中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泛素特异性蛋白酶在肝细胞癌中的作用

唐怡 王国泰 蒋雨涵

引用本文:
Citation:

泛素特异性蛋白酶在肝细胞癌中的作用

DOI: 10.12449/JCH250525
基金项目: 

陕西省中医药管理局 (SZY-KJCYC-2025-JC-004);

秦创原中医药产业创新聚集区项目 (L2024-QCY-ZYYJJQ-Y09);

咸阳市中青年科技领军人才项目 (L2022CXNLRC018);

咸阳市科学技术局 (2021ZDYF-SF-0037)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:唐怡负责资料分析,撰写论文;王国泰负责分析相关材料,并修改论文;蒋雨涵负责检索和收集相关文献。
详细信息
    通信作者:

    王国泰, wangtai_52@126.com (ORCID: 0009-0009-5405-9351)

Role of ubiquitin-specific proteases in hepatocellular carcinoma

Research funding: 

Shaanxi Administration of Traditional Chinese Medicine (SZY-KJCYC-2025-JC-004);

Qinchuangyuan Traditional Chinese Medicine Industry Innovation Cluster Project (L2024-QCY-ZYYJJQ-Y09);

Project for Young and Middle-aged Science and Technology Leaders in Xianyang City (L2022CXNLRC018);

Xianyang Science and Technology Bureau (2021ZDYF-SF-0037)

More Information
    Corresponding author: WANG Guotai, wangtai_52@126.com (ORCID: 0009-0009-5405-9351)
  • 摘要: 肝细胞癌(HCC)是一种常见的原发性恶性肿瘤。近年来,泛素特异性蛋白酶(USP)在HCC中的作用引起了广泛关注。USP是一类关键的去泛素化酶,通过调节蛋白质的泛素化状态,影响多种生物学过程。研究发现,USP通过去泛素化多种肿瘤相关蛋白,参与调控细胞增殖、凋亡、迁移和侵袭等过程。此外,USP的异常表达与HCC患者的预后密切相关,可能作为潜在的生物标志物和治疗靶点。本文综述了USP在HCC中的研究进展,探讨了USP在HCC发生、发展及转移中的关键作用。深入了解USP在HCC中的作用机制,不仅有助于揭示HCC的发病机理,也为开发新的诊断工具和治疗策略提供了科学依据。未来的研究应进一步探索USP在HCC中的调控作用,以期为HCC的临床治疗提供更多有效手段。

     

  • 注: N-RAS,神经母细胞瘤RAS病毒癌基因同源物;HGF,肝细胞生长因子;TCF/LEF,T细胞因子/淋巴增强因子;TEAD,TEA结构域转录因子;LRP,低密度脂蛋白受体相关蛋白;Frizzled,卷曲蛋白。YAP/TAZ信号通路,USP1与USP10通过去泛素化和稳定YAP/TAZ来促进HCC的增殖,增强了YAP/TAZ在HCC细胞中的致癌功能[ 4, 14]。PI3K/AKT信号通路,USP35通过去泛素化稳定ABHD17C,从而激活N-RAS并通过PI3K/AKT信号通路促进HCC细胞的增殖、迁移和侵袭[ 30]。USP11阻止了eEF1A1的降解,促进SP1与HGF基因启动子的结合,增加HGF的表达,进而激活PI3K/AKT信号通路[ 15]。Wnt/β-catenin信号通路,USP8通过稳定β-catenin蛋白,从而激活Wnt/β-catenin信号通路[ 12]。USP25通过Wnt/β-catenin信号通路与TRIM21相互作用,促进HCC进展[ 26]

    图  1  DUB在HCC YAP/TAZ、PI3K/AKT和Wnt/β-catenin信号通路中的作用

    Figure  1.  The role of DUB in the YAP/TAZ, PI3K/AKT, and Wnt/β-catenin signaling pathways in hepatocellular carcinoma

