中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

进行性家族性肝内胆汁淤积症的基因分型及治疗进展

刘怡静 周方

引用本文:
Citation:

进行性家族性肝内胆汁淤积症的基因分型及治疗进展

DOI: 10.12449/JCH250428
基金项目: 

河南省医学科技攻关省部共建重点计划项目 (SBGJ202002125);

河南省科技攻关计划项目 (232102311124)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:刘怡静负责课题设计,论文构思及撰写;周方负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    周方, zhoufang_78@126.com (ORCID: 0000-0003-0722-4253)

Advances in genotyping and treatment of progressive familial intrahepatic cholestasis

Research funding: 

Key Medical Science and Technology Project of Henan Province (SBGJ202002125);

Henan Provincial Science and Technology Plan Project (232102311124)

More Information
  • 摘要: 进行性家族性肝内胆汁淤积症(PFIC)是一组罕见的常染色体隐性遗传病。近年来,随着分子生物学发展,不断有新的致病基因被发现,根据在线人类孟德尔遗传数据库,基因分型目前分为12型。PFIC主要表现为黄疸、瘙痒、生长发育迟缓及脂溶性维生素吸收不良等,一些变异型迅速进展为肝纤维化、肝硬化、肝衰竭,甚至肝癌。不同类型PFIC临床表现和治疗策略不尽相同,基因检测有助于实现早期识别及诊断。本文就PFIC基因分型、临床特征和治疗进展进行综述。

     

  • 表  1  PFIC基因分型及实验室特点

    Table  1.   Genotype and laboratory profile of the various types of progressive familial intrahepatic cholestasis

    分型 基因座/基因/蛋白 GGT DBil TBA AFP ALT/AST 病理特点
    PFIC-1 18q21/ATP8B1/FIC1 正常 正常 轻度升高 肝细胞及胆小管胆汁淤积,汇管区炎症,门静脉和小叶周围纤维化,小结节性肝硬化
    PFIC-2 2q31/ABCB11/BSEP 正常 极高 中度升高 毛细胆管内胆汁淤积及小叶/门静脉纤维化,巨细胞炎症,严重的肝细胞坏死
    PFIC-3 7q21/ABCB4/MDR3 升高 正常 轻度升高 门静脉炎症及门静脉纤维化,胆汁淤积,胆管增生
    PFIC-4 9q21/TJP2/ZO-2 正常 正常或并发HCC时升高 胆汁淤积及小叶/门静脉纤维化,巨细胞炎症,肝细胞坏死和肝硬化
    PFIC-5 12q23/NR1H4/FXR 正常 中度升高 胆汁淤积及小叶/门静脉纤维化,巨细胞炎症,胆管增生和肝硬化
    PFIC-6 3q29/SLC51A/OSTα 升高 正常 未报道 中度升高 小叶结构变形,早期肝硬化伴门静脉和门静脉周围纤维化,胆汁淤积及胆管增生
    PFIC-7 4q26/USP53/USP53 正常 未报道 肝小叶紊乱及小叶内胆汁淤积,巨细胞炎症,汇管区纤维化
    PFIC-8 9q32/KIF12/KIF12 升高 胆汁淤积及胆管增生,肝纤维化及肝硬化
    PFIC-9 15q15/ZFYVE19/ZFYVE19 升高 未报道 小结节性肝硬化、胆汁淤积伴胆管板畸形,门静脉增宽伴纤维化,胆管增生及胆管纤维化性闭塞
    PFIC-10 18q21/MYO5B/Myosin Vb 正常 正常 轻或中度升高 胆汁淤积、小叶/门静脉纤维化、胆管增生伴局灶性巨细胞炎症
    PFIC-11 15q24/SEMA7A/SEMA7A 正常 正常 未报道 未见报道
    PFIC-12 15q26/VPS33B/VPS33B 正常 轻度升高 正常 肝细胞及小胆管胆汁淤积,巨细胞炎症
    下载: 导出CSV

    表  2  各型PFIC临床特征、治疗及预后

    Table  2.   Clinical characteristics,treatment and outcome of the various types of progressive familial intrahepatic cholestasis

    分型 临床特征 肝外特征 治疗 预后
    PFIC-1 起病早,黄疸/瘙痒,肝脾肿大、生长迟缓,可导致肝硬化和终末期肝病 复发性胰腺炎、腹泻、感觉神经性听力损失、慢性咳嗽、甲状腺功能低下

