北京市体检人群代谢相关脂肪性肝病的患病率、影响因素和纤维化风险分层分析
DOI: 10.12449/JCH250408
Prevalence, influencing factors, and fibrosis risk stratification of metabolic dysfunction-associated fatty liver disease in the health check-up population in Beijing, China
-
摘要:
目的 本研究旨在对体检人群进行代谢相关脂肪性肝病(MAFLD)筛查,通过无创血清评分系统识别进展期纤维化低、中、高危患者,对其进行分层管理。 方法 纳入2017年12月—2019年12月北京市体检中心的体检人群共3 125例进行横断面研究,分为MAFLD组(n=1 068)和非MAFLD组(n=2 057),按照BMI水平,进一步将MAFLD组分为瘦型MAFLD组(BMI<24 kg/m2,n=125)和非瘦型MAFLD组(BMI≥24 kg/m2,n=943),对比各组之间的人口学、既往史、实验室检查和肝脏超声等指标。计算MAFLD组患者肝纤维化4项(FIB-4)指数、非酒精性脂肪肝纤维化评分(NFS)、AST/PLT指数(APRI)及BARD评分,评估患者进展期肝纤维化风险。正态分布的计量资料两组间比较采用成组t检验,非正态分布的计量资料两组间比较采用Mann-Whitney U秩和检验,计数资料的比较采用χ2检验或Fisher精确检验。采用Logistic回归分析研究各观察指标对MAFLD的影响。 结果 MAFLD组年龄(Z=-9.758)、男性占比(χ2=137.555)、体质量(Z=-27.987)、BMI(Z=-32.714)、腰围(Z=-31.805)、臀围(Z=-26.342)、腰臀比(Z=-28.554)、ALT(Z=-25.820)、AST(Z=-16.894)、GGT(Z=-25.069)、ALP(Z=-12.533)、TG(Z=-27.559)、TC(Z=-7.833)、LDL-C(Z=-8.222)、UA(Z=-20.024),以及合并代谢综合征(MetS)(χ2=578.220)、高血压(χ2=241.694)、2型糖尿病(χ2=796.484)和血脂紊乱(χ2=369.843)患病率均显著高于非MAFLD组(P值均<0.05),HDL-C显著降低(Z=23.153, P<0.001)。多因素Logistic回归分析显示,男性(OR=1.45, 95%CI: 1.203~1.737)、ALT(OR=1.05, 95%CI: 1.046~1.062)、LDL-C(OR=1.23, 95%CI: 1.102~1.373)及合并MetS(OR=5.97, 95%CI: 4.876~7.316)是MAFLD的独立影响因素。瘦型MAFLD组患者年龄(Z=3.736)、HDL-C(Z=2.679)显著高于非瘦型MAFLD组(P值均<0.05),而男性占比(χ2=28.970)、体质量(Z=-14.230)、BMI(Z=-18.188)、腰围(Z=-13.451)、臀围(Z=-13.317)、ALT(Z=-4.519)、AST(Z=-2.258)、GGT(Z=-4.592)、UA(Z=-4.415)、中重度脂肪肝占比、合并MetS(χ2=42.564)及高血压(χ2=12.057)、2型糖尿病(χ2=3.174)患病率均显著降低(P值均<0.05)。MAFLD患者中FIB-4>2.67为10例(0.9%)、NFS>0.676为4例(0.4%)、APRI>1为8例(0.7%)、BARD≥2为551例(51.6%)。 结论 北京市体检人群中MAFLD患病率较高,但存在进展期纤维化高风险的患者人数较少,这部分患者需要转诊至肝病专科医院就诊。 Abstract:Objective To identify the patients with metabolic dysfunction-associated fatty liver disease (MAFLD) among the health check-up population, and to perform stratified management of patients with the low, medium, and high risk of advanced fibrosis based on noninvasive fibrosis scores. Methods A cross-sectional study was conducted among 3 125 individuals who underwent physical examination in Beijing Physical Examination Center from December 2017 to December 2019, and they were divided into MAFLD group with 1 068 individuals and non-MAFLD group with 2 057 individuals. According to BMI, the MAFLD group was further divided into lean MAFLD group (125 individuals with BMI<24 kg/m2) and non-lean MAFLD group (943 individuals with BMI≥24 kg/m2). Indicators including demographic data, past history, laboratory examination, and liver ultrasound were compared between groups. Fibrosis-4 (FIB-4) score, NAFLD fibrosis score (NFS), aspartate aminotransferase-to-platelet ratio index (APRI), and BARD score were calculated for the patients in the MAFLD group to assess the risk of advanced fibrosis. The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U rank sum test was used for comparison of non-normally distributed continuous data between two groups; the chi-square test or the Fisher’s exact test was used for