中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于肌少症的慢加急性肝衰竭患者90天死亡风险预测模型的建立及验证

陈慧娜 孔明 张思琪 徐曼曼 陈煜 段钟平

引用本文:
Citation:

基于肌少症的慢加急性肝衰竭患者90天死亡风险预测模型的建立及验证

DOI: 10.12449/JCH250620
基金项目: 

高层次公共卫生技术人才建设项目 (Discipline leader-01-12);

北京市医院管理中心“登峰”计划专项 (DFL20221501);

北京市科技新星计划 (20220484201);

北京自然科学基金项目 (7232081)

伦理学声明:本研究方案于2023年9月15日经由首都医科大学附属北京佑安医院伦理委员会审批,批号:京佑科伦字[2020]140号。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:陈慧娜、孔明负责采集数据,分析数据,撰写论文,二者对本文贡献等同,同为第一作者;张思琪、徐曼曼、陈煜参与论文修改;段钟平负责拟定写作思路,指导撰写文章并最终定稿。
详细信息
    通信作者:

    段钟平, duan2517@163.com (ORCID: 0000-0002-8455-0426)

Establishment and validation of a risk prediction model for 90-day mortality in patients with acute-on-chronic liver failure based on sarcopenia

Research funding: 

Construction Project of High-level Technology Talents in Public Health (Discipline leader-01-12);

Beijing Hospitals Authority’s Ascent Plan (DFL20221501);

Beijing Nova Program (20220484201);

Beijing Natural Science Foundation (7232081)

More Information
    Corresponding author: DUAN Zhongping, duan2517@163.com (ORCID: 0000-0002-8455-0426)
  • 摘要:   目的  旨在结合肌少症及其他临床指标,构建并验证一个慢加急性肝衰竭(ACLF)患者死亡风险的新预测模型,以提高对ACLF患者预后评估的准确性。  方法  选取2019年1月—2022年1月于首都医科大学附属北京佑安医院住院的ACLF患者380例,采用分层随机抽样法按照6∶4的比例将其分为训练组(n=228)和测试组(n=152)。在训练组中,通过CT图像测量第三腰椎骨骼肌面积,计算第三腰椎骨骼肌指数(L3-SMI)。肌少症的诊断依据前期多中心研究建立的中国北方正常成年人L3-SMI参考值。采用单因素和多因素Cox回归分析,构建结合肌少症及临床风险因素的“肌少症-ACLF模型”,并通过列线图展示。采用受试者操作特征曲线下面积(AUC)评估模型的预测效能,使用校准曲线评估模型的校准度,使用决策曲线分析(DCA)评估其临床应用价值。计量资料两组间比较采用成组t检验或Mann-Whitney U检验。计数资料两组间比较采用χ2检验。采用Kaplan-Meier方法绘制生存曲线,组间比较使用Log-rank检验。不同模型间AUC的差异比较采用DeLong检验。  结果  根据多因素Cox回归分析结果,将肌少症(HR=1.962,95%CI:1.185~3.250,P=0.009)、总胆红素(HR=1.003,95%CI:1.002~1.005,P<0.001)、国际标准化比值(HR=1.997,95%CI:1.674~2.382,P<0.001)和乳酸(HR=1.382,95%CI:1.170~1.632,P<0.001)纳入肌少症-ACLF模型。训练队列中,肌少症-ACLF模型预测ACLF患者90天死亡风险的AUC为0.80,较MELD-Na评分的AUC(0.73)有所提高(Z=1.97,P=0.049)。测试队列中,肌少症-ACLF模型的AUC为0.79,显著高于MELD评分(AUC=0.69)(Z=2.70,P=0.007)和MELD-Na评分(AUC=0.68)(Z=2.92,P=0.004)。校准曲线显示该模型具有良好的校准能力,预测的死亡风险与实际观察结果之间一致性较好。DCA结果显示,在一定的阈值概率范围内,训练队列和测试队列中的肌少症-ACLF模型均表现出较MELD评分和MELD-Na评分更高的净收益。  结论  本研究开发的肌少症-ACLF模型为预测ACLF患者90天死亡风险提供了更准确的工具,可支持临床决策和优化治疗策略。

