中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

靶向叶酸受体α(FRα)的程序性细胞死亡受体1敲低型嵌合抗原受体T细胞杀伤肝癌细胞的效果分析

温军业 张浚琪 任行 张海强 叶学帅

引用本文:
Citation:

靶向叶酸受体α(FRα)的程序性细胞死亡受体1敲低型嵌合抗原受体T细胞杀伤肝癌细胞的效果分析

DOI: 10.12449/JCH250619
基金项目: 

河北省自然科学基金 (H2024402005)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:温军业、叶学帅负责课题设计,资料分析,撰写论文;张浚琪、任行、张海强参与收集数据,修改论文;温军业、张海强、叶学帅负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    叶学帅, yexueshuai@hebeu.edu.cn (ORCID: 0009-0000-3665-3394)

Efficacy of chimeric antigen receptor T-cell with programmed cell death-1 knockdown targeting folate receptor alpha in killing hepatoma cells

Research funding: 

Natural Science Foundation of Hebei Province (H2024402005)

More Information
  • 摘要:   目的  探究靶向叶酸受体α(FRα)嵌合抗原受体(CAR)的程序性细胞死亡受体1(PD-1)敲低型T细胞(si-PD-1-CAR-T)对肝癌细胞的清除能力。  方法  应用生物信息学数据库TCGA分析FRα抗原在肝癌及正常肝组织中的表达情况,以及FRα表达与肝癌患者生存期的关系。分别将编码靶向FRα抗原的CAR结构的mRNA及mRNA联合靶向PD-1基因的小干扰RNA(siRNA)使用电穿孔仪转导入T细胞,制备FRα-CAR-T和si-PD-1-CAR-T。流式细胞术分析FRα-CAR的表达效率和PD-1的敲低效率。体外培养肝癌细胞系JHH-1和HepG2,采用流式细胞术分析FRα在肿瘤细胞表面的表达情况,将FRα-CAR-T、si-PD-1-CAR-T及空载体转导的T细胞(Mock T)作为效应细胞,JHH-1和HepG2作为靶细胞,CCK-8法检测在不同效靶比(1∶1、2.5∶1、5∶1、10∶1、20∶1)时对靶细胞的杀伤效率;采用ELISA法分别检测效应细胞与靶细胞(10∶1)共培养上清中IFN-γ和IL-2的分泌情况。计量资料符合正态分布时,两组间比较采用成组t检验,多组间比较采用单因素方差分析,进一步两两比较采用SNK检验。采用Kaplan-Meier法分析比较患者生存差异。  结果  TCGA数据库分析显示,FOLR1在肝癌组织中表达水平明显升高,FOLR1高表达肝癌患者的总生存期显著低于FOLR1低表达者(P=0.013)。将mRNA转导入T细胞后,FRα-CAR在CAR-T和si-PD-1-CAR-T中的表达率可达89.8%和84.7%,使用mRNA和siRNA共转染可将T细胞的PD-1下调并维持至少7天的PD-1低表达状态。FRα抗原在JHH-1细胞中表达率为100%,而在HepG2细胞中呈阴性表达。CCK-8结果显示,si-PD-1-CAR-T对JHH-1细胞杀伤效率显著高于FRα-CAR-T细胞(P<0.05);ELISA结果显示,FRα-CAR-T细胞与JHH-1细胞共培养时,IL-2分泌量较Mock T细胞显著增加[(1 032.50±135.90) pg/mL vs (50.26±7.87) pg/mL,P<0.001],IFN-γ分泌量显著增加[(1 430.56±184.20) pg/mL vs (89.05±11.26) pg/mL, P<0.001];si-PD-1-CAR-T与JHH-1细胞共培养后,IFN-γ和IL-2的释放水平较FRα-CAR-T均显著提高(P值均<0.05)。  结论  FRα是肝癌治疗的潜在靶点,敲低T细胞PD-1可显著提高FRα-CAR-T在体外的杀伤活性。

     

  • 图  1  FRα-CAR的结构示意图

    Figure  1.  The structure diagram of FRα-CAR

    图  2  FOLR1在不同肿瘤组织中的表达水平

    Figure  2.  The expression level of FOLR1 in different tumor tissues

    图  3  FOLR1基因表达与肝癌患者总生存期的关系

    Figure  3.  The correlation analysis of FOLR1 gene expression with overall survival of hepatocellular carcinoma patients

    图  4  流式细胞术检测CAR在T细胞中表达效率

    Figure  4.  FACS was applied to detect the expression efficiency of CAR in three types of cells

