中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3-羟基-3-甲基戊二酰辅酶A还原酶(HMGCR)在肝脏疾病中的作用

曾阳玲 王运踊 关海梅 王恬雯 谢宝华 李国宝 张日云 王挺帅 毛德文

引用本文:
Citation:

3-羟基-3-甲基戊二酰辅酶A还原酶(HMGCR)在肝脏疾病中的作用

DOI: 10.12449/JCH250527
基金项目: 

国家自然科学基金 (82360912);

国家自然科学基金 (81960841);

国家自然科学基金 (82274434);

广西自然科学基金 (2023GXNSFBA026190);

广西中医药大学博士科研启动基金 (2021BS028);

广西高校中青年教师科研基础能力提升项目 (2022KY0299);

广西中医药大学第一附属医院科研项目 (2021QN004)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:曾阳玲、王运踊负责课题设计,资料分析,撰写论文,为共同第一作者;关海梅、王恬雯、谢宝华、李国宝、张日云参与收集数据及文献搜集与整理,修改论文;王挺帅指导撰写及修改文章;毛德文负责拟定写作思路,指导撰写并最后定稿。
详细信息
    通信作者:

    毛德文, mdwboshi2005@163.com (ORCID: 0000-0001-9438-9325)

The role of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in liver diseases

Research funding: 

National Natural Science Foundation of China (82360912);

National Natural Science Foundation of China (81960841);

National Natural Science Foundation of China (82274434);

Guangxi Natural Science Foundation (2023GXNSFBA026190);

Guangxi University of Traditional Chinese Medicine Doctoral Research Foundation (2021BS028);

Guangxi University of Traditional Chinese Medicine Young Teachers’ Scientific Research Foundation Ability Improvement Project (2022KY0299);

The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine Scientific Research Project (2021QN004)

More Information
  • 摘要: 胆固醇是细胞膜生物合成、细胞增殖与分化不可或缺的分子,肝脏在体内胆固醇代谢中扮演着核心角色,负责胆固醇的合成、摄取、分泌与转运等关键功能。肝脏中胆固醇合成的起始环节尤为重要,其异常与多种肝脏疾病的发展密切相关。研究表明,3-羟基-3-甲基戊二酰辅酶A还原酶(HMGCR)作为胆固醇生物合成中的关键限速酶,其控制特性明确,已被证实为多种肝脏疾病调控的重要靶点。本文将简要回顾胆固醇代谢的过程、HMGCR的降解与调控机制,以及抑制剂的应用,同时探讨HMGCR在多种肝脏疾病中的作用,旨在为科研和临床防治肝脏疾病提供新思路。

     

  • 注: LDL,低密度脂蛋白;LDLR,低密度脂蛋白受体;NPC1,尼曼-匹克C1型蛋白1;Acetyl-CoA,乙酰辅酶A;HMGCS,羟甲基戊二酰辅酶A合成酶;HMG-CoA,β-羟基-β-甲基戊二酰辅酶A;HMGCR,3-羟基-3-甲基戊二酰辅酶A还原酶;MVA,甲羟戊酸;IPP,异戊烯醇焦磷酸酯;FPP,法尼基焦磷酸;FDFT1,法尼基二磷酸法尼基转移酶1;SQLE,角鲨烯环氧化酶;ACAT,胆固醇酰基转移酶;CE,胆固醇酯;CYP7A1,细胞色素P450 7A1;ABCA1,三磷酸腺苷结合盒转运体;ABCG1,ATP结合盒转运体G1;LXR,肝X受体;SREBP-2,甾醇调节元件结合蛋白-2。