comparison of categorical data between groups. A logistic regression analysis was used to investigate the influence of each indicator in MAFLD. Results Compared with the non-MAFLD group, the MAFLD group had significantly higher age (Z=-9.758, P<0.05), proportion of male patients (χ2=137.555, P<0.05), and levels of body weight (Z=-27.987, P<0.05), BMI (Z=-32.714, P<0.05), waist circumference (Z=-31.805, P<0.05), hip circumference (Z=-26.342, P<0.05), waist-hip ratio (Z=-28.554, P<0.05), alanine aminotransferase (ALT) (Z=-25.820, P<0.05), aspartate aminotransferase (AST) (Z=-16.894, P<0.05), gamma-glutamyl transpeptidase (GGT) (Z=-25.069, P<0.05), alkaline phosphatase (Z=-12.533, P<0.05), triglyceride (Z=-27.559), total cholesterol (Z=-7.833, P<0.05), low-density lipoprotein cholesterol (LDL-C) (Z=-8.222, P<0.05), and uric acid (UA) (Z=-20.024, P<0.05), as well as a significantly higher proportion of patients with metabolic syndrome (MetS) (χ2=578.220, P<0.05), significantly higher prevalence rates of hypertension (χ2=241.694, P<0.05), type 2 diabetes (χ2=796.484, P<0.05), and dyslipidemia (χ2=369.843, P<0.05), and a significant reduction in high-density lipoprotein cholesterol (HDL-C) (Z=23.153, P<0.001). The multivariate logistic regression analysis showed that male sex (odds ratio [OR]=1.45, 95% confidence interval [CI]: 1.203 — 1.737), ALT (OR=1.05, 95%CI: 1.046 — 1.062), LDL-C (OR=1.23, 95%CI: 1.102 — 1.373), and comorbidity with MetS (OR=5.97, 95%CI: 4.876 — 7.316) were independently associated with MAFLD. Compared with the non-lean MAFLD group, the lean MAFLD group had significantly higher age (Z=3.736, P<0.05) and HDL-C (Z=2.679, P<0.05) and significant reductions in the proportion of male patients (χ2=28.970, P<0.05), body weight (Z=-14.230, P<0.05), BMI (Z=-18.188, P<0.05), waist circumference (Z=-13.451, P<0.05), hip circumference (Z=-13.317, P<0.05), ALT (Z=-4.519, P<0.05), AST (Z=-2.258, P<0.05), GGT (Z=-4.592, P<0.05), UA (Z=-4.415, P<0.05), the proportion of patients with moderate or severe fatty liver disease or MetS (χ2=42.564, P<0.05), and the prevalence rates of hypertension (χ2=12.057, P<0.05) and type 2 diabetes (χ2=3.174, P<0.05). Among the patients with MAFLD, 10 patients (0.9%) had an FIB-4 score of >2.67, 4 patients (0.4%) had an NFS score of >0.676, 8 patients (0.7%) had an APRI of >1, and 551 patients (51.6%) had a BARD score of ≥2. Conclusion There is a relatively high prevalence rate of MAFLD among the health check-up population in Beijing, but with a relatively low number of patients with a high risk of advanced fibrosis, and such patients need to be referred to specialized hospitals for liver diseases. -
表 1 按MAFLD分层的患者特征、临床指标及合并症
Table 1. Patient characteristics, clinical indicators, and comorbidities stratified by MAFLD