    注: ISO,同型对照抗体。

    图  5  流式细胞术检测PD-1在T细胞中表达效率及持续时间

    Figure  5.  FACS was applied to detect the expression efficiency and duration time of PD-1 in three types of cells

    图  6  HepG2和JHH-1肿瘤细胞表面FRα的表达

    Figure  6.  Expression of FRα on tumor cells of HepG2 and JHH-1

    注: a,HepG2细胞;b,JHH-1细胞。

    图  7  si-PD-1-CAR-T和FRα-CAR-T对HepG2和JHH-1细胞的特异性清除率

    Figure  7.  The specific clearance rate of si-PD-1-CAR-T and FRα-CAR-T to HepG2 and JHH-1cells

    图  8  si-PD-1-CAR-T和FRα-CAR-T与JHH-1细胞共培养上清中IFN-γ与IL-2含量

    Figure  8.  Detection of IFN-γ and IL-2 Secretion in the supernatant of si-PD-1-CAR-T and FRα-CAR-T Co-cultured with JHH-1 Cells

  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71( 3): 209- 249. DOI: 10.3322/caac.21660.
    [2] GANESAN P, KULIK LM. Hepatocellular carcinoma: New developments[J]. Clin Liver Dis, 2023, 27( 1): 85- 102. DOI: 10.1016/j.cld.2022.08.004.
    [3] COURI T, PILLAI A. Goals and targets for personalized therapy for HCC[J]. Hepatol Int, 2019, 13( 2): 125- 137. DOI: 10.1007/s12072-018-9919-1.
    [4] SHIMABUKURO-VORNHAGEN A, BÖLL B, SCHELLONGOWSKI P, et al. Critical care management of chimeric antigen receptor T-cell therapy recipients[J]. CA Cancer J Clin, 2022, 72( 1): 78- 93. DOI: 10.3322/caac.21702.
    [5] DRANSART B, DEHGHANI H, MOORE A. Product-safety considerations in allogeneic chimeric antigen-receptor T-cell process flows[J]. Curr Opin Biotechnol, 2022, 78: 102797. DOI: 10.1016/j.copbio.2022.102797.
    [6] CARNEIRO BA, EL-DEIRY WS. Targeting apoptosis in cancer therapy[J]. Nat Rev Clin Oncol, 2020, 17( 7): 395- 417. DOI: 10.1038/s41571-020-0341-y.
    [7] SCARANTI M, COJOCARU E, BANERJEE S, et al. Exploiting the folate receptor α in oncology[J]. Nat Rev Clin Oncol, 2020, 17( 6): 349- 359. DOI: 10.1038/s41571-020-0339-5.
    [8] GILBERT L, OAKNIN A, MATULONIS UA, et al. Safety and efficacy of mirvetuximab soravtansine, a folate receptor alpha(FRα)-targeting antibody-drug conjugate(ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer[J]. Gynecol Oncol, 2023, 170: 241- 247. DOI: 10.1016/j.ygyno.2023.01.020.
    [9] YOUNG O, NGO N, LIN L, et al. Folate receptor as a biomarker and therapeutic target in solid tumors[J]. Curr Probl Cancer, 2023, 47( 1): 100917. DOI: 10.1016/j.currproblcancer.2022.100917.
    [10] ZHAO YS, DENG J, RAO SF, et al. Tumor infiltrating lymphocyte(TIL) therapy for solid tumor treatment: Progressions and challenges[J]. Cancers(Basel), 2022, 14( 17): 4160. DOI: 10.3390/cancers14174160.
    [11] HE JJ, XIONG XX, YANG H, et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response[J]. Cell Res, 2022, 32( 6): 530- 542. DOI: 10.1038/s41422-022-00627-9.
    [12] ZHENG NB, FANG J, XUE G, et al. Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance[J]. Cancer Cell, 2022, 40( 9): 973- 985.e7. DOI: 10.1016/j.ccell.2022.08.001.
    [13] DENLINGER N, BOND D, JAGLOWSKI S. CAR T-cell therapy for B-cell lymphoma[J]. Curr Probl Cancer, 2022, 46( 1): 100826. DOI: 10.1016/j.currproblcancer.2021.100826.
    [14] YOUNG RM, ENGEL NW, USLU U, et al. Next-generation CAR T-cell therapies[J]. Cancer Discov, 2022, 12( 7): 1625- 1633. DOI: 10.1158/2159-8290.CD-21-1683.
    [15] XIAO Y, YU DH. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221: 107753. DOI: 10.1016/j.pharmthera.2020.107753.
    [16] JIANG XJ, WANG J, DENG XY, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer, 2019, 18( 1): 10. DOI: 10.1186/s12943-018-0928-4.
    [17] VESELY MD, ZHANG TX, CHEN LP. Resistance mechanisms to anti-PD cancer immunotherapy[J]. Annu Rev Immunol, 2022, 40: 45- 74. DOI: 10.1146/annurev-immunol-070621-030155.