    图  1  胆固醇代谢机制

    Figure  1.  Cholesterol metabolism mechanism

  • [1] DEVARBHAVI H, ASRANI SK, ARAB JP, et al. Global burden of liver disease: 2023 update[J]. J Hepatol, 2023, 79( 2): 516- 537. DOI: 10.1016/j.jhep.2023.03.017.
    [2] WANG JQ, LI LL, HU A, et al. Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion[J]. Nature, 2022, 608( 7922): 413- 420. DOI: 10.1038/s41586-022-05006-3.
    [3] LIU W, CHAKRABORTY B, SAFI R, et al. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer[J]. Nat Commun, 2021, 12( 1): 5103. DOI: 10.1038/s41467-021-25354-4.
    [4] HASSEN C BEN, GOUPILLE C, VIGOR C, et al. Is cholesterol a risk factor for breast cancer incidence and outcome?[J]. J Steroid Biochem Mol Biol, 2023, 232: 106346. DOI: 10.1016/j.jsbmb.2023.106346.
    [5] LIANG ZC, ZHANG Z, TAN XN, et al. Lipids, cholesterols, statins and liver cancer: A Mendelian randomization study[J]. Front Oncol, 2023, 13: 1251873. DOI: 10.3389/fonc.2023.1251873.
    [6] YU JJ, DU YZ, SU J, et al. Preventive effect and mechanism of Citri Reticulatae Pericarpium on hypercholesterolemia rats[J]. Chin Tradit Pat Med, 2021, 43( 11): 2982- 2988. DOI: 10.3969/j.issn.1001-1528.2021.11.009.

    俞静静, 杜宇忠, 苏洁, 等. 陈皮对高胆固醇血症大鼠的预防作用及其机制[J]. 中成药, 2021, 43( 11): 2982- 2988. DOI: 10.3969/j.issn.1001-1528.2021.11.009.
    [7] YANG F, KOU JJ, LIU ZZ, et al. MYC enhances cholesterol biosynthesis and supports cell proliferation through SQLE[J]. Front Cell Dev Biol, 2021, 9: 655889. DOI: 10.3389/fcell.2021.655889.
    [8] XU HJ, ZHOU S, TANG QL, et al. Cholesterol metabolism: New functions and therapeutic approaches in cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874( 1): 188394. DOI: 10.1016/j.bbcan.2020.188394.
    [9] SAHA P, SHUMATE JL, CALDWELL JG, et al. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins[J]. eLife, 2020, 9: e57089. DOI: 10.7554/eLife.57089.
    [10] van de SLUIS B, WIJERS M, HERZ J. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1[J]. Curr Opin Lipidol, 2017, 28( 3): 241- 247. DOI: 10.1097/MOL.0000000000000411.
    [11] BAZIOTI V, LA ROSE AM, MAASSEN S, et al. T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice[J]. Nat Commun, 2022, 13( 1): 3799. DOI: 10.1038/s41467-022-31135-4.
    [12] WANG PH, YUE ZZ, WEI XT, et al. Influence of extracts from Euphorbiae Semen before and after frosting on cholesterol efflux in Caco-2 cells through liver X receptor-adenosine triphosphate-binding cassette transporter A1 pathway[J]. Chin J Clin Pharmacol, 2023, 39( 2): 201- 205. DOI: 10.13699/j.cnki.1001-6821.2023.02.011.

