肠道菌群在失代偿期肝硬化并发急性肾损伤中的致病机制及相关靶向治疗
DOI: 10.12449/JCH250426
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:林清标负责拟定写作思路,分析资料,撰写论文;王贵强负责修改论文并最后定稿。
The role of gut microbiota in acute kidney injury in patients with decompensated liver cirrhosis and related targeted therapies
-
摘要: 急性肾损伤(AKI)是失代偿期肝硬化患者的严重并发症之一,其病死率高,预后差。目前的研究发现,肠道菌群可能与失代偿期肝硬化并发AKI的发生发展相关,基于肠道菌群的靶向治疗方法在该类患者防治研究中的应用也值得关注。因此,本文将肠道菌群在肝硬化并发AKI中的可能致病机制及肝硬化并发AKI潜在的靶向肠道菌群防治措施相关研究加以综述,为了解该类患者的发病机制及相关治疗提供参考依据。Abstract: Acute kidney injury (AKI) is a severe complication in patients with decompensated liver cirrhosis and tends to have a high mortality rate and a poor prognosis. Current studies have shown that gut microbiota might be associated with the development and progression of AKI, and it is necessary to pay attention to the application of targeted therapy based on gut microbiota in the prevention and treatment of such patients. Therefore, this article reviews the possible pathogenesis of gut microbiota in liver cirrhosis comorbid with AKI, as well as potential prevention and treatment measures targeting gut microbiota, in order to provide a reference for the pathogenesis of such patients and related treatment methods.
-
Key words:
- Liver Cirrhosis /
- Acute Kidney Injury /
- Gastrointestinal Microbiome /
- Therapeutics
-
[1] NADIM MK, GARCIA-TSAO G. Acute kidney injury in patients with cirrhosis[J]. N Engl J Med, 2023, 388( 8): 733- 745. DOI: 10.1056/NEJMra2215289. [2] DESAI AP, KNAPP SM, ORMAN ES, et al. Changing epidemiology and outcomes of acute kidney injury in hospitalized patients with cirrhosis- a US population-based study[J]. J Hepatol, 2020, 73( 5): 1092- 1099. DOI: 10.1016/j.jhep.2020.04.043. [3] TANDON P, JAMES MT, ABRALDES JG, et al. Relevance of new definitions to incidence and prognosis of acute kidney injury in hospitalized patients with cirrhosis: A retrospective population-based cohort study[J]. PLoS One, 2016, 11( 8): e0160394. DOI: 10.1371/journal.pone.0160394. [4] MOHAN PB, NAGARAJU SP, MUSUNURI B, et al. Study of prevalence, risk factors for acute kidney injury, and mortality in liver cirrhosis patients[J]. Ir J Med Sci, 2024, 193( 4): 1817- 1825. DOI: 10.1007/s11845-024-03663-z. [5] SIMONETTO DA, GINES P, KAMATH PS. Hepatorenal syndrome: Pathophysiology, diagnosis, and management[J]. BMJ, 2020, 370: m2687. DOI: 10.1136/bmj.m2687. [6] FRANCOZ C, DURAND F, KAHN JA, et al. Hepatorenal syndrome[J]. Clin J Am Soc Nephrol, 2019, 14( 5): 774- 781. DOI: 10.2215/cjn.12451018. [7] SHAH N, DHAR D, ZAHRAA MOHAMMED F EL, et al. Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression[J]. J Hepatol, 2012, 56( 5): 1047- 1053. DOI: 10.1016/j.jhep.2011.11.024. [8] ZHANG LL, HU JH, DAI XC, et al. Research progress on the relationship between cirrhotic ascites and intestinal mucosal barrier function[J/CD]. Chin J Liver Dis(Electronic Version), 2023, 15( 2): 23- 27. DOI: 10.3969/j.issn.1674-7380.2023.02.005.张丽丽, 胡建华, 代欣璨, 等. 肝硬化腹水与肠黏膜屏障功能关系研究进展[J/CD]. 中国肝脏病杂志(电子版), 2023, 15( 2): 23- 27. DOI: 10.3969/j.issn.1674-7380.2023.02.005. [9] JO SK, CHA DR, CHO WY, et al. Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells[J]. Nephron, 2002, 91( 3): 406- 415. DOI: 10.1159/000064280. [10] OHIRA H, TSUTSUI W, FUJIOKA Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis?[J]. J Atheroscler Thromb, 2017, 24( 7): 660- 672. DOI: 10.5551/jat.RV17006. [11] JIN ML, KALAINY S, BASKOTA N, et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids[J]. Liver Int, 2019, 39( 8): 1437- 1447. DOI: 10.1111/liv.14106. [12] GHARAIE S, NOEL S, RABB H. Gut microbiome and AKI: Roles of the immune system and short-chain fatty acids[J]. Nephron, 2020, 144( 12): 662- 664. DOI: 10.1159/000508984. [13] ANDRADE-OLIVEIRA V, AMANO MT, CORREA-COSTA M, et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion[J]. J Am Soc Nephrol, 2015, 26( 8): 1877- 1888. DOI: 10.1681/ASN.2014030288. [14] AL-HARBI NO, NADEEM A, AHMAD SF, et al. Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells[J]. Int Immunopharmacol, 2018, 58: 24- 31. DOI: 10.1016/j.intimp.2018.02.023. [15] VELDEMAN L, VANMASSENHOVE J, van BIESEN W, et al. Evolution of protein-bound uremic toxins indoxyl sulphate and p-cresyl sulphate in acute kidney injury[J]. Int Urol Nephrol, 2019, 51( 2): 293- 302. DOI: 10.1007/s11255-018-2056-x. [16] LEE TH, PARK D, KIM YJ, et al. Lactobacillus salivarius BP121 prevents cisplatin-induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p-cresol sulfate via alleviating dysbiosis[J]. Int J Mol Med, 2020, 45( 4): 1130- 1140. DOI: 10.3892/ijmm.2020.4495. [17] WANG WJ, HAO GH, PAN Y, et al. Serum indoxyl sulfate is associated with mortality in hospital-acquired acute kidney injury: A prospective cohort study[J]. BMC Nephrol, 2019, 20( 1): 57. DOI: 10.1186/s12882-019-1238-9. [18] LIN CJ, LIOU TC, PAN CF, et al. The role of liver in determining serum colon-derived uremic solutes[J]. PLoS One, 2015, 10( 8): e0134590. DOI: 10.1371/journal.pone.0134590. [19] RICHARD ML, SOKOL H. The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases[J]. Nat Rev Gastroenterol Hepatol, 2019, 16( 6): 331- 345. DOI: 10.1038/s41575-019-0121-2. [20] TRANAH TH, EDWARDS LA, SCHNABL B, et al. Targeting the gut-liver-immune axis to treat cirrhosis[J]. Gut, 2021, 70( 5): 982- 994. DOI: 10.1136/gutjnl-2020-320786. [21] ALBILLOS A, DE GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72( 3): 558- 577. DOI: 10.1016/j.jhep.2019.10.003. [22] NIE GL, ZHANG HL, XIE DN, et al. Liver cirrhosis and complications from the perspective of dysbiosis[J]. Front Med(Lausanne), 2024, 10: 1320015. DOI: 10.3389/fmed.2023.1320015. [23] WU ZR, ZHOU HJ, LIU DL, et al. Alterations in the gut microbiota and the efficacy of adjuvant probiotic therapy in liver cirrhosis[J]. Front Cell Infect Microbiol, 2023, 13: 1218552. DOI: 10.3389/fcimb.2023.1218552. [24] LUAN YT, LIU CH, JIANG SL, et al. Comparative analysis of intestinal microbiota distribution characteristics based on metagenomics in patients with hepatitis B cirrhosis with or without ascites[J]. Chin J Hepatol, 2023, 31( 9): 974- 985. DOI: 10.3760/cma.j.cn501113-20220830-00440.栾雨婷, 刘成海, 蒋式骊, 等. 基于宏基因组学比较分析乙型肝炎肝硬化伴或不伴腹水患者肠道菌群的分布特征[J]. 