    [18] LEKO V, ROSENBERG SA. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors[J]. Cancer Cell, 2020, 38( 4): 454- 472. DOI: 10.1016/j.ccell.2020.07.013.
    [19] UPADHYAY R, BOIARSKY JA, PANTSULAIA G, et al. A critical role for fas-mediated off-target tumor killing in T-cell immunotherapy[J]. Cancer Discov, 2021, 11( 3): 599- 613. DOI: 10.1158/2159-8290.CD-20-0756.
    [20] WANG HZ, YE XS, JU Y, et al. Minicircle DNA-mediated CAR T cells targeting CD44 suppressed hepatocellular carcinoma both in vitro and in vivo[J]. Onco Targets Ther, 2020, 13: 3703- 3716. DOI: 10.2147/OTT.S247836.
    [21] SUN L, GAO F, GAO ZH, et al. Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in hepatocellular carcinoma[J]. J Immunother Cancer, 2021, 9( 4): e001875. DOI: 10.1136/jitc-2020-001875.
    [22] PANG NZ, SHI JX, QIN L, et al. IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin[J]. J Hematol Oncol, 2021, 14( 1): 118. DOI: 10.1186/s13045-021-01128-9.
    [23] SAITO S, KOYA Y, KAJIYAMA H, et al. Folate-appended cyclodextrin carrier targets ovarian cancer cells expressing the proton-coupled folate transporter[J]. Cancer Sci, 2020, 111( 5): 1794- 1804. DOI: 10.1111/cas.14379.
    [24] CHEUNG A, OPZOOMER J, ILIEVA KM, et al. Anti-folate receptor alpha-directed antibody therapies restrict the growth of triple-negative breast cancer[J]. Clin Cancer Res, 2018, 24( 20): 5098- 5111. DOI: 10.1158/1078-0432.CCR-18-0652.
    [25] LUANGWATTANANUN P, JUNKING M, SUJJITJOON J, et al. Fourth-generation chimeric antigen receptor T cells targeting folate receptor alpha antigen expressed on breast cancer cells for adoptive T cell therapy[J]. Breast Cancer Res Treat, 2021, 186( 1): 25- 36. DOI: 10.1007/s10549-020-06032-3.
    [26] NAWAZ FZ, KIPREOS ET. Emerging roles for folate receptor FOLR1 in signaling and cancer[J]. Trends Endocrinol Metab, 2022, 33( 3): 159- 174. DOI: 10.1016/j.tem.2021.12.003.
    [27] SHARMA A, SEOW JJW, DUTERTRE CA, et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma[J]. Cell, 2020, 183( 2): 377- 394.e21. DOI: 10.1016/j.cell.2020.08.040.
    [28] ROSELLI E, BOUCHER JC, LI GB, et al. 4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells[J]. J Immunother Cancer, 2021, 9( 10): e003354. DOI: 10.1136/jitc-2021-003354.
    [29] MAGNANI CF, GAIPA G, LUSSANA F, et al. Sleeping Beauty-engineered CAR T cells achieve antileukemic activity without severe toxicities[J]. J Clin Invest, 2020, 130( 11): 6021- 6033. DOI: 10.1172/JCI138473.
    [30] HUANG RH, LI XP, HE YD, et al. Recent advances in CAR-T cell engineering[J]. J Hematol Oncol, 2020, 13( 1): 86. DOI: 10.1186/s13045-020-00910-5.
    [31] BILLINGSLEY MM, SINGH N, RAVIKUMAR P, et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering[J]. Nano Lett, 2020, 20( 3): 1578- 1589. DOI: 10.1021/acs.nanolett.9b04246.
    [32] SOUNDARA RAJAN T, GUGLIANDOLO A, BRAMANTI P, et al. In vitro-transcribed mRNA chimeric antigen receptor T cell(IVT mRNA CAR T) therapy in hematologic and solid tumor management: A preclinical update[J]. Int J Mol Sci, 2020, 21( 18): 6514. DOI: 10.3390/ijms21186514.
    [33] MORETTI A, PONZO M, NICOLETTE CA, et al. The past, present, and future of non-viral CAR T cells[J]. Front Immunol, 2022, 13: 867013. DOI: 10.3389/fimmu.2022.867013.
  • 加载中
图(8)
计量
  • 文章访问数:  559
  • HTML全文浏览量:  179
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 录用日期:  2025-01-21
  • 出版日期:  2025-06-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回