    药物:UDCA、利福平、消胆胺、IBAT抑制剂;

    手术:BD、肝移植

    胆汁分流术对约80%的患者有效;肝移植后的患者肝外症状可持续(或恶化)
    PFIC-2 起病早,黄疸/瘙痒、门静脉高压、生长迟缓,快速进展为肝硬化,并发肝癌及胆管癌风险 胆石症

    药物:UDCA、利福平、消胆胺、4-PBA、IBAT抑制剂;

    手术:BD、肝移植

    肝移植后部分患者会产生BSEP自身抗体,导致疾病复发,可能需二次肝移植
    PFIC-3 婴儿晚期至青春期均可发病,慢性胆汁淤积,瘙痒较轻,生长迟缓,并发肝癌及胆管癌风险 胆石症

    药物:UDCA、利福平、消胆胺、IBAT抑制剂;

    手术:BD、肝移植;VTX-803

    预后差异大,保留MDR3表达的患者对药物治疗反应好;症状严重者,肝移植可治愈
    PFIC-4 早期严重的胆汁淤积/瘙痒;进展迅速,并发肝癌风险 听力障碍、神经和呼吸系统疾病

    药物:UDCA、利福平、消胆胺、IBAT抑制剂;

    手术:BD、肝移植

    肝移植比例高,移植后暂未见复发报道
    PFIC-5 新生儿期起病胆汁淤积,不依赖维生素K的凝血功能障碍,快速进展为终末期肝病

    药物:UDCA、利福平、消胆胺、IBAT抑制剂、OCA;

    手术:肝移植

    预后差,肝移植术后可出现肝脂肪变性
    PFIC-6 起病早,胆汁淤积,生长迟缓、出血,早期肝纤维化和肝硬化 慢性吸收不良性腹泻及皮肤瘀斑 药物:UDCA、消胆胺、IBAT抑制剂 2020年本病首次报道,经治疗凝血功能及生长恢复正常,转氨酶、DBil和GGT仍高
    PFIC7 黄疸并顽固性瘙痒,低钙血症 听力障碍

    药物:利福平、UDCA、IBAT抑制剂;

    手术:肝移植

    药物治疗反应好,1例患者难治性瘙痒,行肝移植
    PFIC-8 婴儿期出现胆汁淤积,快速进展为肝纤维化和门静脉高压,进行性硬化性胆管炎 胰腺脂肪浸润

    药物:UDCA、IBAT抑制剂;

    手术:肝移植

    目前报道13例患者,11例出现肝硬化,4例进行肝移植,1例等待移植
    PFIC-9 婴儿或儿童早期黄疸/瘙痒、门静脉高压、肝脾肿大 部分患儿伴有腹泻

    药物:UDCA、利福平、IBAT抑制剂;

    手术:肝移植

    目前报道10例患儿,4例进行肝移植
    PFIC-10 黄疸/瘙痒,短暂、进行性或复发性的胆汁淤积,病情进展慢 暂时性腹泻

    药物:UDCA、利福平、消胆胺、IBAT抑制剂;

    手术:BD、肝移植

    预后差异大,药物及胆汁分流术均对部分患者有效,症状严重者仍需肝移植
    PFIC-11 高胆汁酸血症伴有明显肝功能损害 药物:UDCA、IBAT抑制剂和谷胱甘肽 2021首次报道,仅1例患者,目前药物治疗有效,有待继续随访
    PFIC-12 起病早,黄疸/瘙痒,肝脾肿大,持续或复发性胆汁淤积

    药物:UDCA、消胆胺、IBAT抑制剂;