    王佩华, 岳珠珠, 魏晓彤, 等. 千金子制霜前后提取物通过肝X受体-腺苷三磷酸结合盒转运体A1信号通路对Caco-2细胞中胆固醇外流的影响[J]. 中国临床药理学杂志, 2023, 39( 2): 201- 205. DOI: 10.13699/j.cnki.1001-6821.2023.02.011.
    [13] YAN CS, ZHENG L, JIANG ST, et al. Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity[J]. Cancer Cell, 2023, 41( 7): 1276- 1293. DOI: 10.1016/j.ccell.2023.04.016.
    [14] CARDOSO D, PERUCHA E. Cholesterol metabolism: A new molecular switch to control inflammation[J]. Clin Sci(Lond), 2021, 135( 11): 1389- 1408. DOI: 10.1042/CS20201394.
    [15] LIM MYC, HO HK. Pharmacological modulation of cholesterol 7α-hydroxylase(CYP7A1) as a therapeutic strategy for hypercholesterolemia[J]. Biochem Pharmacol, 2024, 220: 115985. DOI: 10.1016/j.bcp.2023.115985.
    [16] TAN JME, COOK ECL, van den BERG M, et al. Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis[J]. Atherosclerosis, 2019, 281: 137- 142. DOI: 10.1016/j.atherosclerosis.2018.12.008.
    [17] FAULKNER R, JO Y. Synthesis, function, and regulation of sterol and nonsterol isoprenoids[J]. Front Mol Biosci, 2022, 9: 1006822. DOI: 10.3389/fmolb.2022.1006822.
    [18] FAULKNER RA, YANG YY, TSIEN J, et al. Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase[J]. Proc Natl Acad Sci U S A, 2024, 121( 7): e2318822121. DOI: 10.1073/pnas.2318822121.
    [19] JIANG LY, JIANG W, TIAN N, et al. Ring finger protein 145(RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase[J]. J Biol Chem, 2018, 293( 11): 4047- 4055. DOI: 10.1074/jbc.RA117.001260.
    [20] van den BOOMEN DJH, VOLKMAR N, LEHNER PJ. Ubiquitin-mediated regulation of sterol homeostasis[J]. Curr Opin Cell Biol, 2020, 65: 103- 111. DOI: 10.1016/j.ceb.2020.04.010.
    [21] MENZIES SA, VOLKMAR N, van den BOOMEN DJ, et al. The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1[J]. eLife, 2018, 7: e40009. DOI: 10.7554/eLife.40009.
    [22] ALI N, ALLAM H, BADER T, et al. Fluvastatin interferes with hepatitis C virus replication via microtubule bundling and a doublecortin-like kinase-mediated mechanism[J]. PLoS One, 2013, 8( 11): e80304. DOI: 10.1371/journal.pone.0080304.
    [23] ALANNAN M, TRÉZÉGUET V, AMOÊDO ND, et al. Rewiring lipid metabolism by targeting PCSK9 and HMGCR to treat liver cancer[J]. Cancers(Basel), 2022, 15( 1): 3. DOI: 10.3390/cancers15010003.
    [24] JIANG W, HU JW, HE XR, et al. Statins: A repurposed drug to fight cancer[J]. J Exp Clin Cancer Res, 2021, 40( 1): 241. DOI: 10.1186/s13046-021-02041-2.
    [25] ESLAMI Z, AGHILI SS, GHAFI AG. Atorvastatin on treatment of nonalcoholic fatty liver disease patients[J]. Chonnam Med J, 2024, 60( 1): 13- 20. DOI: 10.4068/cmj.2024.60.1.13.
    [26] WANG HJ, LIU SY, ZHOU CJ, et al. Fatal hepatic failure following atorvastatin treatment: A case report[J]. Medicine(Baltimore), 2023, 102( 19): e33743. DOI: 10.1097/MD.0000000000033743.
    [27] TORRE P, AGLITTI A, MASARONE M, et al. Viral hepatitis: Milestones, unresolved issues, and future goals[J]. World J Gastroenterol, 2021, 27( 28): 4603- 4638. DOI: 10.3748/wjg.v27.i28.4603.
    [28] GLITSCHER M, HILDT E. Endosomal cholesterol in viral infections- A common denominator?[J]. Front Physiol, 2021, 12: 750544. DOI: 10.3389/fphys.2021.750544.
    [29] HSU CS, LIU WL, LI QS, et al. Hepatitis C virus genotypes 1-3 infections regulate lipogenic signaling and suppress cholesterol biosynthesis in hepatocytes[J]. J Formos Med Assoc, 2020, 119( 9): 1382- 1395. DOI: 10.1016/j.jfma.2020.03.018.
    [30] LI YJ, ZHU P, LIANG Y, et al. Hepatitis B virus induces expression of cholesterol metabolism-related genes via TLR2 in HepG2 cells[J]. World J Gastroenterol, 2013, 19( 14): 2262- 2269. DOI: 10.3748/wjg.v19.i14.2262.
    [31] LIN SH, HUANG KJ, WENG CF, et al. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening[J]. Drug Des Devel Ther, 2015, 9: 3313- 3324. DOI: 10.2147/DDDT.S84641.
    [32] THONGSRI P, PEWKLIANG Y, BORWORNPINYO S, et al. Curcumin inhibited hepatitis B viral entry through NTCP binding[J]. Sci Rep, 2021, 11( 1): 19125. DOI: 10.1038/s41598-021-98243-x.
    [33] NAN C. Predictive value of triglyceride to high density lipoprotein cholesterol ratio combined with γ-glutamyl transpeptidase in nonalcoholic fatty liver disease[J]. Hebei Med J, 2023, 45( 3): 385- 387, 391. DOI: 10.3969/j.issn.1002-7386.2023.03.015.