项目 MAFLD组(n=1 068) 非MAFLD组(n=2 057) 统计值 P值 年龄(岁) 46.0(36.0~55.0) 39.0(32.0~51.0) Z=-9.758 <0.001 男性[例(%)] 707.0(66.2) 907.0(44.1) χ2=137.555 <0.001 体质量(kg) 77.1(69.7~85.5) 62.0(54.7~71.5) Z=-27.987 <0.001 BMI(kg/m2) 27.0(25.2~29.3) 22.8(20.7~24.7) Z=-32.714 <0.001 腰围(cm) 90.0(85.0~96.0) 76.0(70.0~84.0) Z=-31.805 <0.001 臀围(cm) 101.0(98.0~106.0) 95.0(91.0~100.0) Z=-26.342 <0.001 腰臀比 0.89(0.85~0.93) 0.80(0.76~0.85) Z=-28.554 <0.001 PLT(×109/L) 235.0(195.0~270.0) 234.0(200.0~269.0) Z=-1.086 0.212 ALT(U/L) 25.0(17.0~37.0) 14.0(10.0~19.0) Z=-25.820 <0.001 AST(U/L) 20.0(16.0~25.0) 17.0(14.0~20.0) Z=-16.894 <0.001 TBil(μmol/L) 13.0(10.0~16.8) 12.9(9.9~17.0) Z=-0.081 0.936 DBil(μmol/L) 4.1(3.3~5.2) 4.2(3.3~5.6) Z=1.748 0.080 GGT(U/L) 30.0(21.0~45.0) 16.0(13.0~24.0) Z=-25.069 <0.001 ALP(U/L) 59.0(50.0~70.0) 52.8(44.0~62.0) Z=-12.533 <0.001 Alb(g/L) 47.4±0.1 47.1±0.1 t=-3.139 0.999 TG(mmol/L) 1.7(1.3~2.4) 1.0(0.7~1.4) Z=-27.559 <0.001 TC(mmol/L) 4.9(4.3~5.6) 4.6(4.1~5.3) Z=-7.833 <0.001 LDL-C(mmol/L) 2.9(2.4~3.5) 2.7(2.2~3.2) Z=-8.222 <0.001 HDL-C(mmol/L) 1.1(1.0~1.3) 1.4(1.2~1.7) Z=23.153 <0.001 UA(μmol/L) 367.0(313.6~429.4) 298.0(247.9~356.0) Z=-20.024 <0.001 合并症[例(%)] 高血压 462(43.3) 359(17.5) χ2=241.694 <0.001 2型糖尿病 287(26.9) 80(3.9) χ2=796.484 <0.001 血脂紊乱 511(47.8) 324(15.8) χ2=369.843 <0.001 MetS 506(47.4) 196(9.5) χ2=578.220 <0.001 表 2 多因素Logistic回归分析MAFLD危险因素
Table 2. Multiple logistic regression analysis showing risk factors that were significantly associated with MAFLD
项目 OR 标准误 Z值 P值 95%CI 男性 1.45 0.14 3.94 <0.001 1.203~1.737 ALT 1.05 0.01 13.61 <0.001 1.046~1.062 LDL-C 1.23 0.07 3.69 <0.001 1.102~1.373 合并MetS 5.97 0.62 17.26 <0.001 4.876~7.316 表 3 按BMI分层的患者特征、临床指标及合并症
Table 3. Patient characteristics, clinical indicators, and comorbidities stratified by BMI
项目 瘦型MAFLD组(n=125) 非瘦型MAFLD组(n=943) 统计值 P值 年龄(岁) 50.0(40.0~60.0) 45.0(35.0~55.0) Z=3.736 <0.001 男性[例(%)] 56.0(44.8) 651.0(69.0) χ2=28.970 <0.001 体质量(kg) 63.0(57.4~69.1) 79.0(71.7~87.4) Z=-14.230 <0.001 BMI(kg/m2) 23.1(22.1~23.6) 27.5(25.8~29.6) Z=-18.188 <0.001 腰围(cm) 80.0(77.0~85.0) 91.0(86.0~97.0) Z=-13.451 <0.001 臀围(cm) 95.0(93.0~98.0) 102.0(99.0~107.0) Z=-13.317 <0.001 腰臀比 0.847±0.004 0.891±0.002 t=-8.873 1.000 PLT(×109/L) 239.0(209.0~285.0) 240.0(205.0~278.0) Z=0.758 0.449 ALT(U/L) 20.0(15.0~28.0) 25.0(17.0~38.0) Z=-4.519 <0.001 AST(U/L) 18.0(16.0~23.0) 20.0(16.0~25.0) Z=-2.258 0.024 TBil(μmol/L) 12.5(8.6~16.4) 13.0(10.1~16.8) Z=-0.806 0.421 DBil(μmol/L) 3.9(3.2~5.0) 4.1(3.3~5.2) Z=-1.266 0.206 GGT(U/L) 23.0(19.0~34.0) 31.0(22.0~47.0) Z=-4.592 <0.001 ALP(U/L) 59.0(50.0~70.0) 59.0(50.0~70.0) Z=-0.178 0.859 Alb(g/L) 47.0±0.2 47.4±0.1 t=-1.972 0.976 TG(mmol/L) 1.8(1.3~2.4) 1.7(1.3~2.4) Z=0.310 0.757 TC(mmol/L) 5.0(4.2~5.7) 4.9(4.4~5.6) Z=-0.117 0.907 LDL-C(mmol/L) 3.0(2.2~3.5) 2.9(2.4~3.5) Z=-0.519 0.604 HDL-C(mmol/L) 1.2(1.1~1.4) 1.1(1.0~1.3) Z=2.679 0.007 UA(μmol/L) 330.2(278.0~393.0) 371.0(318.2~433.0) Z=-4.415 <0.001 肝脂肪变程度[例(%)] <0.001 轻度 110(88.0) 642(68.1) 中度 15(12.0) 287(30.4) 重度 0(0.0) 14(1.5) 合并症[例(%)] 高血压 36(28.8) 426(45.2) χ2=12.057 0.001 2型糖尿病 26(20.8) 261(27.7) χ2=3.174 0.032 血脂紊乱 52(41.6) 459(48.7) χ2=2.214 0.137 MetS 25(20.0) 481(51.0) χ2=42.564 <0.001 表 4 MAFLD患者无创肝纤维化评分评估进展期纤维化的风险
