中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胰腺癌临床前肿瘤模型的建立与应用进展

杜昶玮 刘悦泽 曹喆 张太平

引用本文:
Citation:

胰腺癌临床前肿瘤模型的建立与应用进展

DOI: 10.12449/JCH250402
基金项目: 

首都临床特色诊疗技术研究及转化应用 (Z221100007422070);

北京市科技计划 (Z231100007223006);

北京协和医院中央高水平医院临床科研专项 (2022-PUMCH-B-004);

北京协和医学院中央高校基本科研业务费 (3332024117)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:杜昶玮负责文献汇总,撰写文章;刘悦泽、曹喆负责修改文章;张太平负责修改文章,审阅校对。
详细信息
    通信作者:

    张太平, tpingzhang@yahoo.com (ORCID: 0000-0003-1689-6908)

Advances in the establishment and application of preclinical tumor models of pancreatic cancer

Research funding: 

Research and Translational Application of Clinical Characteristic Diagnosis and Treatment Techniques in the Capital (Z221100007422070);

Beijing Science and Technology Plan (Z231100007223006);

National High Level Hospital Clinical Research Funding (2022-PUMCH-B-004);

Central Universities Fundamental Research Funds in PUMC (3332024117)

More Information
  • 摘要: 本文阐述了用于胰腺癌临床前肿瘤研究的各类模型的特点及应用进展,分析并探讨了人源性组织异种移植、条件重编程、患者来源的类器官等模型的历史发展、研究现状和优缺点,并在此基础上梳理了从临床前模型实现临床转化的研究,指出未来可能的研究前景。

     