     

  • 注: a和b分别代表男性和女性的横断面图像;红色区域为使用SliceOmatic软件测量的SMA。

    图  1  SliceOmatic软件测量的SMA示意图

    Figure  1.  Schematic diagram of skeletal muscle area measured using SliceOmatic software

    注: a,训练队列;b,测试队列。

    图  2  肌少症对ACLF患者90天生存率的影响

    Figure  2.  Impact of sarcopenia on 90-day survival rate in ACLF patients

    图  3  ACLF患者90天死亡风险预测模型的列线图

    Figure  3.  Nomogram for predicting 90-day mortality risk in ACLF patients

    注: a,训练队列;b,测试队列。

    图  4  肌少症-ACLF模型的校准曲线

    Figure  4.  Calibration curve of the sarcopenia-ACLF model

    注: a,训练队列;b,测试队列。

    图  5  各预测模型的DCA

    Figure  5.  Decision curve analysis of different predictive models

    表  1  训练队列和测试队列患者的基线特征比较

    Table  1.   Comparison of baseline characteristics between training and testing cohorts

    项目 训练组(n=228) 测试组(n=152) P
    年龄(岁) 47.0(38.0~53.2) 47.5(38.0~54.0) 0.76
    年龄分组[例(%)] 0.71
    20~<40岁 69(30.3) 43(28.3)
    40~60岁 132(57.9) 94(61.8)
    >60岁 27(11.8) 15(9.9)
    性别[例(%)] 0.24
    188(82.5) 133(87.5)
    40(17.5) 19(12.5)
    病因[例(%)] 0.77
    乙型肝炎 124(54.4) 76(50.0)
    酒精性肝病 59(25.9) 44(28.9)
    乙型肝炎+酒精性肝病 23(10.1) 14(9.2)
    其他肝病 22(9.6) 18(11.8)
    身高(cm) 172(167~175) 172(167~177) 0.48
    体质量(kg) 70.0(63.4~80.0) 73.0(65.0~80.0) 0.11
    校正后BMI(kg/m2 22.9(20.6~25.3) 23.3(20.9~25.4) 0.51
    肥胖[例(%)] 66(28.9) 47(30.9) 0.77
    肝硬化[例(%)] 180(78.9) 116(76.3) 0.63
    腹水[例(%)] 173(75.9) 123(80.9) 0.30
    肝性脑病[例(%)] 56(24.6) 31(20.4) 0.41
    急性肾损伤[例(%)] 40(17.5) 25(16.4) 0.89
    感染[例(%)] 178(78.1) 121(79.6) 0.82
    HBV DNA(log10 IU/mL) 4.81(3.51~6.50) 4.61(3.35~6.22) 0.63
    乳酸(mmol/L) 2.07(1.71~2.78) 2.05(1.81~2.67) 0.95
    器官衰竭等级[例(%)] 0.80
    1级 32(14.0) 25(16.4)
    2级 125(54.8) 80(52.6)
    3级 71(31.1) 47(30.9)
    总胆红素(μmol/L) 343(231~450) 318(214~457) 0.54
    白蛋白(g/L) 29.01±4.93 28.92±4.95 0.86
    肌酐(μmol/L) 61.0(50.0~75.2) 63.5(51.8~76.0) 0.50
    钠(mmol/L) 136(132~138) 136(133~139) 0.11
    国际标准化比值 2.21(1.93~2.73) 2.16(1.77~2.77) 0.10
    血红蛋白(g/L) 121(99~137) 118(103~135) >0.05
    白细胞计数(×109/L) 6.81(4.80~9.36) 6.57(5.03~9.57) 0.97
    血小板计数(×109/L) 104(70~146) 91(62~144) 0.27
    L3-SMI(cm2/m2 46.20±8.85 46.83±9.14 0.51
    肌少症[例(%)] 44(19.3) 31(20.4) 0.90
    AARC等级[例(%)] 0.30
    1级 38(16.7) 35(23.0)
    2级 139(61.0) 87(57.2)
    3级 51(22.4) 30(19.7)
    MELD评分(分) 23.3(20.0~26.9) 22.9(20.1~26.5) 0.60
    MELD-Na评分(分) 24.6(21.1~32.1) 24.7(20.6~29.1) 0.48

    注:AARC,亚太肝病学会ACLF研究联盟评分。

    下载: 导出CSV

    表  2  单因素Cox回归分析ACLF患者预后的影响因素

    Table  2.   Univariate Cox regression analysis of prognostic factors in ACLF patients

    变量 HR 95%CI P
    年龄 1.020 0.998~1.042 0.072
    腹水 2.315 1.189~4.510 0.014
    肝性脑病 2.847 1.787~4.534 <0.001
    急性肾损伤 2.275 1.372~3.774 0.002
    乳酸 1.381 1.206~1.580 <0.001
    器官衰竭等级2 3.141 0.963~10.244 0.058
    器官衰竭等级3 8.443 2.603~27.379 <0.001
    总胆红素 1.003 1.001~1.004 <0.001
    0.966 0.935~0.997 0.032
    国际标准化比值 1.893 1.602~2.237 <0.001
    白细胞 1.052 1.012~1.094 0.011
    肌少症 2.287 1.404~3.725 <0.001
    AARC等级2 6.751 1.635~27.872 0.008
    AARC等级3 18.567 4.425~77.904 <0.001
    下载: 导出CSV

    表  3  各预测模型在训练队列和测试队列中的预测性能比较

    Table  3.   Comparison of predictive performance of different models in the training and testing cohorts

    模型 训练队列 测试队列
    AUC(95%CI P1) AUC(95%CI P1)
    肌少症-ACLF
    模型
    0.80
    0.74~0.86)
    0.79
    (0.71~0.87)
    MELD评分 0.74
    (0.67~0.82)
    0.080 0.69
    (0.60~0.79)
    0.007
    MELD-Na评分 0.73
    (0.66~0.80)
    0.049 0.68
    (0.58~0.78)
    0.004

    注:1)与肌少症-ACLF模型比较。

    下载: 导出CSV
  • [1] BARKER LA, GOUT BS, CROWE TC. Hospital malnutrition: Prevalence, identification and impact on patients and the healthcare system[J]. Int J Environ Res Public Health, 2011, 8( 2): 514- 527. DOI: 10.3390/ijerph8020514.
    [2] CORREIA MI, WAITZBERG DL. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis[J]. Clin Nutr, 2003, 22( 3): 235- 239. DOI: 10.1016/s0261-5614(02)00215-7.
    [3] ALLARD JP, KELLER H, JEEJEEBHOY KN, et al. Malnutrition at hospital admission-contributors and effect on length of stay: A prospective cohort study from the Canadian malnutrition task force[J]. JPEN J Parenter Enteral Nutr, 2016, 40( 4): 487- 497. DOI: 10.1177/0148607114567902.
    [4] CRUZ-JENTOFT AJ, BAHAT G, BAUER J, et al. Sarcopenia: Revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48( 1): 16- 31. DOI: 10.1093/ageing/afy169.
    [5] CEDERHOLM T, BARAZZONI R, AUSTIN P, et al. ESPEN guidelines on definitions and terminology of clinical nutrition[J]. Clin Nutr, 2017, 36( 1): 49- 64. DOI: 10.1016/j.clnu.2016.09.004.
    [6] Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association. Clinical guidelines on nutrition in end-stage liver disease[J]. J Clin Hepatol, 2019, 35( 6): 1222- 1230. DOI: 10.3969/j.issn.1001-5256.2019.06.010.