    表  1  HCC相关USP

    Table  1.   USP associated with hepatocellular carcinoma

    USP 靶蛋白 信号通路 在HCC中的作用 参考文献
    USP1 未明确 YAP/TAZ 生长、转移 4
    USP2a RAB1A 未明确 增殖、迁移、侵袭 5
    USP4 CypA MAPK 生长、迁移、侵袭 6
    TGF-βR1 TGF-β 侵袭、转移 7
    USP5 SLC7A11 未明确 铁死亡 8
    SLUG 未明确 增殖、转移、侵袭 9
    USP7 TRIP12 未明确 增殖、迁移、侵袭 10
    STAT3 未明确 增殖、转移 11
    USP8 未明确 Wnt/β-catenin 增殖、迁移、侵袭、铁死亡 12
    USP10 Smad4 TGF-β 转移 13
    YAP/TAZ YAP/TAZ 增殖、迁移 14
    USP11 eEF1A1 PI3K/AKT EMT、转移 15
    HIF-1α 未明确 糖酵解、增殖、转移 16
    NF90 未明确 增殖、转移 17
    USP12 未明确 MAPK 细胞凋亡 18
    USP13 TLR4 TLR4/MyD88/NF-κB 增殖、迁移、侵袭 19
    USP14 SQSTM1 未明确 自噬、增殖、侵袭、细胞凋亡 20
    HIF-1α 未明确 迁移、侵袭 21
    USP19 YAP Hippo 增殖、迁移 22
    USP21 MEK2 ERK 生长、增殖 23
    USP22 E2F6 AKT 生长 24
    HIF-1α 未明确 细胞干性、糖酵解 25
    USP25 TRIM21 Wnt/β-catenin 增殖、迁移、侵袭、EMT 26
    USP27 SETD3 未明确 生长、增殖、迁移 27
    USP29 HIF-1α 未明确 糖酵解、耐药性 28
    USP35 PKM2 未明确 增殖、迁移、侵袭 29
    ABHD17C PI3K/AKT 生长、增殖、迁移 30
    USP39 SP1 未明确 增殖 31
    USP40 YAP 未明确 增殖、迁移 32
    USP46 MST1/YAP 未明确 增殖、转移 33

    注:YAP/TAZ,Yes相关蛋白/PDZ结合基序转录共激活因子;RAB1A,Ras相关蛋白Rab-1A;CypA,亲环蛋白A;MAPK,丝裂原活化蛋白激酶;TGF-βR1,转化生长因子β受体1;SLC7A11,溶质载体家族7成员11;SLUG,锌指蛋白SNAI2;TRIP12,甲状腺激素受体相互作用蛋白12;STAT3,信号转导及转录激活因子3;Wnt/β-catenin,Wnt信号通路/β-连环蛋白;Smad4,SMAD家族成员4;eEF1A1,真核翻译延伸因子1A1;PI3K/AKT,磷脂酰肌醇3-激酶/蛋白激酶B;EMT,上皮-间充质转化;HIF-1α,缺氧诱导因子-1α;NF90,核因子90;MyD88,髓样分化因子88;SQSTM1,序列相似性家族62成员1;MEK2,丝裂原活化蛋白激酶激酶2;ERK,细胞外信号调节激酶;E2F6,E2F转录因子6;TRIM21,三结构域蛋白21;SETD3,SET结构域包含蛋白3;PKM2,丙酮酸激酶M2;ABHD17C,α/β水解酶结构域蛋白17C;SP1,特异性蛋白1;MST1,哺乳动物STE20样激酶1。

    下载: 导出CSV
  • [1] SIEGEL RL, MILLER KD, WAGLE NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clinicians, 2023, 73( 1): 17- 48. DOI: 10.3322/caac.21763.
    [2] National Health Commission of the People’s Republic of China. Standard for diagnosis and treatment of primary liver cancer(2024 edition)[J]. J Clin Hepatol, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.

    中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.
    [3] ÇETIN G, KLAFACK S, STUDENCKA-TURSKI M, et al. The ubiquitin-proteasome system in immune cells[J]. Biomolecules, 2021, 11( 1): 60. DOI: 10.3390/biom11010060.
    [4] LIU DY, LI QH, ZANG YF, et al. USP1 modulates hepatocellular carcinoma progression via the Hippo/TAZ axis[J]. Cell Death Dis, 2023, 14( 4): 264. DOI: 10.1038/s41419-023-05777-1.
    [5] XIONG B, HUANG JW, LIU Y, et al. Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A[J]. Cell Oncol(Dordr), 2021, 44( 2): 329- 343. DOI: 10.1007/s13402-020-00568-8.
    [6] LI TY, YAN B, MA Y, et al. Ubiquitin-specific protease 4 promotes hepatocellular carcinoma progression via cyclophilin A stabilization and deubiquitination[J]. Cell Death Dis, 2018, 9( 2): 148. DOI: 10.1038/s41419-017-0182-5.
    [7] QIU C, LIU Y, MEI Y, et al. Ubiquitin-specific protease 4 promotes metastasis of hepatocellular carcinoma by increasing TGF-β signaling-induced epithelial-mesenchymal transition[J]. Aging(Albany NY), 2018, 10( 10): 2783- 2799. DOI: 10.18632/aging.101587.
    [8] YAN BK, GUO JX, WANG ZL, et al. The ubiquitin-specific protease 5 mediated deubiquitination of LSH links metabolic regulation of ferroptosis to hepatocellular carcinoma progression[J]. MedComm(2020), 2023, 4( 4): e337. DOI: 10.1002/mco2.337.
    [9] MENG J, AI XY, LEI YY, et al. USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma[J]. Theranostics, 2019, 9( 2): 573- 587. DOI: 10.7150/thno.27654.
    [10] GEORGES A, MARCON E, GREENBLATT J, et al. Author correction: Identification and characterization of USP7 targets in cancer cells[J]. Sci Rep, 2019, 9: 15664. DOI: 10.1038/s41598-019-43448-4.
    [11] SU C, ZHANG HQ, MO J, et al. SP1-activated USP27X-AS1 promotes hepatocellular carcinoma progression via USP7-mediated AKT stabilisation[J]. Clin Transl Med, 2024, 14( 1): e1563. DOI: 10.1002/ctm2.1563.
    [12] TANG JN, LONG G, XIAO L, et al. USP8 positively regulates hepatocellular carcinoma tumorigenesis and confers ferroptosis resistance through β-catenin stabilization[J]. Cell Death Dis, 2023, 14( 6): 360. DOI: 10.1038/s41419-023-05747-7.
    [13] YUAN T, CHEN ZB, YAN FJ, et al. Deubiquitinating enzyme USP10 promotes hepatocellular carcinoma metastasis through deubiquitinating and stabilizing Smad4 protein[J]. Mol Oncol, 2020, 14( 1): 197- 210. DOI: 10.1002/1878-0261.12596.
    [14] ZHU H, YAN FJ, YUAN T, et al. USP10 promotes proliferation of hepatocellular carcinoma by deubiquitinating and stabilizing YAP/TAZ[J]. Cancer Res, 2020, 80( 11): 2204- 2216. DOI: 10.1158/0008-5472.CAN-19-2388.
    [15] CHEN J, NING D, DU PC, et al. USP11 potentiates HGF/AKT signaling and drives metastasis in hepatocellular carcinoma[J]. Oncogene, 2024, 43( 2): 123- 135. DOI: 10.1038/s41388-023-02847-8.
    [16] QIAO LJ, HU WB, LI LZ, et al. USP11 promotes glycolysis by regulating HIF-1α stability in hepatocellular carcinoma[J]. J Cell Mol Med, 2024, 28( 2): e18017. DOI: 10.1111/jcmm.18017.
    [17] LUO CH, LU YY, FANG QL, et al. TRIM55 restricts the progression of hepatocellular carcinoma through ubiquitin-proteasome-mediated degradation of NF90[J]. Cell Death Discov, 2024, 10( 1): 441. DOI: 10.1038/s41420-024-02212-y.
    [18] LIU CS, LI XN, FENG G, et al. Downregulation of USP12 inhibits tumor growth via the p38/MAPK pathway in hepatocellular carcinoma[J]. Mol Med Rep, 2020, 22( 6): 4899- 4908. DOI: 10.3892/mmr.2020.11557.