    南忱. 三酰甘油与高密度脂蛋白胆固醇比值联合γ-谷氨酰转肽酶对非酒精性脂肪性肝病的预测价值[J]. 河北医药, 2023, 45( 3): 385- 387, 391. DOI: 10.3969/j.issn.1002-7386.2023.03.015.
    [34] TEWARI DN, BISWAS A, CHAKRABARTI AK, et al. AMFR promotes innate immunity activation and proteasomal degradation of HMGCR in response to influenza virus infection in A549 cells[J]. Virology, 2023, 587: 109875. DOI: 10.1016/j.virol.2023.109875.
    [35] LI XZ, JIANG SY, LI GQ, et al. Synthesis of heterocyclic ring-fused analogs of HMG499 as novel degraders of HMG-CoA reductase that lower cholesterol[J]. Eur J Med Chem, 2022, 236: 114323. DOI: 10.1016/j.ejmech.2022.114323.
    [36] LI ZY, ZHOU Y, JIA KW, et al. JMJD4-demethylated RIG-I prevents hepatic steatosis and carcinogenesis[J]. J Hematol Oncol, 2022, 15( 1): 161. DOI: 10.1186/s13045-022-01381-6.
    [37] HONG T, ZOU J, YANG J, et al. Curcumin protects against bisphenol A-induced hepatic steatosis by inhibiting cholesterol absorption and synthesis in CD-1 mice[J]. Food Sci Nutr, 2023, 11( 9): 5091- 5101. DOI: 10.1002/fsn3.3468.
    [38] ZHAO CZ, JIANG W, ZHU YY, et al. Highland barley Monascus purpureus Went extract ameliorates high-fat, high-fructose, high-cholesterol diet induced nonalcoholic fatty liver disease by regulating lipid metabolism in golden hamsters[J]. J Ethnopharmacol, 2022, 286: 114922. DOI: 10.1016/j.jep.2021.114922.
    [39] TONG J, LAN XT, ZHANG Z, et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: Potential involvement of PANoptosis[J]. Acta Pharmacol Sin, 2023, 44( 5): 1014- 1028. DOI: 10.1038/s41401-022-01010-5.
    [40] RAZA S, RAJAK S, UPADHYAY A, et al. Current treatment paradigms and emerging therapies for NAFLD/NASH[J]. Front Biosci(Landmark Ed), 2021, 26( 2): 206- 237. DOI: 10.2741/4892.
    [41] KAMINSKY-KOLESNIKOV Y, RAUCHBACH E, ABU-HALAKA D, et al. Cholesterol induces Nrf-2- and HIF-1 α-dependent hepatocyte proliferation and liver regeneration to ameliorate bile acid toxicity in mouse models of NASH and fibrosis[J]. Oxid Med Cell Longev, 2020, 2020: 5393761. DOI: 10.1155/2020/5393761.
    [42] VIJAYAN DK, PERUMCHERRY RAMAN S, DARA PK, et al. In vivo anti-lipidemic and antioxidant potential of collagen peptides obtained from great hammerhead shark skin waste[J]. J Food Sci Technol, 2022, 59( 3): 1140- 1151. DOI: 10.1007/s13197-021-05118-0.
    [43] GUO J, XIE YA. Advances in the mechanism of immune microenvironment regulation of metastatic liver cancer[J]. Hebei Med J, 2023, 45( 8): 1238- 1243.