中华肝脏病杂志, 2023, 31( 9): 974- 985. DOI: 10.3760/cma.j.cn501113-20220830-00440. [25] YOUSSEF AL-OKBI S, ABDOU MOHAMED D, EL-SAYED HAMED T, et al. Role of probiotic mixture with and without green tea extract in prevention of hepatorenal syndrome in rat model[J]. Pak J Biol Sci, 2019, 22( 1): 21- 27. DOI: 10.3923/pjbs.2019.21.27. [26] PATEL VC, LEE S, MCPHAIL MJW, et al. Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial[J]. J Hepatol, 2022, 76( 2): 332- 342. DOI: 10.1016/j.jhep.2021.09.010. [27] ELFERT A, ABO ALI L, SOLIMAN S, et al. Randomized-controlled trial of rifaximin versus norfloxacin for secondary prophylaxis of spontaneous bacterial peritonitis[J]. Eur J Gastroenterol Hepatol, 2016, 28( 12): 1450- 1454. DOI: 10.1097/MEG.0000000000000724. [28] ZENG X, SHENG X, WANG PQ, et al. Low-dose rifaximin prevents complications and improves survival in patients with decompensated liver cirrhosis[J]. Hepatol Int, 2021, 15( 1): 155- 165. DOI: 10.1007/s12072-020-10117-y. [29] BUREAU C, THABUT D, JEZEQUEL C, et al. The use of rifaximin in the prevention of overt hepatic encephalopathy after transjugular intrahepatic portosystemic shunt: A randomized controlled trial[J]. Ann Intern Med, 2021, 174( 5): 633- 640. DOI: 10.7326/M20-0202. [30] IBRAHIM ES, ALSEBAEY A, ZAGHLA H, et al. Long-term rifaximin therapy as a primary prevention of hepatorenal syndrome[J]. Eur J Gastroenterol Hepatol, 2017, 29( 11): 1247- 1250. DOI: 10.1097/MEG.0000000000000967. [31] DONG TE, ARONSOHN A, GAUTHAM REDDY K, et al. Rifaximin decreases the incidence and severity of acute kidney injury and hepatorenal syndrome in cirrhosis[J]. Dig Dis Sci, 2016, 61( 12): 3621- 3626. DOI: 10.1007/s10620-016-4313-0. [32] HU YC, DING XC, LIU HJ, et al. Effects of Lactobacillus paracasei N1115 on gut microbial imbalance and liver function in patients with hepatitis B-related cirrhosis[J]. World J Gastroenterol, 2024, 30( 11): 1556- 1571. DOI: 10.3748/wjg.v30.i11.1556. [33] CHÁVEZ-ÍÑIGUEZ JS, IBARRA-ESTRADA M, GALLARDO-GONZÁLEZ AM, et al. Probiotics in septic acute kidney injury, a double blind, randomized control trial[J]. Ren Fail, 2023, 45( 2): 2260003. DOI: 10.1080/0886022X.2023.2260003. [34] TREBICKA J, MACNAUGHTAN J, SCHNABL B, et al. The microbiota in cirrhosis and its role in hepatic decompensation[J]. J Hepatol, 2021, 75( Suppl 1): S67- S81. DOI: 10.1016/j.jhep.2020.11.013. [35] BAJAJ JS, GAVIS EA, FAGAN A, et al. A randomized clinical trial of fecal microbiota transplant for alcohol use disorder[J]. Hepatology, 2021, 73( 5): 1688- 1700. DOI: 10.1002/hep.31496. [36] BAJAJ JS, SALZMAN N, ACHARYA C, et al. Microbial functional change is linked with clinical outcomes after capsular fecal transplant in cirrhosis[J]. JCI Insight, 2019, 4( 24): e133410. DOI: 10.1172/jci.insight.133410. [37] XU HK, WANG CF, ZHANG Y, et al. Role of fecal microbiota transplantation in chronic liver diseases[J]. J Clin Hepatol, 2023, 39( 9): 2237- 2243. DOI: 10.3969/j.issn.1001-5256.2023.09.031.徐洪凯, 汪春付, 张野, 等. 粪菌移植在慢性肝病治疗中的应用[J]. 临床肝胆病杂志, 2023, 39( 9): 2237- 2243. DOI: 10.3969/j.issn.1001-5256.2023.09.031. [38] RAJ D, TOMAR B, LAHIRI A, et al. The gut-liver-kidney axis: Novel regulator of fatty liver associated chronic kidney disease[J]. Pharmacol Res, 2020, 152: 104617. DOI: 10.1016/j.phrs.2019.104617. -