Table 4. Assessment of the risk of advanced fibrosis using non-invasive liver fibrosis scoring in MAFLD patients
项目 MAFLD患者(n=1 068) 瘦型MAFLD(n=125) 非瘦型MAFLD(n=943) 统计值 P值 FIB-4[例(%)] 0.346 <1.3 903(84.6) 101(80.8) 802(85.0) 1.3~2.67 155(14.5) 23(18.4) 132(14.0) >2.67 10(0.9) 1(0.8) 9(1.0) NFS[例(%)] 0.735 <-1.455 932(87.3) 112(89.6) 820(87.0) -1.455~0.676 132(12.3) 13(10.4) 119(12.6) >0.676 4(0.4) 0(0.0) 4(0.4) APRI[例(%)] 0.607 ≤1 1 060(99.3) 125(100.0) 935(99.2) >1 8(0.7) 0(0.0) 8(0.8) BARD[例(%)] χ2=9.889 0.002 <2 517(48.4) 94(75.2) 423(44.9) ≥2 551(51.6) 31(24.8) 520(55.1) -
[1] ZHOU JH, ZHOU F, WANG WX, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71( 5): 1851- 1864. DOI: 10.1002/hep.31150. [2] ZHAO Q, MENG XY, WANG Y, et al. Development and validation of a predicting nomogram for metabolic associated fatty liver disease in patients with type 2 diabetes mellitus[J/CD]. Chin J Liver Dis(Electronic Version), 2024, 16( 2): 48- 54. DOI: 10.3969/j.issn.1674-7380.2024.02.009.赵倩, 孟祥英, 王奕, 等. 2型糖尿病患者代谢相关脂肪性肝病列线图预测模型的建立与验证[J/CD]. 中国肝脏病杂志(电子版), 2024, 16( 2): 48- 54. DOI: 10.3969/j.issn.1674-7380.2024.02.009. [3] DUELL PB, WELTY FK, MILLER M, et al. Nonalcoholic fatty liver disease and cardiovascular risk: A scientific statement from the American heart association[J]. Arterioscler Thromb Vasc Biol, 2022, 42( 6): e168- e185. DOI: 10.1161/ATV.0000000000000153. [4] SUN DQ, TARGHER G, BYRNE CD, et al. An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease[J]. Hepatobiliary Surg Nutr, 2023, 12( 3): 386- 403. DOI: 10.21037/hbsn-22-421. [5] THOMAS JA, KENDALL BJ, DALAIS C, et al. Hepatocellular and extrahepatic cancers in non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Eur J Cancer, 2022, 173: 250- 262. DOI: 10.1016/j.ejca.2022.06.051. [6] WANG YK, WEI SY, LIU C, et al. A new definition of fatty liver disease: from nonalcoholic fatty liver disease to metabolic asso-ciated fatty liver disease[J]. Chin J Dig Surg, 2023, 22( S1): 117- 121. DOI: 10.3760/cma.j.cn115610-20230909-00080.王永康, 魏诗雨, 刘昌, 等. 脂肪性肝病新定义: 从非酒精性脂肪性肝病到代谢功能障碍相关脂肪性肝病[J]. 中华消化外科杂志, 2023, 22( S1): 117- 121. DOI: 10.3760/cma.j.cn115610-20230909-00080. [7] Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of metabolic dysfunction-associated(non-alcoholic) fatty liver disease(Version 2024)[J]. J Prac Hepatol, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163.中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 实用肝脏病杂志, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163. [8] NAN YM, AN JH, BAO JF, et al. The Chinese Society of Hepatology position statement on the redefinition of fatty liver disease[J]. J Hepatol, 2021, 75( 2): 454- 461. DOI: 10.1016/j.jhep.2021.05.003. [9] DUSEJA A, SINGH SP, DE A, et al. Indian national association for study of the liver(INASL) guidance paper on nomenclature, diagnosis and treatment of nonalcoholic fatty liver disease(NAFLD)[J]. J