    郭驹, 谢裕安. 免疫微环境调控转移性肝癌机制研究进展[J]. 河北医药, 2023, 45( 8): 1238- 1243.
    [44] SAITO Y, YIN DZ, KUBOTA N, et al. A therapeutically targetable TAZ-TEAD2 pathway drives the growth of hepatocellular carcinoma via ANLN and KIF23[J]. Gastroenterology, 2023, 164( 7): 1279- 1292. DOI: 10.1053/j.gastro.2023.02.043.
    [45] LI FY, WANG MG, MAO DW, et al. Association of lipid metabolism reprogramming with the development and progression of primary liver cancer[J]. J Clin Hepatol, 2024, 40( 8): 1688- 1692. DOI: 10.12449/JCH240829.

    李飞燕, 王明刚, 毛德文, 等. 脂代谢重编程与原发性肝癌发生发展的关系[J]. 临床肝胆病杂志, 2024, 40( 8): 1688- 1692. DOI: 10.12449/JCH240829.
    [46] FASOLATO S, PIGOZZO S, PONTISSO P, et al. PCSK9 levels are raised in chronic HCV patients with hepatocellular carcinoma[J]. J Clin Med, 2020, 9( 10): 3134. DOI: 10.3390/jcm9103134.
    [47] ROSOFF DB, BELL AS, WAGNER J, et al. Assessing the impact of PCSK9 and HMGCR inhibition on liver function: Drug-target mendelian randomization analyses in four ancestries[J]. Cell Mol Gastroenterol Hepatol, 2024, 17( 1): 29- 40. DOI: 10.1016/j.jcmgh.2023.09.001.
    [48] ZHANG SZ, ZHU XD, FENG LH, et al. PCSK9 promotes tumor growth by inhibiting tumor cell apoptosis in hepatocellular carcinoma[J]. Exp Hematol Oncol, 2021, 10( 1): 25. DOI: 10.1186/s40164-021-00218-1.
    [49] CHE L, CHI WN, QIAO Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans[J]. Gut, 2020, 69( 1): 177- 186. DOI: 10.1136/gutjnl-2018-317581.
    [50] WEI MK, NURJANAH U, HERKILINI A, et al. Unspliced XBP1 contributes to cholesterol biosynthesis and tumorigenesis by stabilizing SREBP2 in hepatocellular carcinoma[J]. Cell Mol Life Sci, 2022, 79( 9): 472. DOI: 10.1007/s00018-022-04504-x.
    [51] CHEN JR, DING CF, CHEN YH, et al. ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway[J]. Cancer Lett, 2021, 502: 154- 165. DOI: 10.1016/j.canlet.2020.12.019.
    [52] WANG HY, SHU L, LV CR, et al. BRCC36 deubiquitinates HMGCR to regulate the interplay between ferroptosis and pyroptosis[J]. Adv Sci(Weinh), 2024, 11( 11): e2304263. DOI: 10.1002/advs.202304263.
    [53] SELITSKY SR, DINH TA, TOTH CL, et al. Transcriptomic analysis of chronic hepatitis B and C and liver cancer reveals microRNA-mediated control of cholesterol synthesis programs[J]. mBio, 2015, 6( 6): e01500-15. DOI: 10.1128/mBio.01500-15.
    [54] DING WJ, CHEN LL, XIA JG, et al. Causal association between lipid-lowering drugs and cancers: A drug target Mendelian randomization study[J]. Medicine(Baltimore), 2024, 103( 18): e38010. DOI: 10.1097/MD.0000000000038010.
    [55] JINDAL A, SARIN SK. Epidemiology of liver failure in Asia-Pacific Region[J]. Liver Int, 2022, 42( 9): 2093- 2109. DOI: 10.1111/liv.15328.
    [56] YANG C, YANG HS, HU JH, et al. Effect of serum total cholesterol level on prognosis of patients with liver failure[J]. Chin J Integr Tradit West Med Liver Dis, 2021, 31( 11): 1053- 1056. DOI: 10.3969/j.issn.1005-0264.2021.11.027.

