胰腺肿瘤神经生态学:多维视角下的现状、机制与展望
DOI: 10.12449/JCH250403
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:郑上游、江宏辉、胡崇辉负责资料查找,撰写论文;李婷、黄天浩、何日华、蒋勇负责修改与校对论文;陈汝福指导修改论文并最终定稿。
Pancreatic cancer neuroecology: Current status, mechanisms, and prospect from multi-dimensional perspectives
-
摘要: 胰腺癌具有显著的神经侵袭性与高致死率特征,其病理进程依赖于肿瘤与神经系统之间复杂的相互作用网络。本文基于“胰腺肿瘤神经生态学”概念,系统梳理了外周运动神经、感觉神经及中枢神经在肿瘤发生、疼痛调控及恶病质形成中的作用机制,强调了免疫细胞、施旺细胞与细胞外基质在神经浸润微环境中的协同调控作用。同时,进一步阐释了神经轴与肿瘤之间的代谢相互作用、趋化行为及其对化疗耐药的促进效应,揭示了神经可塑性与肿瘤适应性之间的动态关系。在临床层面,本文总结了神经浸润在胰腺癌患者预后评估、术前评估及手术策略选择中的关键价值。此外,本文归纳了胰腺癌神经浸润相关生物标志物与潜在靶点的基础研究进展,并指出当前模型与转化研究的局限性。未来,系统解析神经-肿瘤-免疫网络并靶向其关键节点,有望为胰腺癌的精准干预、耐药逆转及症状缓解提供多维策略与新突破。Abstract: Pancreatic cancer is characterized by nerve invasion and a high mortality rate, and its pathological process depends on the complex interaction network between tumor and the nervous system. Based on the concept of “pancreatic cancer neuroecology”, this article analyzes the mechanism of action of peripheral motor nerve, sensory nerve, and central nerve in tumorigenesis, pain regulation, and cachexia formation and emphasizes the synergistic regulatory role of immune cells, Schwann cells, and extracellular matrix in the microenvironment of perineural invasion. At the same time, this article further elaborates on the metabolic interaction and chemotaxis between neuraxis and tumor, the effect on promoting chemotherapy resistance, and the dynamic relationship between neuroplasticity and tumor adaptability. In clinical practice, this article summarizes the key value of perineural invasion in prognostic evaluation, preoperative evaluation, and the selection of surgical strategy. In addition, this article reviews the basic research advances in the biomarkers and potential targets associated with perineural invasion in pancreatic cancer and points out the limitations of current model and transformation research. In the future, systematically analyzing the nerve-tumor-immune network and targeting its key nodes may provide multi-dimensional strategies and new breakthroughs for the precise intervention of pancreatic cancer, the reversal of drug resistance, and the relief of symptoms.
-
Key words:
- Pancreatic Neoplasms /
- Nervous System /
- Ecology
-
[1] YAMAN I, ÇOBANOĞLU DA, XIE TX, et al. Advances in understanding cancer-associated neurogenesis and its implications on the neuroimmune axis in cancer[J]. Pharmacol Ther, 2022, 239: 108199. DOI: 10.1016/j.pharmthera.2022.108199. [2] SHI DD, GUO JA, HOFFMAN HI, et al. Therapeutic avenues for cancer neuroscience: Translational frontiers and clinical opportunities[J]. Lancet Oncol, 2022, 23( 2): e62- e74. DOI: 10.1016/S1470-2045(21)00596-9. [3] DEMIR IE, FRIESS H, CEYHAN GO. Neural plasticity in pancreatitis and pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2015, 12( 11): 649- 659. DOI: 10.1038/nrgastro.2015.166. [4] JURCAK N, ZHENG L. Signaling in the microenvironment of pancreatic cancer: Transmitting along the nerve[J]. Pharmacol Ther, 2019, 200: 126- 134. DOI: 10.1016/j.pharmthera.2019.04.010. [5] RENZ BW, TAKAHASHI R, TANAKA T, et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer[J]. Cancer Cell, 2018, 33( 1): 75- 90. e 7. DOI: 10.1016/j.ccell.2017.11.007. [6] GUILLOT J, DOMINICI C, LUCCHESI A, et al. Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer[J]. Nat Commun, 2022, 13( 1): 1985. DOI: 10.1038/s41467-022-29659-w. [7] RENZ BW, TANAKA T, SUNAGAWA M, et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness[J]. Cancer Discov, 2018, 8( 11): 1458- 1473. DOI: 10.1158/2159-8290.CD-18-0046. [8] YANG MW, TAO LY, JIANG YS, et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma[J]. Cancer Res, 2020, 80( 10): 1991- 2003. DOI: 10.1158/0008-5472.CAN-19-2689. [9] STOPCZYNSKI RE, NORMOLLE DP, HARTMAN DJ, et al. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma[J]. Cancer Res, 2014, 74( 6): 1718- 1727. DOI: 10.1158/0008-5472.CAN-13-2050. [10] SINHA S, FU YY, GRIMONT A, et al. PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk[J]. Cancer Res, 2017, 77( 8): 1868- 1879. DOI: 10.1158/0008-5472.CAN-16-0899-T. [11] HIRTH M, GANDLA J, HÖPER C, et al. CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients[J]. Gastroenterology, 2020, 159( 2): 665- 681. e 13. DOI: 10.1053/j.gastro.2020.04.037. [12] BURFEIND KG, ZHU XX, NORGARD MA, et al. Circulating myeloid cells invade the central nervous system to mediate Cachexia during pancreatic cancer[J]. eLife, 2020, 9: e54095. DOI: 10.7554/eLife.54095. [13] LI XL, HOLTROP T, JANSEN FAC, et al. Lipopolysaccharide-induced hypothalamic inflammation in cancer Cachexia-anorexia is amplified by tumour-derived prostaglandin E2[J]. J Cachexia Sarcopenia Muscle, 2022, 13( 6): 3014- 3027. DOI: 10.1002/jcsm.13093. [14] ZHU XX, BURFEIND KG, MICHAELIS KA, et al. MyD88 signalling is critical in the development of pancreatic cancer Cachexia[J]. J Cachexia Sarcopenia Muscle, 2019, 10( 2): 378- 390. DOI: 10.1002/jcsm.12377. [15] BURFEIND KG, ZHU XX, LEVASSEUR PR, et al. TRIF is a key inflammatory mediator of acute sickness behavior and cancer Cachexia[J]. Brain Behav Immun, 2018, 73: 364- 374. DOI: 10.1016/j.bbi.2018.05.021. [16] PORPORATO PE. Understanding Cachexia as a cancer metabolism syndrome[J]. Oncogenesis, 2016, 5( 2): e200. DOI: 10.1038/oncsis.2016.3. [17] SALOMAN JL, ALBERS KM, LI DJ, et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer[J]. Proc Natl Acad Sci USA, 2016, 113( 11): 3078- 3083. DOI: 10.1073/pnas.1512603113. [18] BAKST RL, XIONG HZ, CHEN CH, et al. Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression[J]. Cancer Res, 2017, 77( 22): 6400- 6414. DOI: 10.1158/0008-5472.CAN-17-1612. [19] BRESSY C, LAC S, NIGRI J, et al. LIF drives neural remodeling in pancreatic cancer and offers a new candidate biomarker[J]. Cancer Res, 2018, 78( 4): 909- 921. DOI: 10.1158/0008-5472.CAN-15-2790. [20] DEMIR IE, TIEFTRUNK E, SCHORN S, et al. Activated Schwann cells in pancreatic cancer are linked to analgesia via suppression of spinal astroglia and microglia[J]. Gut, 2016, 65( 6): 1001- 1014. DOI: 10.1136/gutjnl-2015-309784. [21] LINDSAY TH, JONAS BM, SEVCIK MA, et al. Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight and disease progression[J]. Pain, 2005, 119( 1-3): 233- 246. DOI: 10.1016/j.pain.2005.10.019. [22] DEBORDE S, GUSAIN L, POWERS A, et al. Reprogrammed schwann cells organize into dynamic tracks that promote pancreatic cancer invasion[J]. Cancer Discov, 2022, 12( 10): 2454- 2473. DOI: 10.1158/2159-8290.CD-21-1690. [23] TIAN ZF, OU GS, SU MX, et al. TIMP1 derived from pancreatic cancer cells stimulates Schwann cells and promotes the occurrence of perineural invasion[J]. Cancer Lett, 2022, 546: 215863. DOI: 10.1016/j.canlet.2022.215863. [24] ZHANG WN, HE R, YANG WB, et al. Autophagic Schwann cells promote perineural invasion mediated by the NGF/ATG7 paracrine pathway in pancreatic cancer[J]. J Exp Clin Cancer Res, 2022, 41( 1): 48. DOI: 10.1186/s13046-021-02198-w. [25] WEITZ J, GARG B, MARTSINKOVSKIY A, et al. Pancreatic ductal adenocarcinoma induces neural injury that promotes a transcriptomic and functional repair signature by peripheral neuroglia[J]. Oncogene, 2023, 42( 34): 2536- 2546. DOI: 10.1038/s41388-023-02775-7. [26] XUE ML, ZHU YW, JIANG YS, et al. Schwann cells regulate tumor cells and cancer-associated fibroblasts in the pancreatic ductal