mice[J]. PLoS One, 2022, 17( 9): e0274297. DOI: 10.1371/journal.pone.0274297. [18] KREIN PM, WINSTON BW. Roles for insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease[J]. Chest, 2002, 122( 6 Suppl): 289S- 293S. DOI: 10.1378/chest.122.6_suppl.289s. [19] LIU YL, GUO W, PU ZY, et al. Developmental changes of Insulin-like growth factors in the liver and muscle of chick embryos[J]. Poult Sci, 2016, 95( 6): 1396- 1402. DOI: 10.3382/ps/pew043. [20] ZOU L, SHI CF, WANG DW, et al. Long non-coding RNA-non-coding RNA activated by DNA damage inhibition suppresses hepatic stellate cell activation via microRNA-495-3p/sphingosine 1-phosphate receptor 3 axis[J]. Bioengineered, 2022, 13( 3): 6150- 6162. DOI: 10.1080/21655979.2022.2037841. [21] SARFRAZ S, HAMID S, ALI S, et al. Modulations of cell cycle checkpoints during HCV associated disease[J]. BMC Infect Dis, 2009, 9: 125. DOI: 10.1186/1471-2334-9-125. [22] BARTSCH H, NAIR J. Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis[J]. Cancer Detect Prev, 2004, 28( 6): 385- 391. DOI: 10.1016/j.cdp.2004.07.004. [23] ICHIKAWA K, OKABAYASHI T, SHIMA YS, et al. Branched-chain amino acid-enriched nutrients stimulate antioxidant DNA repair in a rat model of liver injury induced by carbon tetrachloride[J]. Mol Biol Rep, 2012, 39( 12): 10803- 10810. DOI: 10.1007/s11033-012-1974-4. [24] MÉS BEZERRA, BARBERINO RS, MENEZES VG, et al. Insulin-like growth factor-1(IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B(PI3K/AKT) signalling pathway[J]. Reprod Fertil Dev, 2018, 30( 11): 1503- 1513. DOI: 10.1071/RD17332. [25] WESTON VJ, WEI WB, STANKOVIC T, et al. Synergistic action of dual IGF1/R and MEK inhibition sensitizes childhood acute lymphoblastic leukemia(ALL) cells to cytotoxic agents and involves downregulation of STAT6 and PDAP1[J]. Exp Hematol, 2018, 63: 52- 63. e 5. DOI: 10.1016/j.exphem.2018.04.002. [26] WANG J, LI JM, CAO NQ, et al. Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK[J]. Onco Targets Ther, 2018, 11: 7777- 7786. DOI: 10.2147/OTT.S159095. [27] XIONG L, KOU F, YANG Y, et al. A novel role for IGF-1R in p53-mediated apoptosis through translational modulation of the p53-Mdm2 feedback loop[J]. J Cell Biol, 2007, 178( 6): 995- 1007. DOI: 10.1083/jcb.200703044. [28] LUO XY, JIANG XK, LI J, et al. Insulin-like growth factor-1 attenuates oxidative stress-induced hepatocyte premature senescence in liver fibrogenesis via regulating nuclear p53-progerin interaction[J]. Cell Death Dis, 2019, 10( 6): 451. DOI: 10.1038/s41419-019-1670-6. [29] LI J. IGF-1 alleviates hepatocyte premature senescence and liver fibrosis by regulating nuclear p53/progerin pathway[D]. Henan: Zhengzhou University, 2019.李俊. IGF-1通过调节核内p53/progerin通路缓解肝细胞早衰和肝纤维化[D]. 河南: 郑州大学, 2019. [30] PAIK YH, IWAISAKO K, SEKI E, et al. The nicotinamide adenine dinucleotide phosphate oxidase(NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice[J]. Hepatology, 2011, 53( 5): 1730- 1741. DOI: 10.1002/hep.24281. [31] JIANG JX, VENUGOPAL S, SERIZAWA N, et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo[J]. Gastroenterology, 2010, 139( 4): 1375- 1384. DOI: 10.1053/j.gastro.2010.05.074. [32] JIANG JX, CHEN XL, SERIZAWA N, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo[J]. Free Radic Biol Med, 2012, 53( 2): 289- 296. DOI: 10.1016/j.freeradbiomed.2012.05.007. [33] CUI WH, MATSUNO K, IWATA K, et al. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form(NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation[J]. Hepatology, 2011, 54( 3): 949- 958. DOI: 10.1002/hep.24465. [34] PAIK YH, KIM J, AOYAMA T, et al. Role of NADPH oxidases in liver fibrosis[J]. Antioxid Redox Signal, 2014, 20( 17): 2854- 2872. DOI: 10.1089/ars.2013.5619. [35] TOUSSAINT O, MEDRANO EE, VON ZGLINICKI T. Cellular and molecular mechanisms of stress-induced premature senescence(SIPS) of human diploid fibroblasts and melanocytes[J]. Exp Gerontol, 2000, 35( 8): 927- 945. DOI: 10.1016/s0531-5565(00)00180-7. [36] REDDY S, COMAI L. Lamin A, farnesylation and aging[J]. Exp Cell Res, 2012, 318( 1): 1- 7. DOI: 10.1016/j.yexcr.2011.08.009. [37] LIU WT, LI J, CAI Y, et al. Hepatic IGF-1R overexpression combined with the activation of GSK-3β and FOXO3a in the development of liver cirrhosis[J]. Life Sci, 2016, 147: 97- 102. DOI: 10.1016/j.lfs.2016.01.037. [38] FRASCA F, PANDINI G, SCIACCA L, et al. The role of insulin receptors and IGF-I receptors in cancer and other diseases[J]. Arch Physiol Biochem, 2008, 114( 1): 23- 37. DOI: 10.1080/13813450801969715. [39] HAO CN, GENG YJ, LI F, et al. Insulin-like growth factor-1 receptor activation prevents hydrogen peroxide-induced oxidative stress, mitochondrial dysfunction and apoptosis[J]. Apoptosis, 2011, 16( 11): 1118- 1127. DOI: 10.1007/s10495-011-0634-9. [40] YANG SY, HOY M, FULLER B, et al. Pretreatment with insulin-like growth factor I protects skeletal muscle cells against oxidative damage via PI3K/Akt and ERK1/2 MAPK pathways[J]. Lab Invest, 2010, 90( 3): 391- 401. DOI: 10.1038/labinvest.2009.139. [41] HILSE KE, KALINOVICH AV, RUPPRECHT A, et al. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue[J]. Biochim Biophys Acta, 2016, 1857( 1): 72- 78. DOI: 10.1016/j.bbabio.2015.10.011. [42] CADENAS S. Mitochondrial uncoupling, ROS generation and cardioprotection[J]. Biochim Biophys Acta Bioenerg, 2018, 1859( 9): 940- 950. DOI: 10.1016/j.bbabio.2018.05.019. [43] LOMBARDI A, BUSIELLO RA, NAPOLITANO L, et al. UCP3 translocates lipid hydroperoxide and mediates lipid hydroperoxide-dependent mitochondrial uncoupling[J]. J Biol Chem, 2010, 285( 22): 16599- 16605. DOI: 10.1074/jbc.M110.102699. [44] van ROOIJ E, OLSON EN. microRNAs: Powerful new regulators of heart disease and provocative therapeutic targets[J]. J Clin Invest, 2007, 117( 9): 2369- 2376. DOI: 10.1172/JCI33099. [45] LI YX, SHELAT H, GENG YJ. IGF-1 prevents oxidative stress induced-apoptosis in induced pluripotent stem cells which is mediated by microRNA-1[J]. Biochem Biophys Res Commun, 2012, 426( 4): 615- 619. DOI: 10.1016/j.bbrc.2012.08.139. [46] BROWN-BORG HM, RAKOCZY SG, ROMANICK MA, et al. Effects of growth hormone and insulin-like growth factor-1 on hepatocyte antioxidative enzymes[J]. Exp Biol Med(Maywood), 2002, 227( 2): 94- 104. DOI: 10.1177/153537020222700203. [47] AGUIRRE GA, RODRÍGUEZ DE ITA J, de la GARZA RG, et al. Insulin-like growth factor-1 deficiency and metabolic syndrome[J]. J Transl Med, 2016, 14: 3. DOI: 10.1186/s12967-015-0762-z. [48] LIU J, CHEN L, ZHOU Y, et al. Insulin-like growth factor-1 and bone morphogenetic protein-2 jointly mediate prostaglandin E2-induced adipogenic differentiation of rat tendon stem cells[J]. PLoS One, 2014, 9( 1): e85469. DOI: 10.1371/journal.pone.0085469. [49] LEE JH, LEE SH, LEE HS, et al. Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells[J]. Korean J Physiol Pharmacol, 2016, 20( 5): 459- 466. DOI: 10.4196/kjpp.2016.20.5.459. [50] VÁZQUEZ-BORREGO MC, DEL RIO-MORENO M, KINEMAN RD. Towards understanding the direct and indirect actions of growth hormone in controlling hepatocyte carbohydrate and lipid metabolism[J]. Cells, 2021, 10( 10): 2532. DOI: 10.3390/cells10102532. [51] ZHAO YQ, WANG Q, WANG Y, et al. Glutamine protects against oxidative stress injury through inhibiting the activation of PI3K/Akt signaling pathway in parkinsonian cell model[J]. Environ Health Prev Med, 2019, 24( 1): 4. DOI: 10.1186/s12199-018-0757-5. [52] DEVESA J, ALMENGLÓ C, DEVESA P. Multiple effects of growth hormone in the body: Is it really the hormone for growth?[J]. Clin Med Insights Endocrinol Diabetes, 2016, 9: 47- 71. DOI: 10.4137/CMED.S38201. [53] WANG X, WANG YL, YAN H. Study on the relationship between the levels of serum insulin-like factor 1, retinol-blinding protein and liver function in liver cirrhosis[J]. J Clin Hepatol, 2002, 18( 4): 237- 238. DOI: 10.3969/j.issn.1001-5256.2002.04.020.王欣, 王延龄, 闫虹. 肝硬化患者血清胰岛素样生长因子I、视黄醇结合蛋白水平变化与肝功能关系探讨[J]. 临床肝胆病杂志, 2002, 18( 4): 237- 238. DOI: 10.3969/j.issn.1001-5256.2002.04.020. [54] LA MORALES-GARZA, PUCHE JE, AGUIRRE GA, et al. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency[J]. J Transl Med, 2017, 15( 1): 96. DOI: 10.1186/s12967-017-1198-4. [55] WU DX, ZHANG LJ, MA SS, et al. Low growth hormone levels predict poor outcome of hepatitis B virus-related acute-on-chronic liver failure[J]. Front Med(Lausanne), 2021, 8: 655863. DOI: 10.3389/fmed.2021.655863. [56] MARQUES V, AFONSO MB, BIERIG N, et al. Adiponectin, leptin, and IGF-1 are useful diagnostic and stratification biomarkers of NAFLD[J]. Front Med(Lausanne), 2021, 8: 683250. DOI: 10.3389/fmed.2021.683250. [57] SAEKI C, KANAI T, UEDA K, et al. Insulin-like growth factor 1 predicts decompensation and long-term prognosis in patients with compensated cirrhosis[J]. Front Med(Lausanne), 2023, 10: 1233928. DOI: 10.3389/fmed.2023.1233928. [58] YAO YF, YANG DL, HUANG YD, et al. Predictive value of insulin-like growth factor 1-Child-Turcotte-Pugh score for mortality in patients with decompensated cirrhosis[J]. Clin Chim Acta, 2020, 505: 141- 147. DOI: 10.1016/j.cca.2020.02.031. [59] CRISTIN L, MONTINI A, MARTININO A, et al. The role of growth hormone and insulin growth factor 1 in the development of non-alcoholic steato-hepatitis: A systematic review[J]. Cells, 2023, 12( 4): 517. DOI: 10.3390/cells12040517. [60] VETRANO E, RINALDI L, MORMONE A, et al. Non-alcoholic fatty liver disease(NAFLD), type 2 diabetes, and non-viral hepatocarcinoma: Pathophysiological mechanisms and new therapeutic strategies[J]. Biomedicines, 2023, 11( 2): 468. DOI: 10.3390/biomedicines11020468. [61] ZHAO TY, ZHU Y, YAO LY, et al. IGF-1 alleviates CCl4-induced hepatic cirrhosis and dysfunction of intestinal barrier through inhibition TLR4/NF-κB signaling mediated by down-regulation HMGB1[J]. Ann Hepatol, 2021, 26: 100560. DOI: 10.1016/j.aohep.2021.100560. [62] DICHTEL LE, CORDOBA-CHACON J, KINEMAN RD. Growth hormone and insulin-like growth factor 1 regulation of nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab, 2022, 107( 7): 1812- 1824. DOI: 10.1210/clinem/dgac088. -

PDF下载 ( 945 KB)
下载:
