进行性家族性肝内胆汁淤积症的基因分型及治疗进展
DOI: 10.12449/JCH250428
Advances in genotyping and treatment of progressive familial intrahepatic cholestasis
-
摘要: 进行性家族性肝内胆汁淤积症(PFIC)是一组罕见的常染色体隐性遗传病。近年来,随着分子生物学发展,不断有新的致病基因被发现,根据在线人类孟德尔遗传数据库,基因分型目前分为12型。PFIC主要表现为黄疸、瘙痒、生长发育迟缓及脂溶性维生素吸收不良等,一些变异型迅速进展为肝纤维化、肝硬化、肝衰竭,甚至肝癌。不同类型PFIC临床表现和治疗策略不尽相同,基因检测有助于实现早期识别及诊断。本文就PFIC基因分型、临床特征和治疗进展进行综述。Abstract: Progressive family intrahepatic cholestasis (PFIC) is a rare group of autosomal recessive disorders. In recent years, with the development of molecular biology, new pathogenic genes have been constantly identified, and PFIC is currently categorized into 12 genotypes based on the OMIM database. The main manifestations of PFIC include jaundice, pruritus, growth retardation, and malabsorption of fat-soluble vitamins, and some variants can rapidly progress to liver fibrosis, liver cirrhosis, liver failure, and even liver cancer. Different types of PFIC have different clinical manifestations and treatment strategies, and genetic testing can help to achieve early identification and diagnosis. This article reviews the latest advances in the genotyping, clinical features, and treatment of PFIC.
-
Key words:
- Cholestasis, Intrahepatic /
- Genotype /
- Therapeutics
-
表 1 PFIC基因分型及实验室特点
Table 1. Genotype and laboratory profile of the various types of progressive familial intrahepatic cholestasis
分型 基因座/基因/蛋白 GGT DBil TBA AFP ALT/AST 病理特点 PFIC-1 18q21/ATP8B1/FIC1 正常 高 高 正常 轻度升高 肝细胞及胆小管胆汁淤积,汇管区炎症,门静脉和小叶周围纤维化,小结节性肝硬化 PFIC-2 2q31/ABCB11/BSEP 正常 高 极高 高 中度升高 毛细胆管内胆汁淤积及小叶/门静脉纤维化,巨细胞炎症,严重的肝细胞坏死 PFIC-3 7q21/ABCB4/MDR3 升高 高 高 正常 轻度升高 门静脉炎症及门静脉纤维化,胆汁淤积,胆管增生 PFIC-4 9q21/TJP2/ZO-2 正常 高 高 正常或并发HCC时升高 高 胆汁淤积及小叶/门静脉纤维化,巨细胞炎症,肝细胞坏死和肝硬化 PFIC-5 12q23/NR1H4/FXR 正常 高 高 高 中度升高 胆汁淤积及小叶/门静脉纤维化,巨细胞炎症,胆管增生和肝硬化 PFIC-6 3q29/SLC51A/OSTα 升高 高 正常 未报道 中度升高 小叶结构变形,早期肝硬化伴门静脉和门静脉周围纤维化,胆汁淤积及胆管增生 PFIC-7 4q26/USP53/USP53 正常 高 高 未报道 高 肝小叶紊乱及小叶内胆汁淤积,巨细胞炎症,汇管区纤维化 PFIC-8 9q32/KIF12/KIF12 升高 高 高 高 高 胆汁淤积及胆管增生,肝纤维化及肝硬化 PFIC-9 15q15/ZFYVE19/ZFYVE19 升高 高 高 未报道 高 小结节性肝硬化、胆汁淤积伴胆管板畸形,门静脉增宽伴纤维化,胆管增生及胆管纤维化性闭塞 PFIC-10 18q21/MYO5B/Myosin Vb 正常 高 高 正常 轻或中度升高 胆汁淤积、小叶/门静脉纤维化、胆管增生伴局灶性巨细胞炎症 PFIC-11 15q24/SEMA7A/SEMA7A 正常 正常 高 未报道 高 未见报道 PFIC-12 15q26/VPS33B/VPS33B 正常 高 轻度升高 正常 高 肝细胞及小胆管胆汁淤积,巨细胞炎症 表 2 各型PFIC临床特征、治疗及预后
Table 2. Clinical characteristics,treatment and outcome of the various types of progressive familial intrahepatic cholestasis
分型 临床特征 肝外特征 治疗 预后 PFIC-1 起病早,黄疸/瘙痒,肝脾肿大、生长迟缓,可导致肝硬化和终末期肝病 复发性胰腺炎、腹泻、感觉神经性听力损失、慢性咳嗽、甲状腺功能低下 药物:UDCA、利福平、消胆胺、IBAT抑制剂;
手术:BD、肝移植
胆汁分流术对约80%的患者有效;肝移植后的患者肝外症状可持续(或恶化) PFIC-2 起病早,黄疸/瘙痒、门静脉高压、生长迟缓,快速进展为肝硬化,并发肝癌及胆管癌风险 胆石症 药物:UDCA、利福平、消胆胺、4-PBA、IBAT抑制剂;
手术:BD、肝移植
肝移植后部分患者会产生BSEP自身抗体,导致疾病复发,可能需二次肝移植 PFIC-3 婴儿晚期至青春期均可发病,慢性胆汁淤积,瘙痒较轻,生长迟缓,并发肝癌及胆管癌风险 胆石症 药物:UDCA、利福平、消胆胺、IBAT抑制剂;
手术:BD、肝移植;VTX-803
预后差异大,保留MDR3表达的患者对药物治疗反应好;症状严重者,肝移植可治愈 PFIC-4 早期严重的胆汁淤积/瘙痒;进展迅速,并发肝癌风险 听力障碍、神经和呼吸系统疾病 药物:UDCA、利福平、消胆胺、IBAT抑制剂;
手术:BD、肝移植
肝移植比例高,移植后暂未见复发报道 PFIC-5 新生儿期起病胆汁淤积,不依赖维生素K的凝血功能障碍,快速进展为终末期肝病 药物:UDCA、利福平、消胆胺、IBAT抑制剂、OCA;
手术:肝移植
预后差,肝移植术后可出现肝脂肪变性 PFIC-6 起病早,胆汁淤积,生长迟缓、出血,早期肝纤维化和肝硬化 慢性吸收不良性腹泻及皮肤瘀斑 药物:UDCA、消胆胺、IBAT抑制剂 2020年本病首次报道,经治疗凝血功能及生长恢复正常,转氨酶、DBil和GGT仍高 PFIC7 黄疸并顽固性瘙痒,低钙血症 听力障碍 药物:利福平、UDCA、IBAT抑制剂;
手术:肝移植
药物治疗反应好,1例患者难治性瘙痒,行肝移植 PFIC-8 婴儿期出现胆汁淤积,快速进展为肝纤维化和门静脉高压,进行性硬化性胆管炎 胰腺脂肪浸润 药物:UDCA、IBAT抑制剂;
手术:肝移植
目前报道13例患者,11例出现肝硬化,4例进行肝移植,1例等待移植 PFIC-9 婴儿或儿童早期黄疸/瘙痒、门静脉高压、肝脾肿大 部分患儿伴有腹泻 药物:UDCA、利福平、IBAT抑制剂;
手术:肝移植
目前报道10例患儿,4例进行肝移植 PFIC-10 黄疸/瘙痒,短暂、进行性或复发性的胆汁淤积,病情进展慢 暂时性腹泻 药物:UDCA、利福平、消胆胺、IBAT抑制剂;
手术:BD、肝移植
预后差异大,药物及胆汁分流术均对部分患者有效,症状严重者仍需肝移植 PFIC-11 高胆汁酸血症伴有明显肝功能损害 药物:UDCA、IBAT抑制剂和谷胱甘肽 2021首次报道,仅1例患者,目前药物治疗有效,有待继续随访 PFIC-12 起病早,黄疸/瘙痒,肝脾肿大,持续或复发性胆汁淤积 药物:UDCA、消胆胺、IBAT抑制剂;
手术:BD、肝移植
2019首次报道,瘙痒药物治疗效果欠佳 注:UDCA,熊去氧胆酸;IBAT,回肠胆汁酸转运体;BD,胆汁分流术;4-PBA,4-苯基丁酸;OCA,奥贝胆酸。
-
[1] GUNAYDIN M, BOZKURTER CIL AT. Progressive familial intrahepatic cholestasis: Diagnosis, management, and treatment[J]. Hepat Med, 2018, 10: 95- 104. DOI: 10.2147/HMER.S137209. [2] JONES-HUGHES T, CAMPBELL J, CRATHORNE L. Epidemiology and burden of progressive familial intrahepatic cholestasis: A systematic review[J]. Orphanet J Rare Dis, 2021, 16( 1): 255. DOI: 10.1186/s13023-021-01884-4. [3] VITALE G, GITTO S, VUKOTIC R, et al. Familial intrahepatic cholestasis: New and wide perspectives[J]. Dig Liver Dis, 2019, 51( 7): 922- 933. DOI: 10.1016/j.dld.2019.04.013. [4] PAULUSMA CC, GROEN A, KUNNE C, et al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport[J]. Hepatology, 2006, 44( 1): 195- 204. DOI: 10.1002/hep.21212. [5] BAI J, ZHENG SJ, DUAN ZP. Clinical features, diagnosis, and treatment strategies of progressive familial intrahepatic cholestasis[J]. Chin J Hepatol, 2021, 29( 11): 1128- 1131. DOI: 10.3760/cma.j.cn501113-20200306-00091.白洁, 郑素军, 段钟平. 进行性家族性肝内胆汁淤积症的临床特征及诊疗思路[J]. 中华肝脏病杂志, 2021, 29( 11): 1128- 1131. DOI: 10.3760/cma.j.cn501113-20200306-00091. [6] AL-HUSSAINI A, LONE K, BASHIR MS, et al. ATP8B1 ABCB11 and ABCB4 genes defects: Novel mutations associated with cholestasis with different phenotypes and outcomes[J]. J Pediatr, 2021, 236: 113- 123. e 2. DOI: 10.1016/j.jpeds.2021.04.040. [7] BAKER A, KERKAR N, TODOROVA L, et al. Systematic review of progressive familial intrahepatic cholestasis[J]. Clin Res Hepatol Gastroenterol, 2019, 43( 1): 20- 36. DOI: 10.1016/j.clinre.2018.07.010. [8] van WESSEL DBE, THOMPSON RJ, GONZALES E, et al. Genotype correlates with the natural history of severe bile salt export pump deficiency[J]. J Hepatol, 2020, 73( 1): 84- 93. DOI: 10.1016/j.jhep.2020.02.007. [9] ALAM S, LAL BB. Recent updates on progressive familial intrahepatic cholestasis types 1, 2 and 3: Outcome and therapeutic strategies[J]. World