adenocarcinoma microenvironment[J]. Nat Commun, 2023, 14( 1): 4600. DOI: 10.1038/s41467-023-40314-w. [27] NA’ARA S, AMIT M, GIL Z. L1CAM induces perineural invasion of pancreas cancer cells by upregulation of metalloproteinase expression[J]. Oncogene, 2019, 38( 4): 596- 608. DOI: 10.1038/s41388-018-0458-y. [28] ZHENG SY, HU CH, LIN Q, et al. Extracellular vesicle-packaged PIAT from cancer-associated fibroblasts drives neural remodeling by mediating m5C modification in pancreatic cancer mouse models[J]. Sci Transl Med, 2024, 16( 756): eadi0178. DOI: 10.1126/scitranslmed.adi0178. [29] ZHANG DW, LUO YM, LIN Y, et al. Endosomal trafficking bypassed by the RAB5B-CD109 interplay promotes axonogenesis in KRAS-mutant pancreatic cancer[J]. Adv Sci(Weinh), 2024, 11( 47): e2405092. DOI: 10.1002/advs.202405092. [30] LI TT, HU CH, HUANG TH, et al. Cancer-associated fibroblasts foster a high-lactate microenvironment to drive perineural invasion in pancreatic cancer[J]. Cancer Res, 2025. DOI: 10.1158/0008-5472.CAN-24-3173. [31] BANH RS, BIANCUR DE, YAMAMOTO K, et al. Neurons release serine to support mRNA translation in pancreatic cancer[J]. Cell, 2020, 183( 5): 1202- 1218. e 25. DOI: 10.1016/j.cell.2020.10.016. [32] HERNER A, SAULIUNAITE D, MICHALSKI CW, et al. Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling[J]. Int J Cancer, 2011, 129( 10): 2349- 2359. DOI: 10.1002/ijc.25898. [33] LI FJ, HE C, YAO HM, et al. Glutamate from nerve cells promotes perineural invasion in pancreatic cancer by regulating tumor glycolysis through HK2 mRNA-m6A modification[J]. Pharmacol Res, 2023, 187: 106555. DOI: 10.1016/j.phrs.2022.106555. [34] WINNARD PT Jr, BHARTI SK, SHARMA RK, et al. Brain metabolites in cholinergic and glutamatergic pathways are altered by pancreatic cancer Cachexia[J]. J Cachexia Sarcopenia Muscle, 2020, 11( 6): 1487- 1500. DOI: 10.1002/jcsm.12621. [35] VEIT C, GENZE F, MENKE A, et al. Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells[J]. Cancer Res, 2004, 64( 15): 5291- 5300. DOI: 10.1158/0008-5472.CAN-04-1112. [36] OKADA Y, TAKEYAMA H, SATO M, et al. Experimental implication of celiac ganglionotropic invasion of pancreatic-cancer cells bearing c-ret proto-oncogene with reference to glial-cell-line-derived neurotrophic factor(GDNF)[J]. Int J Cancer, 1999, 81( 1): 67- 73. DOI: 3.0.co;2-v">10.1002/(sici)1097-0215(19990331)81:1<67::aid-ijc13>3.0.co;2-v. [37] HE SB, CHEN CH, CHERNICHENKO N, et al. GFRα1 released by nerves enhances cancer cell perineural invasion through GDNF-RET signaling[J]. Proc Natl Acad Sci USA, 2014, 111( 19): E2008- E2017. DOI: 10.1073/pnas.1402944111. [38] ZHU Z, FRIESS H, DIMOLA FF, et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer[J]. J Clin Oncol, 1999, 17( 8): 2419- 2428. DOI: 10.1200/JCO.1999.17.8.2419. [39] JURCAK NR, RUCKI AA, MUTH S, et al. Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice[J]. Gastroenterology, 2019, 157( 3): 838- 850. e 6. DOI: 10.1053/j.gastro.2019.05.065. [40] GÖHRIG A, DETJEN KM, HILFENHAUS G, et al. Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer[J]. Cancer Res, 2014, 74( 5): 1529- 1540. DOI: 10.1158/0008-5472.CAN-13-1012. [41] GOLDSTEIN D, VON HOFF DD, MOORE M, et al. Development of peripheral neuropathy and its association with survival during treatment with nab-paclitaxel plus gemcitabine for patients with metastatic adenocarcinoma of the pancreas: A subset analysis from a randomised phase III trial(MPACT)[J]. Eur J Cancer, 2016, 52: 85- 91. DOI: 10.1016/j.ejca.2015.10.017. [42] DEMOLS A, PEETERS M, POLUS M, et al. Gemcitabine and oxaliplatin(GEMOX) in gemcitabine refractory advanced pancreatic adenocarcinoma: A phase II