    手术:BD、肝移植

    2019首次报道,瘙痒药物治疗效果欠佳

    注:UDCA,熊去氧胆酸;IBAT,回肠胆汁酸转运体;BD,胆汁分流术;4-PBA,4-苯基丁酸;OCA,奥贝胆酸。

    下载: 导出CSV
  • [1] GUNAYDIN M, BOZKURTER CIL AT. Progressive familial intrahepatic cholestasis: Diagnosis, management, and treatment[J]. Hepat Med, 2018, 10: 95- 104. DOI: 10.2147/HMER.S137209.
    [2] JONES-HUGHES T, CAMPBELL J, CRATHORNE L. Epidemiology and burden of progressive familial intrahepatic cholestasis: A systematic review[J]. Orphanet J Rare Dis, 2021, 16( 1): 255. DOI: 10.1186/s13023-021-01884-4.
    [3] VITALE G, GITTO S, VUKOTIC R, et al. Familial intrahepatic cholestasis: New and wide perspectives[J]. Dig Liver Dis, 2019, 51( 7): 922- 933. DOI: 10.1016/j.dld.2019.04.013.
    [4] PAULUSMA CC, GROEN A, KUNNE C, et al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport[J]. Hepatology, 2006, 44( 1): 195- 204. DOI: 10.1002/hep.21212.
    [5] BAI J, ZHENG SJ, DUAN ZP. Clinical features, diagnosis, and treatment strategies of progressive familial intrahepatic cholestasis[J]. Chin J Hepatol, 2021, 29( 11): 1128- 1131. DOI: 10.3760/cma.j.cn501113-20200306-00091.