J Hepatol, 2022, 14( 1): 98- 118. DOI: 10.4254/wjh.v14.i1.98. [10] FURUSE M, FUJITA K, HIIRAGI T, et al. Claudin-1 and-2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin[J]. J Cell Biol, 1998, 141( 7): 1539- 1550. DOI: 10.1083/jcb.141.7.1539. [11] SAMBROTTA M, THOMPSON RJ. Mutations in TJP2, encoding zona occludens 2, and liver disease[J]. Tissue Barriers, 2015, 3( 3): e1026537. DOI: 10.1080/21688370.2015.1026537. [12] ZHANG J, GUO S, MEI TL, et al. Novel mutation of the TJP2 gene in a Chinese child with progressive cholestatic liver disease coexistent with hearing impairment[J]. Hepatobiliary Pancreat Dis Int, 2021, 20( 2): 198- 200. DOI: 10.1016/j.hbpd.2020.10.004. [13] SAMBROTTA M, STRAUTNIEKS S, PAPOULI E, et al. Mutations in TJP2 cause progressive cholestatic liver disease[J]. Nat Genet, 2014, 46( 4): 326- 328. DOI: 10.1038/ng.2918. [14] CARIELLO M, PICCININ E, GARCIA-IRIGOYEN O, et al. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1308- 1318. DOI: 10.1016/j.bbadis.2017.09.019. [15] VINAYAGAMOORTHY V, SRIVASTAVA A, SARMA MS. Newer variants of progressive familial intrahepatic cholestasis[J]. World J Hepatol, 2021, 13( 12): 2024- 2038. DOI: 10.4254/wjh.v13.i12.2024. [16] GOMEZ-OSPINA N, POTTER CJ, XIAO R, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis[J]. Nat Commun, 2016, 7: 10713. DOI: 10.1038/ncomms10713. [17] KIM KH, CHOI JM, LI F, et al. Xenobiotic nuclear receptor signaling determines molecular pathogenesis of progressive familial intrahepatic cholestasis[J]. Endocrinology, 2018, 159( 6): 2435- 2446. DOI: 10.1210/en.2018-00110. [18] GAO E, CHEEMA H, WAHEED N, et al. Organic solute transporter alpha deficiency: A disorder with cholestasis, liver fibrosis, and congenital diarrhea[J]. Hepatology, 2020, 71( 5): 1879- 1882. DOI: 10.1002/hep.31087. [19] SULTAN M, RAO A, ELPELEG O, et al. Organic solute transporter-β(SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis[J]. Hepatology, 2018, 68( 2): 590- 598. DOI: 10.1002/hep.29516. [20] KAZMIERCZAK M, HARRIS SL, KAZMIERCZAK P, et al. Progressive hearing loss in mice carrying a mutation in Usp53[J]. J Neurosci, 2015, 35( 47): 15582- 15598. DOI: 10.1523/JNEUROSCI.1965-15.2015. [21] ZHANG J, YANG Y, GONG JY, et al. Low-GGT intrahepatic cholestasis associated with biallelic USP53 variants: Clinical, histological and ultrastructural characterization[J]. Liver Int, 2020, 40( 5): 1142- 1150. DOI: 10.1111/liv.14422. [22] STALKE A, SGODDA M, CANTZ T, et al. KIF12 variants and disturbed hepatocyte polarity in children with a phenotypic spectrum of cholestatic liver disease[J]. J Pediatr, 2022, 240: 284- 291. e 9. DOI: 10.1016/j.jpeds.2021.09.019. [23] MADDIREVULA S, ALHEBBI H, ALQAHTANI A, et al. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants[J]. Genet Med, 2019, 21( 5): 1164- 1172. DOI: 10.1038/s41436-018-0288-x. [24] AÜ AKSU, DAS SK, NELSON-WILLIAMS C, et al. Recessive mutations in KIF12 cause high gamma-glutamyltransferase cholestasis[J]. Hepatol Commun, 2019, 3( 4): 471- 477. DOI: 10.1002/hep4.1320. [25] LUAN WS, HAO CZ, LI JQ, et al. Biallelic loss-of-function ZFYVE19 mutations are associated with congenital hepatic fibrosis, sclerosing cholangiopathy and high-GGT cholestasis[J]. J Med Genet, 2021, 58( 8): 514- 525. DOI: 10.1136/jmedgenet-2019-106706. [26] BULL LN, THOMPSON RJ. Progressive familial intrahepatic cholestasis[J]. Clin Liver Dis, 2018, 22( 4): 657- 669. DOI: 10.1016/j.cld.2018.06.003. [27] MANDATO C, SIANO MA, NAZZARO L, et al. A ZFYVE19 gene mutation associated with neonatal cholestasis and Cilia dysfunction: Case report with a novel pathogenic variant[J]. Orphanet J Rare Dis, 2021, 16( 1): 179. DOI: 10.1186/s13023-021-01775-8. [28] WANG L, QIU YL, XU HM, et al. MYO5B-associated diseases: Novel liver-related variants and genotype-phenotype correlation[J]. Liver Int, 2022, 42( 2): 402- 411. DOI: 10.1111/liv.15104. [29] QIU YL, GONG JY, FENG JY, et al. Defects in myosin VB are associated with a spectrum of previously undiagnosed low γ-glutamyltransferase cholestasis[J]. Hepatology, 2017, 65( 5): 1655- 1669. DOI: 10.1002/hep.29020. [30] COCKAR I, FOSKETT P, STRAUTNIEKS S, et al. Mutations in myosin 5B in children with early-onset cholestasis[J]. J Pediatr Gastroenterol Nutr, 2020, 71( 2): 184- 188. DOI: 10.1097/MPG.0000000000002740. [31] ALDRIAN D, VOGEL GF, FREY TK, et al. Congenital diarrhea and cholestatic liver disease: Phenotypic spectrum associated with MYO5B mutations[J]. J Clin Med, 2021, 10( 3): 481. DOI: 10.3390/jcm10030481. [32] PAN Q, LUO G, QU JQ, et al. A homozygous R148W mutation in Semaphorin 7A causes progressive familial intrahepatic cholestasis[J]. EMBO Mol Med, 2021, 13( 11): e14563. DOI: 10.15252/emmm.202114563. [33] KOH JM, OH B, LEE JY, et al. Association study of semaphorin 7a(sema7a) polymorphisms with bone mineral density and fracture risk in postmenopausal Korean women[J]. J Hum Genet, 2006, 51( 2): 112- 117. DOI: 10.1007/s10038-005-0331-z. [34] JIANG T, LUO HY, OUYANG WX, et al. Clinical features and genetic analysis of two children with arthrogryposis, renal insufficiency, and cholestasis syndrome[J]. J Clin Hepatol, 2022, 38( 2): 415- 417. DOI: 10.3969/j.issn.1001-5256.2022.02.029.姜涛, 罗海燕, 欧阳文献, 等. 2例关节挛缩-肾功能不全-胆汁淤积综合征患儿的临床特征及遗传学分析[J]. 