Clin Exp Hepatol, 2023, 13( 2): 273- 302. DOI: 10.1016/j.jceh.2022.11.014. [10] RIGOR J, DIEGUES A, PRESA J, et al. Noninvasive fibrosis tools in NAFLD: Validation of APRI, BARD, FIB-4, NAFLD fibrosis score, and hepamet fibrosis score in a Portuguese population[J]. Postgrad Med, 2022, 134( 4): 435- 440. DOI: 10.1080/00325481.2022.2058285. [11] SANCHEZ-BAO AM, SOTO-GONZALEZ A, DELGADO-BLANCO M, et al. Identifying advanced MAFLD in a cohort of T2DM and clinical features[J]. Front Endocrinol(Lausanne), 2023, 14: 1058995. DOI: 10.3389/fendo.2023.1058995. [12] ARSLAN AY, CELIK S, AMIN F, et al. Prevalence, determinants, and fibrosis risk stratification of metabolic-associated fatty liver disease in a Turkish primary care setting: A retrospective study[J]. Hepatol Forum, 2023, 5( 2): 63- 67. DOI: 10.14744/hf.2023.2023.0027. [13] LIU ZY, ZHUANG YJ, DONG X, et al. Construction of non-invasive diagnostic model for liver fibrosis in nonalcoholic fatty liver disease[J]. Clin J Med Offic, 2024, 52( 7): 688- 691. DOI: 10.16680/j.1671-3826.2024.07.07.刘正一, 庄颖洁, 董旭, 等. 非酒精性脂肪性肝病肝纤维化无创诊断模型构建[J]. 临床军医杂志, 2024, 52( 7): 688- 691. DOI: 10.16680/j.1671-3826.2024.07.07. [14] MAN S, DENG YH, MA Y, et al. Prevalence of liver steatosis and fibrosis in the general population and various high-risk populations: A nationwide study with 5.7 million adults in China[J]. Gastroenterology, 2023, 165( 4): 1025- 1040. DOI: 10.1053/j.gastro.2023.05.053. [15] MUZUROVIĆ E, MIKHAILIDIS DP, MANTZOROS C. Non-alcoholic fatty liver disease, insulin resistance, metabolic syndrome and their association with vascular risk[J]. Metabolism, 2021, 119: 154770. DOI: 10.1016/j.metabol.2021.154770. [16] TANG A, NG CH, PHANG PH, et al. Comparative burden of metabolic dysfunction in lean NAFLD vs non-lean NAFLD-A systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2023, 21( 7): 1750- 1760. e 12. DOI: 10.1016/j.cgh.2022.06.029. [17] ZOU ZY, WONG VW, FAN JG. Epidemiology of nonalcoholic fatty liver disease in non-obese populations: Meta-analytic assessment of its prevalence, genetic, metabolic, and histological profiles[J]. J Dig Dis, 2020, 21( 7): 372- 384. DOI: 10.1111/1751-2980.12871. [18] CHEN XN, GOH GB, HUANG JF, et al. Validation of non-invasive fibrosis scores for predicting advanced fibrosis in metabolic-associated fatty liver disease[J]. J Clin Transl Hepatol, 2022, 10( 4): 589- 594. DOI: 10.14218/JCTH.2021.00311. [19] WU YL, KUMAR R, WANG MF, et al. Validation of conventional non-invasive fibrosis scoring systems in patients with metabolic associated fatty liver disease[J]. World J Gastroenterol, 2021, 27( 34): 5753- 5763. DOI: 10.3748/wjg.v27.i34.5753. [20] AMPUERO J, PAIS R, ALLER R, et al. Development and validation of hepamet fibrosis scoring system-a simple, noninvasive test to identify patients with nonalcoholic fatty liver disease with advanced fibrosis[J]. Clin Gastroenterol Hepatol, 2020, 18( 1): 216- 225. e 5. DOI: 10.1016/j.cgh.2019.05.051. -