    中华医学会肝病学分会, 中华医学会消化病学分会. 终末期肝病临床营养指南[J]. 临床肝胆病杂志, 2019, 35( 6): 1222- 1230. DOI: 10.3969/j.issn.1001-5256.2019.06.010.
    [7] GENG N, KONG M, CHEN Y, et al. Value of L3 skeletal muscle index in nutritional diagnosis of end-stage liver disease[J]. J Clin Hepatol, 2021, 37( 10): 2493- 2496. DOI: 10.3969/j.issn.1001-5256.2021.10.050.

    耿楠, 孔明, 陈煜, 等. 第三腰椎骨骼肌指数在终末期肝病营养诊断中的应用价值[J]. 临床肝胆病杂志, 2021, 37( 10): 2493- 2496. DOI: 10.3969/j.issn.1001-5256.2021.10.050.
    [8] KAMACHI S, MIZUTA T, OTSUKA T, et al. Sarcopenia is a risk factor for the recurrence of hepatocellular carcinoma after curative treatment[J]. Hepatol Res, 2016, 46( 2): 201- 208. DOI: 10.1111/hepr.12562.
    [9] KONG M, GENG N, ZHOU Y, et al. Defining reference values for low skeletal muscle index at the L3 vertebra level based on computed tomography in healthy adults: A multicentre study[J]. Clin Nutr, 2022, 41( 2): 396- 404. DOI: 10.1016/j.clnu.2021.12.003.
    [10] CURCIO F, TESTA G, LIGUORI I, et al. Sarcopenia and heart failure[J]. Nutrients, 2020, 12( 1): E211. DOI: 10.3390/nu12010211.
    [11] SHACHAR SS, WILLIAMS GR, MUSS HB, et al. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review[J]. Eur J Cancer, 2016, 57: 58- 67. DOI: 10.1016/j.ejca.2015.12.030.
    [12] KIM G, KANG SH, KIM MY, et al. Prognostic value of sarcopenia in patients with liver cirrhosis: A systematic review and meta-analysis[J]. PLoS One, 2017, 12( 10): e0186990. DOI: 10.1371/journal.pone.0186990.
    [13] SPRINGER J, SPRINGER JI, ANKER SD. Muscle wasting and sarcopenia in heart failure and beyond: Update 2017[J]. ESC Heart Fail, 2017, 4( 4): 492- 498. DOI: 10.1002/ehf2.12237.
    [14] JOGLEKAR S, ASGHAR A, MOTT SL, et al. Sarcopenia is an independent predictor of complications following pancreatectomy for adenocarcinoma[J]. J Surg Oncol, 2015, 111( 6): 771- 775. DOI: 10.1002/jso.23862.
    [15] O’BRIEN A, WILLIAMS R. Nutrition in end-stage liver disease: Principles and practice[J]. Gastroenterology, 2008, 134( 6): 1729- 1740. DOI: 10.1053/j.gastro.2008.02.001.
    [16] SARIN SK, CHOUDHURY A, SHARMA MK, et al. Acute-on-chronic liver failure: Consensus recommendations of the Asian Pacific association for the study of the liver(APASL): An update[J]. Hepatol Int, 2019, 13( 4): 353- 390. DOI: 10.1007/s12072-019-09946-3.
    [17] CAREY EJ, LAI JC, WANG CW, et al. A multicenter study to define sarcopenia in patients with end-stage liver disease[J]. Liver Transpl, 2017, 23( 5): 625- 633. DOI: 10.1002/lt.24750.
    [18] SHI Y, YANG Y, HU YR, et al. Acute-on-chronic liver failure precipitated by hepatic injury is distinct from that precipitated by extrahepatic insults[J]. Hepatology, 2015, 62( 1): 232- 242. DOI: 10.1002/hep.27795.
    [19] LI H, CHEN LY, ZHANG NN, et al. Characteristics, diagnosis and prognosis of acute-on-chronic liver failure in cirrhosis associated to hepatitis B[J]. Sci Rep, 2016, 6: 25487. DOI: 10.1038/srep25487.