    白洁, 郑素军, 段钟平. 进行性家族性肝内胆汁淤积症的临床特征及诊疗思路[J]. 中华肝脏病杂志, 2021, 29( 11): 1128- 1131. DOI: 10.3760/cma.j.cn501113-20200306-00091.
    [6] AL-HUSSAINI A, LONE K, BASHIR MS, et al. ATP8B1 ABCB11 and ABCB4 genes defects: Novel mutations associated with cholestasis with different phenotypes and outcomes[J]. J Pediatr, 2021, 236: 113- 123. e 2. DOI: 10.1016/j.jpeds.2021.04.040.
    [7] BAKER A, KERKAR N, TODOROVA L, et al. Systematic review of progressive familial intrahepatic cholestasis[J]. Clin Res Hepatol Gastroenterol, 2019, 43( 1): 20- 36. DOI: 10.1016/j.clinre.2018.07.010.
    [8] van WESSEL DBE, THOMPSON RJ, GONZALES E, et al. Genotype correlates with the natural history of severe bile salt export pump deficiency[J]. J Hepatol, 2020, 73( 1): 84- 93. DOI: 10.1016/j.jhep.2020.02.007.
    [9] ALAM S, LAL BB. Recent updates on progressive familial intrahepatic cholestasis types 1, 2 and 3: Outcome and therapeutic strategies[J]. World J Hepatol, 2022, 14( 1): 98- 118. DOI: 10.4254/wjh.v14.i1.98.
    [10] FURUSE M, FUJITA K, HIIRAGI T, et al. Claudin-1 and-2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin[J]. J Cell Biol, 1998, 141( 7): 1539- 1550. DOI: 10.1083/jcb.141.7.1539.
    [11] SAMBROTTA M, THOMPSON RJ. Mutations in TJP2, encoding zona occludens 2, and liver disease[J]. Tissue Barriers, 2015, 3( 3): e1026537. DOI: 10.1080/21688370.2015.1026537.
    [12] ZHANG J, GUO S, MEI TL, et al. Novel mutation of the TJP2 gene in a Chinese child with progressive cholestatic liver disease coexistent with hearing impairment[J]. Hepatobiliary Pancreat Dis Int, 2021, 20( 2): 198- 200. DOI: 10.1016/j.hbpd.2020.10.004.
    [13] SAMBROTTA M, STRAUTNIEKS S, PAPOULI E, et al. Mutations in TJP2 cause progressive cholestatic liver disease[J]. Nat Genet, 2014, 46( 4): 326- 328. DOI: 10.1038/ng.2918.
    [14] CARIELLO M, PICCININ E, GARCIA-IRIGOYEN O, et al. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1308- 1318. DOI: 10.1016/j.bbadis.2017.09.019.
    [15] VINAYAGAMOORTHY V, SRIVASTAVA A, SARMA MS. Newer variants of progressive familial intrahepatic cholestasis[J]. World J Hepatol, 2021, 13( 12): 2024- 2038. DOI: 10.4254/wjh.v13.i12.2024.
    [16] GOMEZ-OSPINA N, POTTER CJ, XIAO R, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis[J]. Nat Commun, 2016, 7: 10713. DOI: 10.1038/ncomms10713.
    [17] KIM KH, CHOI JM, LI F, et al. Xenobiotic nuclear receptor signaling determines molecular pathogenesis of progressive familial intrahepatic cholestasis[J]. Endocrinology, 2018, 159( 6): 2435- 2446. DOI: 10.1210/en.2018-00110.
    [18] GAO E, CHEEMA H, WAHEED N, et al. Organic solute transporter alpha deficiency: A disorder with cholestasis, liver fibrosis, and congenital diarrhea[J]. Hepatology, 2020, 71( 5): 1879- 1882. DOI: 10.1002/hep.31087.
    [19] SULTAN M, RAO A, ELPELEG O, et al. Organic solute transporter-β(SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis[J]. Hepatology, 2018, 68( 2): 590- 598. DOI: 10.1002/hep.29516.
    [20] KAZMIERCZAK M, HARRIS SL, KAZMIERCZAK P, et al. Progressive hearing loss in mice carrying a mutation in Usp53[J]. J Neurosci, 2015, 35( 47): 15582- 15598. DOI: 10.1523/JNEUROSCI.1965-15.2015.
    [21] ZHANG J, YANG Y, GONG JY, et al. Low-GGT intrahepatic cholestasis associated with biallelic USP53 variants: Clinical, histological and ultrastructural characterization[J]. Liver Int, 2020, 40( 5): 1142- 1150. DOI: 10.1111/liv.14422.
    [22] STALKE A, SGODDA M, CANTZ T, et al. KIF12 variants and disturbed hepatocyte polarity in children with a phenotypic spectrum of cholestatic liver disease[J]. J Pediatr, 2022, 240: 284- 291. e 9. DOI: 10.1016/j.jpeds.2021.09.019.
    [23] MADDIREVULA S, ALHEBBI H, ALQAHTANI A, et al. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants[J]. Genet Med, 2019, 21( 5): 1164- 1172. DOI: 10.1038/s41436-018-0288-x.
    [24] AÜ AKSU, DAS SK, NELSON-WILLIAMS C, et al. Recessive mutations in KIF12 cause high gamma-glutamyltransferase cholestasis[J]. Hepatol Commun, 2019, 3( 4): 471- 477. DOI: 10.1002/hep4.1320.
    [25] LUAN WS, HAO CZ, LI JQ, et al. Biallelic loss-of-function ZFYVE19 mutations are associated with congenital hepatic fibrosis, sclerosing cholangiopathy and high-GGT cholestasis[J]. J Med Genet, 2021, 58( 8): 514- 525. DOI: 10.1136/jmedgenet-2019-106706.
    [26] BULL LN, THOMPSON RJ. Progressive familial intrahepatic cholestasis[J]. Clin Liver Dis, 2018, 22( 4): 657- 669. DOI: 10.1016/j.cld.2018.06.003.
    [27] MANDATO C, SIANO MA, NAZZARO L, et al. A ZFYVE19 gene mutation associated with neonatal cholestasis and Cilia dysfunction: Case report with a novel pathogenic variant[J]. Orphanet J Rare Dis, 2021, 16( 1): 179. DOI: 10.1186/s13023-021-01775-8.
    [28] WANG L, QIU YL, XU HM, et al. MYO5B-associated diseases: Novel liver-related variants and genotype-phenotype correlation[J]. Liver Int, 2022, 42( 2): 402- 411. DOI: 10.1111/liv.15104.
    [29] QIU YL, GONG JY, FENG JY, et al. Defects in myosin VB are associated with a spectrum of previously undiagnosed low γ-glutamyltransferase cholestasis[J]. Hepatology, 2017, 65( 5): 1655- 1669. DOI: 10.1002/hep.29020.
    [30] COCKAR I, FOSKETT P, STRAUTNIEKS S, et al. Mutations in myosin 5B in children with early-onset cholestasis[J]. J Pediatr Gastroenterol Nutr, 2020, 71( 2): 184- 188. DOI: 10.1097/MPG.0000000000002740.
    [31] ALDRIAN D, VOGEL GF, FREY TK, et al. Congenital diarrhea and cholestatic liver disease: Phenotypic spectrum associated with MYO5B mutations[J]. J Clin Med, 2021, 10( 3): 481. DOI: 10.3390/jcm10030481.
    [32] PAN Q, LUO G, QU JQ, et al. A homozygous R148W mutation in Semaphorin 7A causes progressive familial intrahepatic cholestasis[J]. EMBO Mol Med, 2021, 13( 11): e14563. DOI: 10.15252/emmm.202114563.
    [33] KOH JM, OH B, LEE JY, et al. Association study of semaphorin 7a(sema7a) polymorphisms with bone mineral density and fracture risk in postmenopausal Korean women[J]. J Hum Genet, 2006, 51( 2): 112- 117. DOI: 10.1007/s10038-005-0331-z.
    [34] JIANG T, LUO HY, OUYANG WX, et al. Clinical features and genetic analysis of two children with arthrogryposis, renal insufficiency, and cholestasis syndrome[J]. J Clin Hepatol, 2022, 38( 2): 415- 417. DOI: 10.3969/j.issn.1001-5256.2022.02.029.