临床肝胆病杂志, 2022, 38( 2): 415- 417. DOI: 10.3969/j.issn.1001-5256.2022.02.029. [35] FU KL, WANG CH, GAO Y, et al. Metabolomics and lipidomics reveal the effect of hepatic Vps33b deficiency on bile acids and lipids metabolism[J]. Front Pharmacol, 2019, 10: 276. DOI: 10.3389/fphar.2019.00276. [36] QIU YL, LIU T, ABUDUXIKUER K, et al. Novel missense mutation in VPS33B is associated with isolated low gamma-glutamyltransferase cholestasis: Attenuated, incomplete phenotype of arthrogryposis, renal dysfunction, and cholestasis syndrome[J]. Hum Mutat, 2019, 40( 12): 2247- 2257. DOI: 10.1002/humu.23770. [37] JACQUEMIN E, HERMANS D, MYARA A, et al. Ursodeoxycholic acid therapy in pediatric patients with progressive familial intrahepatic cholestasis[J]. Hepatology, 1997, 25( 3): 519- 523. DOI: 10.1002/hep.510250303. [38] STAPELBROEK JM, van ERPECUM KJ, KLOMP LWJ, et al. Liver disease associated with canalicular transport defects: Current and future therapies[J]. J Hepatol, 2010, 52( 2): 258- 271. DOI: 10.1016/j.jhep.2009.11.012. [39] HENKEL SA, SQUIRES JH, AYERS M, et al. Expanding etiology of progressive familial intrahepatic cholestasis[J]. World J Hepatol, 2019, 11( 5): 450- 463. DOI: 10.4254/wjh.v11.i5.450. [40] AGARWAL S, LAL BB, RAWAT D, et al. Progressive familial intrahepatic cholestasis(PFIC) in Indian children: Clinical spectrum and outcome[J]. J Clin Exp Hepatol, 2016, 6( 3): 203- 208. DOI: 10.1016/j.jceh.2016.05.003. [41] FRIDER B, CASTILLO A, GORDO-GILART R, et al. Reversal of advanced fibrosis after long-term ursodeoxycholic acid therapy in a patient with residual expression of MDR3[J]. Ann Hepatol, 2015, 14( 5): 745- 751. [42] The Subspecialty Group of Infectious Diseases, the Society of Pediatrics, Chinese Medical Association; the Subspecialty Group of Gastroenterology, the Society of Pediatrics, Chinese Medical Association; the Editorial Board, Chinese Journal of Pediatrics. Expert consensus on diagnosis and treatment of infantile cholestasis[J]. Chin J Pediatr, 2022, 60( 10): 990- 997. DOI: 10.3760/cma.j.cn112140-20220505-00412.中华医学会儿科学分会感染学组, 中华医学会儿科学分会消化学组, 中华儿科杂志编辑委员会. 婴儿胆汁淤积症诊断与治疗专家共识[J]. 中华儿科杂志, 2022, 60( 10): 990- 997. DOI: 10.3760/cma.j.cn112140-20220505-00412. [43] MINERS JO, CHAU N, ROWLAND A, et al. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia[J]. Biochem Pharmacol, 2017, 129: 85- 95. DOI: 10.1016/j.bcp.2017.01.002. [44] PATEL SP, VASAVDA C, HO B, et al. Cholestatic pruritus: Emerging mechanisms and therapeutics[J]. J Am Acad Dermatol, 2019, 81( 6): 1371- 1378. DOI: 10.1016/j.jaad.2019.04.035. [45] HASEGAWA Y, HAYASHI H, NAOI S, et al. Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1[J]. Orphanet J Rare Dis, 2014, 9: 89. DOI: 10.1186/1750-1172-9-89. [46] VARMA S, REVENCU N, STEPHENNE X, et al. Retargeting of bile salt export pump and favorable outcome in children with progressive familial intrahepatic cholestasis type 2[J]. Hepatology, 2015, 62( 1): 198- 206. DOI: 10.1002/hep.27834. [47] HAYASHI H, NAOI S, HIROSE Y, et al. Successful treatment with 4-phenylbutyrate in a patient with benign recurrent intrahepatic cholestasis type 