    杨诚, 杨华升, 胡建华, 等. 血清总胆固醇水平对肝衰竭患者预后的影响[J]. 中西医结合肝病杂志, 2021, 31( 11): 1053- 1056. DOI: 10.3969/j.issn.1005-0264.2021.11.027.
    [57] TANAKA S, de TYMOWSKI C, STERN J, et al. Relationship between liver dysfunction, lipoprotein concentration and mortality during sepsis[J]. PLoS One, 2022, 17( 8): e0272352. DOI: 10.1371/journal.pone.0272352.
    [58] ALVAREZ-SOLA G, URIARTE I, LATASA MU, et al. Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1326- 1334. DOI: 10.1016/j.bbadis.2017.06.025.
    [59] LIN Y, YAN GJ, FENG F, et al. Association between cholesterol and liver regeneration and its significance and potential value in clinical treatment of liver failure[J]. J Clin Hepatol, 2022, 38( 3): 708- 713. DOI: 10.3969/j.issn.1001-5256.2022.03.044.

    林镛, 颜耿杰, 冯逢, 等. 胆固醇与肝再生关系及其在肝衰竭治疗中的意义和潜在价值[J]. 临床肝胆病杂志, 2022, 38( 3): 708- 713. DOI: 10.3969/j.issn.1001-5256.2022.03.044.
    [60] PENG J, YU JW, XU H, et al. Enhanced liver regeneration after partial hepatectomy in sterol regulatory element-binding protein(SREBP)-1c-null mice is associated with increased hepatocellular cholesterol availability[J]. Cell Physiol Biochem, 2018, 47( 2): 784- 799. DOI: 10.1159/000490030.
    [61] SLABBER CF, BACHOFNER M, SPEICHER T, et al. The ubiquitin ligase Uhrf2 is a master regulator of cholesterol biosynthesis and is essential for liver regeneration[J]. Sci Signal, 2023, 16( 787): eade8029. DOI: 10.1126/scisignal.ade8029.
    [62] LIEPINSH E, ZVEJNIECE L, CLEMENSSON L, et al. Hydroxymethylglutaryl-CoA reductase activity is essential for mitochondrial β-oxidation of fatty acids to prevent lethal accumulation of long-chain acylcarnitines in the mouse liver[J]. Br J Pharmacol, 2024, 181( 16): 2750- 2773. DOI: 10.1111/bph.16363.
    [63] DENG Y, ZHAO Z, SHELDON M, et al. LIFR regulates cholesterol-driven bidirectional hepatocyte-neutrophil cross-talk to promote liver regeneration[J]. Nat Metab, 2024, 6( 9): 1756- 1774. DOI: 10.1038/s42255-024-01110-y.
    [64] KOSHU K, MURAMATSU K, MARU T, et al. Neonatal onset of Niemann-Pick disease type C in a patient with cholesterol re-accumulation in the transplanted liver and inflammatory bowel disease[J]. Brain Dev, 2023, 45( 9): 517- 522. DOI: 10.1016/j.braindev.2023.06.006.
  • 加载中
图(1)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  36
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-02
  • 录用日期:  2024-09-24
  • 出版日期:  2025-05-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回