    姜涛, 罗海燕, 欧阳文献, 等. 2例关节挛缩-肾功能不全-胆汁淤积综合征患儿的临床特征及遗传学分析[J]. 临床肝胆病杂志, 2022, 38( 2): 415- 417. DOI: 10.3969/j.issn.1001-5256.2022.02.029.
    [35] FU KL, WANG CH, GAO Y, et al. Metabolomics and lipidomics reveal the effect of hepatic Vps33b deficiency on bile acids and lipids metabolism[J]. Front Pharmacol, 2019, 10: 276. DOI: 10.3389/fphar.2019.00276.
    [36] QIU YL, LIU T, ABUDUXIKUER K, et al. Novel missense mutation in VPS33B is associated with isolated low gamma-glutamyltransferase cholestasis: Attenuated, incomplete phenotype of arthrogryposis, renal dysfunction, and cholestasis syndrome[J]. Hum Mutat, 2019, 40( 12): 2247- 2257. DOI: 10.1002/humu.23770.
    [37] JACQUEMIN E, HERMANS D, MYARA A, et al. Ursodeoxycholic acid therapy in pediatric patients with progressive familial intrahepatic cholestasis[J]. Hepatology, 1997, 25( 3): 519- 523. DOI: 10.1002/hep.510250303.
    [38] STAPELBROEK JM, van ERPECUM KJ, KLOMP LWJ, et al. Liver disease associated with canalicular transport defects: Current and future therapies[J]. J Hepatol, 2010, 52( 2): 258- 271. DOI: 10.1016/j.jhep.2009.11.012.
    [39] HENKEL SA, SQUIRES JH, AYERS M, et al. Expanding etiology of progressive familial intrahepatic cholestasis[J]. World J Hepatol, 2019, 11( 5): 450- 463. DOI: 10.4254/wjh.v11.i5.450.
    [40] AGARWAL S, LAL BB, RAWAT D, et al. Progressive familial intrahepatic cholestasis(PFIC) in Indian children: Clinical spectrum and outcome[J]. J Clin Exp Hepatol, 2016, 6( 3): 203- 208. DOI: 10.1016/j.jceh.2016.05.003.
    [41] FRIDER B, CASTILLO A, GORDO-GILART R, et al. Reversal of advanced fibrosis after long-term ursodeoxycholic acid therapy in a patient with residual expression of MDR3[J]. Ann Hepatol, 2015, 14( 5): 745- 751.
    [42] The Subspecialty Group of Infectious Diseases, the Society of Pediatrics, Chinese Medical Association; the Subspecialty Group of Gastroenterology, the Society of Pediatrics, Chinese Medical Association; the Editorial Board, Chinese Journal of Pediatrics. Expert consensus on diagnosis and treatment of infantile cholestasis[J]. Chin J Pediatr, 2022, 60( 10): 990- 997. DOI: 10.3760/cma.j.cn112140-20220505-00412.