2 refractory to biliary drainage and bilirubin absorption[J]. Hepatol Res, 2016, 46( 2): 192- 200. DOI: 10.1111/hepr.12561. [48] ALMES M, JOBERT A, LAPALUS M, et al. Glycerol phenylbutyrate therapy in progressive familial intrahepatic cholestasis type 2[J]. J Pediatr Gastroenterol Nutr, 2020, 70( 6): e139- e140. DOI: 10.1097/MPG.0000000000002713. [49] TRAUNER M, NEVENS F, SHIFFMAN ML, et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study[J]. Lancet Gastroenterol Hepatol, 2019, 4( 6): 445- 453. DOI: 10.1016/S2468-1253(19)30094-9. [50] CHEN HL, WU SH, HSU SH, et al. Jaundice revisited: Recent advances in the diagnosis and treatment of inherited cholestatic liver diseases[J]. J Biomed Sci, 2018, 25( 1): 75. DOI: 10.1186/s12929-018-0475-8. [51] MCKIERNAN P, BERNABEU JQ, GIRARD M, et al. Opinion paper on the diagnosis and treatment of progressive familial intrahepatic cholestasis[J]. JHEP Rep, 2023, 6( 1): 100949. DOI: 10.1016/j.jhepr.2023.100949. [52] BOLIA RS, GOEL AD, SHARMA V, et al. Biliary diversion in progressive familial intrahepatic cholestasis: A systematic review and meta-analysis[J]. Expert Rev Gastroenterol Hepatol, 2022, 16( 2): 163- 172. DOI: 10.1080/17474124.2022.2032660. [53] NIKEGHBALIAN S, MALEKHOSSEINI SA, KAZEMI K, et al. The largest single center report on pediatric liver transplantation: Experiences and lessons learned[J]. Ann Surg, 2021, 273( 2): e70- e72. DOI: 10.1097/SLA.0000000000004047. [54] KAVALLAR AM, MAYERHOFER C, ALDRIAN D, et al. Management and outcomes after liver transplantation for progressive familial intrahepatic cholestasis: A systematic review and meta-analysis[J]. Hepatol Commun, 2023, 7( 10): e0286. DOI: 10.1097/HC9.0000000000000286. [55] DEEKS ED. Odevixibat: First approval[J]. Drugs, 2021, 81( 15): 1781- 1786. DOI: 10.1007/s40265-021-01594-y. [56] GWALTNEY C, IVANESCU C, KARLSSON L, et al. Validation of the PRUCISION instruments in pediatric patients with progressive familial intrahepatic cholestasis[J]. Adv Ther, 2022, 39( 11): 5105- 5125. DOI: 10.1007/s12325-022-02262-7. [57] PORWAL M, KUMAR A, RASTOGI V, et al. Odevixibat: A review of a bioactive compound for the treatment of pruritus approved by the FDA[J]. Curr Drug Res Rev, 2023. DOI: 10.2174/2589977515666230308125238. [58] THOMPSON RJ, ARNELL H, ARTAN R, et al. Odevixibat treatment in progressive familial intrahepatic cholestasis: A randomised, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7( 9): 830- 842. DOI: 10.1016/S2468-1253(22)00093-0. [59] ARONSON SJ, BAKKER RS, SHI XX, et al. Liver-directed gene therapy results in long-term correction of progressive familial intrahepatic cholestasis type 3 in mice[J]. J Hepatol, 2019, 71( 1): 153- 162. DOI: 10.1016/j.jhep.2019.03.021. -

计量
- 文章访问数: 118
- HTML全文浏览量: 42
- PDF下载量: 19
- 被引次数: 0