study[J]. Br J Cancer, 2006, 94( 4): 481- 485. DOI: 10.1038/sj.bjc.6602966. [43] GU JN, WANG D, ZHANG JQ, et al. GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via miR-17-5p in pancreatic cancer[J]. Cancer Lett, 2016, 380( 2): 434- 441. DOI: 10.1016/j.canlet.2016.06.016. [44] THIEL V, RENDERS S, PANTEN J, et al. Characterization of single neurons reprogrammed by pancreatic cancer[J]. Nature, 2025. DOI: 10.1038/s41586-025-08735-3. [45] MITSUNAGA S, HASEBE T, KINOSHITA T, et al. Detail histologic analysis of nerve plexus invasion in invasive ductal carcinoma of the pancreas and its prognostic impact[J]. Am J Surg Pathol, 2007, 31( 11): 1636- 1644. DOI: 10.1097/PAS.0b013e318065bfe6. [46] LIEBL F, DEMIR IE, MAYER K, et al. The impact of neural invasion severity in gastrointestinal malignancies: A clinicopathological study[J]. Ann Surg, 2014, 260( 5): 900-907; discussion 907-908. DOI: 10.1097/SLA.0000000000000968. [47] TAKAHASHI H, OHIGASHI H, ISHIKAWA O, et al. Perineural invasion and lymph node involvement as indicators of surgical outcome and pattern of recurrence in the setting of preoperative gemcitabine-based chemoradiation therapy for resectable pancreatic cancer[J]. Ann Surg, 2012, 255( 1): 95- 102. DOI: 10.1097/SLA.0b013e31823d813c. [48] CRIPPA S, PERGOLINI I, JAVED AA, et al. Implications of perineural invasion on disease recurrence and survival after pancreatectomy for pancreatic head ductal adenocarcinoma[J]. Ann Surg, 2022, 276( 2): 378- 385. DOI: 10.1097/SLA.0000000000004464. [49] PIPER M, ROSS RB, HU JX, et al. Vasculitis, CA19-9, and perineural invasion differentially predict response and surgical outcome in pancreatic ductal adenocarcinoma[J]. Int J Radiat Oncol Biol Phys, 2023, 116( 3): 627- 639. DOI: 10.1016/j.ijrobp.2022.12.039. [50] SHI S, LIANG C, XU J, et al. The strain ratio as obtained by endoscopic ultrasonography elastography correlates with the stroma proportion and the prognosis of local pancreatic cancer[J]. Ann Surg, 2020, 271( 3): 559- 565. DOI: 10.1097/SLA.0000000000002998. [51] JANG JY, KANG MJ, HEO JS, et al. A prospective randomized controlled study comparing outcomes of standard resection and extended resection, including dissection of the nerve plexus and various lymph nodes, in patients with pancreatic head cancer[J]. Ann Surg, 2014, 259( 4): 656- 664. DOI: 10.1097/SLA.0000000000000384. [52] LIN Q, ZHENG SY, YU XJ, et al. Standard pancreatoduodenectomy versus extended pancreatoduodenectomy with modified retroperitoneal nerve resection in patients with pancreatic head cancer: A multicenter randomized controlled trial[J]. Cancer Commun(Lond), 2023, 43( 2): 257- 275. DOI: 10.1002/cac2.12399. [53] KOIDE N, YAMADA T, SHIBATA R, et al. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain(CD74) as a possible molecule involved in perineural invasion in pancreatic cancer[J]. Clin Cancer Res, 2006, 12( 8): 2419- 2426. DOI: 10.1158/1078-0432.CCR-05-1852. [54] HIBI T, MORI T, FUKUMA M, et al. Synuclein-gamma is closely involved in perineural invasion and distant metastasis in mouse models and is a novel prognostic factor in pancreatic cancer[J]. Clin Cancer Res, 2009, 15( 8): 2864- 2871. DOI: 10.1158/1078-0432.CCR-08-2946. [55] GÖHRIG A, HILFENHAUS G, ROSSECK F, et al. Placental growth factor promotes neural invasion and predicts disease prognosis in resectable pancreatic cancer[J]. J Exp Clin Cancer Res, 2024, 43( 1): 153. DOI: 10.1186/s13046-024-03066-z. [56] WANG X, ISTVANFFY R, YE L, et al. Phenotype screens of murine pancreatic cancer identify a Tgf-α-Ccl2-paxillin axis driving human-like neural invasion[J]. J Clin Invest, 2023, 133( 21): e166333. DOI: 10.1172/JCI166333. -