    中华医学会儿科学分会感染学组, 中华医学会儿科学分会消化学组, 中华儿科杂志编辑委员会. 婴儿胆汁淤积症诊断与治疗专家共识[J]. 中华儿科杂志, 2022, 60( 10): 990- 997. DOI: 10.3760/cma.j.cn112140-20220505-00412.
    [43] MINERS JO, CHAU N, ROWLAND A, et al. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia[J]. Biochem Pharmacol, 2017, 129: 85- 95. DOI: 10.1016/j.bcp.2017.01.002.
    [44] PATEL SP, VASAVDA C, HO B, et al. Cholestatic pruritus: Emerging mechanisms and therapeutics[J]. J Am Acad Dermatol, 2019, 81( 6): 1371- 1378. DOI: 10.1016/j.jaad.2019.04.035.
    [45] HASEGAWA Y, HAYASHI H, NAOI S, et al. Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1[J]. Orphanet J Rare Dis, 2014, 9: 89. DOI: 10.1186/1750-1172-9-89.
    [46] VARMA S, REVENCU N, STEPHENNE X, et al. Retargeting of bile salt export pump and favorable outcome in children with progressive familial intrahepatic cholestasis type 2[J]. Hepatology, 2015, 62( 1): 198- 206. DOI: 10.1002/hep.27834.
    [47] HAYASHI H, NAOI S, HIROSE Y, et al. Successful treatment with 4-phenylbutyrate in a patient with benign recurrent intrahepatic cholestasis type 2 refractory to biliary drainage and bilirubin absorption[J]. Hepatol Res, 2016, 46( 2): 192- 200. DOI: 10.1111/hepr.12561.
    [48] ALMES M, JOBERT A, LAPALUS M, et al. Glycerol phenylbutyrate therapy in progressive familial intrahepatic cholestasis type 2[J]. J Pediatr Gastroenterol Nutr, 2020, 70( 6): e139- e140. DOI: 10.1097/MPG.0000000000002713.
    [49] TRAUNER M, NEVENS F, SHIFFMAN ML, et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study[J]. Lancet Gastroenterol Hepatol, 2019, 4( 6): 445- 453. DOI: 10.1016/S2468-1253(19)30094-9.
    [50] CHEN HL, WU SH, HSU SH, et al. Jaundice revisited: Recent advances in the diagnosis and treatment of inherited cholestatic liver diseases[J]. J Biomed Sci, 2018, 25( 1): 75. DOI: 10.1186/s12929-018-0475-8.
    [51] MCKIERNAN P, BERNABEU JQ, GIRARD M, et al. Opinion paper on the diagnosis and treatment of progressive familial intrahepatic cholestasis[J]. JHEP Rep, 2023, 6( 1): 100949. DOI: 10.1016/j.jhepr.2023.100949.
    [52] BOLIA RS, GOEL AD, SHARMA V, et al. Biliary diversion in progressive familial intrahepatic cholestasis: A systematic review and meta-analysis[J]. Expert Rev Gastroenterol Hepatol, 2022, 16( 2): 163- 172. DOI: 10.1080/17474124.2022.2032660.
    [53] NIKEGHBALIAN S, MALEKHOSSEINI SA, KAZEMI K, et al. The largest single center report on pediatric liver transplantation: Experiences and lessons learned[J]. Ann Surg, 2021, 273( 2): e70- e72. DOI: 10.1097/SLA.0000000000004047.
    [54] KAVALLAR AM, MAYERHOFER C, ALDRIAN D, et al. Management and outcomes after liver transplantation for progressive familial intrahepatic cholestasis: A systematic review and meta-analysis[J]. Hepatol Commun, 2023, 7( 10): e0286. DOI: 10.1097/HC9.0000000000000286.
    [55] DEEKS ED. Odevixibat: First approval[J]. Drugs, 2021, 81( 15): 1781- 1786. DOI: 10.1007/s40265-021-01594-y.
    [56] GWALTNEY C, IVANESCU C, KARLSSON L, et al. Validation of the PRUCISION instruments in pediatric patients with progressive familial intrahepatic cholestasis[J]. Adv Ther, 2022, 39( 11): 5105- 5125. DOI: 10.1007/s12325-022-02262-7.
    [57] PORWAL M, KUMAR A, RASTOGI V, et al. Odevixibat: A review of a bioactive compound for the treatment of pruritus approved by the FDA[J]. Curr Drug Res Rev, 2023. DOI: 10.2174/2589977515666230308125238.
    [58] THOMPSON RJ, ARNELL H, ARTAN R, et al. Odevixibat treatment in progressive familial intrahepatic cholestasis: A randomised, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7( 9): 830- 842. DOI: 10.1016/S2468-1253(22)00093-0.
    [59] ARONSON SJ, BAKKER RS, SHI XX, et al. Liver-directed gene therapy results in long-term correction of progressive familial intrahepatic cholestasis type 3 in mice[J]. J Hepatol, 2019, 71( 1): 153- 162. DOI: 10.1016/j.jhep.2019.03.021.
  • 加载中
表(2)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  42
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 录用日期:  2024-07-30
  • 出版日期:  2025-04-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回