    [20] NISHIKAWA H, SHIRAKI M, HIRAMATSU A, et al. Japan Society of Hepatology guidelines for sarcopenia in liver disease(1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria[J]. Hepatol Res, 2016, 46( 10): 951- 963. DOI: 10.1111/hepr.12774.
    [21] AKAIKE H. A new look at the statistical model identification[J]. IEEE Trans Autom Contr, 1974, 19( 6): 716- 723. DOI: 10.1109/TAC.1974.1100705.
    [22] MONTANO-LOZA AJ, MEZA-JUNCO J, PRADO CMM, et al. Muscle wasting is associated with mortality in patients with cirrhosis[J]. Clin Gastroenterol Hepatol, 2012, 10( 2): 166- 173. DOI: 10.1016/j.cgh.2011.08.028.
    [23] HANAI T, SHIRAKI M, WATANABE S, et al. Sarcopenia predicts minimal hepatic encephalopathy in patients with liver cirrhosis[J]. Hepatol Res, 2017, 47( 13): 1359- 1367. DOI: 10.1111/hepr.12873.
    [24] DASARATHY S. Cause and management of muscle wasting in chronic liver disease[J]. Curr Opin Gastroenterol, 2016, 32( 3): 159- 165. DOI: 10.1097/MOG.0000000000000261.
    [25] KAMATH PS, WIESNER RH, MALINCHOC M, et al. A model to predict survival in patients with end-stage liver disease[J]. Hepatology, 2001, 33( 2): 464- 470. DOI: 10.1053/jhep.2001.22172.
    [26] BERNAL W, DONALDSON N, WYNCOLL D, et al. Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: A cohort study[J]. Lancet, 2002, 359( 9306): 558- 563. DOI: 10.1016/S0140-6736(02)07743-7.
    [27] HERNAEZ R, SOLÀ E, MOREAU R, et al. Acute-on-chronic liver failure: An update[J]. Gut, 2017, 66( 3): 541- 553. DOI: 10.1136/gutjnl-2016-312670.
    [28] MOURTZAKIS M, PRADO CMM, LIEFFERS JR, et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care[J]. Appl Physiol Nutr Metab, 2008, 33( 5): 997- 1006. DOI: 10.1139/H08-075.
    [29] SHEN W, PUNYANITYA M, WANG ZM, et al. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image[J]. J Appl Physiol(1985), 2004, 97( 6): 2333- 2338. DOI: 10.1152/japplphysiol.00744.2004.
    [30] PRADO CMM, HEYMSFIELD SB. Lean tissue imaging: A new era for nutritional assessment and intervention[J]. JPEN J Parenter Enteral Nutr, 2014, 38( 8): 940- 953. DOI: 10.1177/0148607114550189.
    [31] CLEMENTE-SUÁREZ VJ, REDONDO-FLÓREZ L, BELTRÁN-VELASCO AI, et al. The role of adipokines in health and disease[J]. Biomedicines, 2023, 11( 5): 1290. DOI: 10.3390/biomedicines11051290.
    [32] EBADI M, MONTANO-LOZA AJ. Clinical relevance of skeletal muscle abnormalities in patients with cirrhosis[J]. Dig Liver Dis, 2019, 51( 11): 1493- 1499. DOI: 10.1016/j.dld.2019.05.034.
    [33] CHEN LK, WOO J, ASSANTACHAI P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21( 3): 300- 307. DOI: 10.1016/j.jamda.2019.12.012.
    [34] PETOUSI N, TALBOT NP, PAVORD I, et al. Measuring lung function in airways diseases: Current and emerging techniques[J]. Thorax, 2019, 74( 8): 797- 805. DOI: 10.1136/thoraxjnl-2018-212441.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  762
  • HTML全文浏览量:  197
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-07
  • 录用日期:  2024-11-19
  • 出版日期:  2025-06-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回