    [19] GAO S, CHEN TX, LI LJ, et al. Hypoxia-inducible ubiquitin specific peptidase 13 contributes to tumor growth and metastasis via enhancing the toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB pathway in hepatocellular carcinoma[J]. Front Cell Dev Biol, 2020, 8: 587389. DOI: 10.3389/fcell.2020.587389.
    [20] ZHANG NN, ZHANG H, YANG XB, et al. USP14 exhibits high expression levels in hepatocellular carcinoma and plays a crucial role in promoting the growth of liver cancer cells through the HK2/AKT/P62 axis[J]. BMC Cancer, 2024, 24( 1): 237. DOI: 10.1186/s12885-024-12009-y.
    [21] LV C, WANG SL, LIN L, et al. USP14 maintains HIF1-α stabilization via its deubiquitination activity in hepatocellular carcinoma[J]. Cell Death Dis, 2021, 12( 9): 803. DOI: 10.1038/s41419-021-04089-6.
    [22] TIAN ZL, XU C, HE WX, et al. The deubiquitinating enzyme USP19 facilitates hepatocellular carcinoma progression through stabilizing YAP[J]. Cancer Lett, 2023, 577: 216439. DOI: 10.1016/j.canlet.2023.216439.
    [23] LI WJ, CUI KS, PROCHOWNIK EV, et al. The deubiquitinase USP21 stabilizes MEK2 to promote tumor growth[J]. Cell Death Dis, 2018, 9( 5): 482. DOI: 10.1038/s41419-018-0523-z.
    [24] JING TT, WANG BS, YANG ZJ, et al. Deubiquitination of the repressor E2F6 by USP22 facilitates AKT activation and tumor growth in hepatocellular carcinoma[J]. Cancer Lett, 2021, 518: 266- 277. DOI: 10.1016/j.canlet.2021.07.044.
    [25] LING SB, SHAN QN, ZHAN QF, et al. USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1α/USP22 positive feedback loop upon TP53 inactivation[J]. Gut, 2020, 69( 7): 1322- 1334. DOI: 10.1136/gutjnl-2019-319616.
    [26] LIU YH, MA JJ, LU SM, et al. USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway[J]. Chin Med J(Engl), 2023, 136( 18): 2229- 2242. DOI: 10.1097/CM9.0000000000002714.
    [27] ZOU TT, WANG Y, DONG L, et al. Stabilization of SETD3 by deubiquitinase USP27 enhances cell proliferation and hepatocellular carcinoma progression[J]. Cell Mol Life Sci, 2022, 79( 1): 70. DOI: 10.1007/s00018-021-04118-9.
    [28] GAO RZ, BUECHEL D, KALATHUR RKR, et al. USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis[J]. Oncogenesis, 2021, 10( 7): 52. DOI: 10.1038/s41389-021-00338-7.
    [29] LV T, ZHANG B, JIANG CH, et al. USP35 promotes hepatocellular carcinoma progression by protecting PKM2 from ubiquitination-mediated degradation[J]. Int J Oncol, 2023, 63( 4): 113. DOI: 10.3892/ijo.2023.5561.
    [30] WANG LP, WANG JW, MA XQ, et al. USP35 promotes HCC development by stabilizing ABHD17C and activating the PI3K/AKT signaling pathway[J]. Cell Death Discov, 2023, 9( 1): 421. DOI: 10.1038/s41420-023-01714-5.
    [31] DONG X, LIU ZX, ZHANG EC, et al. USP39 promotes tumorigenesis by stabilizing and deubiquitinating SP1 protein in hepatocellular carcinoma[J]. Cell Signal, 2021, 85: 110068. DOI: 10.1016/j.cellsig.2021.110068.
    [32] MO HY, LI RT, YANG N, et al. USP40 promotes hepatocellular carcinoma progression through a YAP/USP40 positive feedback loop[J]. Cancer Lett, 2024, 589: 216832. DOI: 10.1016/j.canlet.2024.216832.
    [33] QIU YM, HUANG D, SHENG YL, et al. Deubiquitinating enzyme USP46 suppresses the progression of hepatocellular carcinoma by stabilizing MST1[J]. Exp Cell Res, 2021, 405( 1): 112646. DOI: 10.1016/j.yexcr.2021.112646.
    [34] HUANG P, WANG YH, ZHANG PF, et al. Ubiquitin-specific peptidase 1: Assessing its role in cancer therapy[J]. Clin Exp Med, 2023, 23( 7): 2953- 2966. DOI: 10.1007/s10238-023-01075-4.
    [35] CHEN SP, ZHU GQ, XING XX, et al. LncRNA USP2-AS1 promotes hepatocellular carcinoma growth by enhancing YBX1-mediated HIF1α protein translation under hypoxia[J]. Front Oncol, 2022, 12: 882372. DOI: 10.3389/fonc.2022.882372.
    [36] CAO YQ, XIA H, TAN XY, et al. Intratumoural microbiota: A new frontier in cancer development and therapy[J]. Signal Transduct Target Ther, 2024, 9( 1): 15. DOI: 10.1038/s41392-023-01693-0.
    [37] LU C, NING Z, WANG AM, et al. USP10 suppresses tumor progression by inhibiting mTOR activation in hepatocellular carcinoma[J]. Cancer Lett, 2018, 436: 139- 148. DOI: 10.1016/j.canlet.2018.07.032.
    [38] YE QW, ZHOU W, XU SJ, et al. Ubiquitin-specific protease 22 promotes tumorigenesis and progression by an FKBP12/mTORC1/autophagy positive feedback loop in hepatocellular carcinoma[J]. MedComm(2020), 2023, 4( 6): e439. DOI: 10.1002/mco2.439.
    [39] NING Z, GUO X, LIU XL, et al. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma[J]. Nat Commun, 2022, 13( 1): 2187. DOI: 10.1038/s41467-022-29846-9.
    [40] GUO JH, ZHAO J. USP22-JMJD8 axis promotes Lenvatinib resistance in hepatocellular carcinoma[J]. Biochim Biophys Acta Mol Cell Res, 2024, 1871( 1): 119617. DOI: 10.1016/j.bbamcr.2023.119617.
    [41] ZENG K, XIE WW, WANG CY, et al. USP22 upregulates ZEB1-mediated VEGFA transcription in hepatocellular carcinoma[J]. Cell Death Dis, 2023, 14( 3): 194. DOI: 10.1038/s41419-023-05699-y.
    [42] CHANG YS, SU CW, CHEN SC, et al. Upregulation of USP22 and ABCC1 during sorafenib treatment of hepatocellular carcinoma contribute to development of resistance[J]. Cells, 2022, 11( 4): 634. DOI: 10.3390/cells11040634.
    [43] GAO HL, XI Z, DAI JW, et al. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases(USPs) in cancers: New directions and therapeutic options[J]. Mol Cancer, 2024, 23( 1): 88. DOI: 10.1186/s12943-024-02005-y.
    [44] CHEN SS, ZHOU BH, HUANG W, et al. The deubiquitinating enzyme USP44 suppresses hepatocellular carcinoma progression by inhibiting Hedgehog signaling and PDL1 expression[J]. Cell Death Dis, 2023, 14( 12): 830. DOI: 10.1038/s41419-023-06358-y.
    [45] ZHOU WH, CHEN JF, WANG JG. Comprehensive prognostic and immunological analysis of Ubiquitin Specific Peptidase 28 in pan-cancers and identification of its role in hepatocellular carcinoma cell lines[J]. Aging(Albany NY), 2023, 15( 13): 6545- 6576. DOI: 10.18632/aging.204869.
    [46] LEI H, XU HZ, SHAN HZ, et al. Targeting USP47 overcomes tyrosine kinase inhibitor resistance and eradicates leukemia stem/progenitor cells in chronic myelogenous leukemia[J]. Nat Commun, 2021, 12( 1): 51. DOI: 10.1038/s41467-020-20259-0.
    [47] LU Y, GAO J, WANG PP, et al. Discovery of potent small molecule ubiquitin-specific protease 10 inhibitors with anti-hepatocellular carcinoma activity through regulating YAP expression[J]. Eur J Med Chem, 2024, 272: 116468. DOI: 10.1016/j.ejmech.2024.116468.
    [48] LARSSON P, OLSSON M, SARATHCHANDRA S, et al. Multi-omics analysis identifies repurposing bortezomib in the treatment of kidney-, nervous system-, and hematological cancers[J]. Sci Rep, 2024, 14( 1): 18576. DOI: 10.1038/s41598-024-62339-x.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  54
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-13
  • 录用日期:  2024-11-08
  • 出版日期:  2025-05-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回