  • 表  1  胰腺癌临床前肿瘤模型对比

    Table  1.   Comparison of pancreatic cancer preclinical tumor models

    模型类型 来源 核心优势 局限性
    PDX模型 患者肿瘤细胞;癌组织来源的CR细胞 保留肿瘤异质性和遗传特性,临床相关性高 成本高,周期长,不稳定且依赖动物实验
    CR技术模型 患者肿瘤细胞 快速扩增原代细胞,保留原发瘤特性,无需挑选和基因操作 可能丢失异质性,缺乏肿瘤微环境互作
    PDO模型 患者肿瘤细胞;癌组织来源的CR细胞 构建迅速,保留遗传特征,能构建出较为复杂的肿瘤微环境,伦理问题少 与真正反应机体内微环境的目标尚有差距,成本高,培养依赖的基质胶存在批次差异
    CTC衍生类器官模型 体液中的循环肿瘤细胞 非侵入性获取,反映转移性肿瘤特性 CTC数量少、扩增难度大
    下载: 导出CSV
  • [1] HAN B, ZHENG R, ZENG H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2020, 4: 47- 53. DOI: 10.1016/j.jncc.2024.01.006.
    [2] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74( 3): 229- 263. DOI: 10.3322/caac.21834.
    [3] LENCIONI G, GREGORI A, TOLEDO B, et al. Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems[J]. Semin Cancer Biol, 2024, 106-107: 217- 233. DOI: 10.1016/j.semcancer.2024.09.002.
    [4] QIAN ZR, RUBINSON DA, NOWAK JA, et al. Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma[J]. JAMA Oncol, 2018, 4( 3): e173420. DOI: 10.1001/jamaoncol.2017.3420.
    [5] SEKIYA S, FUKUDA J, YAMAMURA R, et al. Drosophila screening identifies dual inhibition of MEK and AURKB as an effective therapy for pancreatic ductal adenocarcinoma[J]. Cancer Res, 2023, 83( 16): 2704- 2715. DOI: 10.1158/0008-5472.CAN-22-3762.
    [6] RYGAARD J, POULSEN CO. Heterotransplantation of a human malignant tumour to“nude” mice[J]. Acta Pathol Microbiol Scand, 1969, 77( 4): 758- 760. DOI: 10.1111/j.1699-0463.1969.tb04520.x.
    [7] JANITRI V, ARULJOTHI KN, RAVI MYTHILI VM, et al. The roles of patient-derived xenograft models and artificial intelligence toward precision medicine[J]. MedComm(2020), 2024, 5( 10): e745. DOI: 10.1002/mco2.745.
    [8] GARCIA PL, MILLER AL, YOON KJ. Patient-derived xenograft models of pancreatic cancer: Overview and comparison with other types of models[J]. Cancers(Basel), 2020, 12( 5): 1327. DOI: 10.3390/cancers12051327.
    [9] BLANCHARD Z, BROWN EA, GHAZARYAN A, et al. PDX models for functional precision oncology and discovery science[J]. Nat Rev Cancer, 2024. DOI: 10.1038/s41568-024-00779-3.
    [10] DINIĆ J, JOVANOVIĆ STOJANOV S, DRAGOJ M, et al. Cancer patient-derived cell-based models: Applications and challenges in functional precision medicine[J]. Life(Basel), 2024, 14( 9): 1142. DOI: 10.3390/life14091142.
    [11] BULLE A, LIU P, SEEHRA K, et al. Combined KRAS-MAPK pathway inhibitors and HER2-directed drug conjugate is efficacious in pancreatic cancer[J]. Nat Commun, 2024, 15( 1): 2503. DOI: 10.1038/s41467-024-46811-w.
    [12] YANG G, GUAN WF, CAO Z, et al. Integrative genomic analysis of gemcitabine resistance in pancreatic cancer by patient-derived xenograft models[J]. Clin Cancer Res, 2021, 27( 12): 3383- 3396. DOI: 10.1158/1078-0432.CCR-19-3975.
    [13] LIU XF, KRAWCZYK E, SUPRYNOWICZ FA, et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens[J]. Nat Protoc, 2017, 12( 2): 439- 451. DOI: 10.1038/nprot.2016.174.
    [14] LEE HS, LEE JS, LEE J, et al. Establishment of pancreatic cancer cell lines with endoscopic ultrasound-guided biopsy via conditionally reprogrammed cell culture[J]. Cancer Med, 2019, 8( 7): 3339- 3348. DOI: 10.1002/cam4.2210.
    [15] LONG Y, XIE B, SHEN HC, et al. Translation potential and challenges of in vitro and murine models in cancer clinic[J]. Cells, 2022, 11( 23): 3868. DOI: 10.3390/cells11233868.
    [16] ZHONG MJ, FU LW. Culture and application of conditionally reprogrammed primary tumor cells[J]. Gastroenterol Rep(Oxf), 2020, 8( 3): 224- 233. DOI: 10.1093/gastro/goaa023.
    [17] LEE HS, KIM E, LEE J, et al. Profiling of conditionally reprogrammed cell lines for in vitro chemotherapy response prediction of pancreatic cancer[J]. EBioMedicine, 2021, 65: 103218. DOI: 10.1016/j.ebiom.2021.103218.
    [18] BEGLYAROVA N, BANINA E, ZHOU Y, et al. Screening of conditionally reprogrammed patient-derived carcinoma cells identifies ERCC3-MYC interactions as a target in pancreatic cancer[J]. Clin Cancer Res, 2016, 22( 24): 6153- 6163. DOI: 10.1158/1078-0432.CCR-16-0149.
    [19] SATO T, VRIES RG, SNIPPERT HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459( 7244): 262- 265. DOI: 10.1038/nature07935.
    [20] GREGGIO C, DE FRANCESCHI F, FIGUEIREDO-LARSEN M, et al. Artificial three-dimensional niches deconstruct pancreas development in vitro[J]. Development, 2013, 140( 21): 4452- 4462. DOI: 10.1242/dev.096628.
    [21] BOJ SF, HWANG CI, BAKER LA, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160( 1-2): 324- 338. DOI: 10.1016/j.cell.2014.12.021.
    [22] LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: Modeling development and disease using organoid technologies[J]. Science, 2014, 345( 6194): 1247125. DOI: 10.1126/science.1247125.
    [23] PURI S, FOLIAS AE, HEBROK M. Plasticity and dedifferentiation within the pancreas: Development, homeostasis, and disease[J]. Cell Stem Cell, 2015, 16( 1): 18- 31. DOI: 10.1016/j.stem.2014.11.001.
    [24] SUN JJ, WANG YQ, FU H, et al. Mettl3-mediated m6A methylation controls pancreatic bipotent progenitor fate and islet formation[J]. Diabetes, 2024, 73( 2): 237- 249. DOI: 10.2337/db23-0360.
    [25] JIANG ZY, WU FJ, LAISE P, et al. Tff2 defines transit-amplifying pancreatic acinar progenitors that lack regenerative potential and are protective against Kras-driven carcinogenesis[J]. Cell Stem Cell, 2023, 30( 8): 1091- 1109. e 7. DOI: 10.1016/j.stem.2023.07.002.
    [26] FATEHULLAH A, TAN SH, BARKER N. Organoids as an in vitro model of human development and disease[J]. Nat Cell Biol, 2016, 18( 3): 246- 254. DOI: 10.1038/ncb3312.
    [27] XU HX, JIAO DC, LIU AG, et al. Tumor organoids: Applications in cancer modeling and potentials in precision medicine[J]. J Hematol Oncol, 2022, 15( 1): 58. DOI: 10.1186/s13045-022-01278-4.
    [28] LIU YX, LI NS, ZHU Y. Pancreatic organoids: A frontier method for investigating pancreatic-related diseases[J]. Int J Mol Sci, 2023, 24( 4): 4027. DOI: 10.3390/ijms24044027.
    [29] TAKEUCHI K, TABE S, TAKAHASHI K, et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts[J]. Cell Rep, 2023, 42( 11): 113420. DOI: 10.1016/j.celrep.2023.113420.
    [30] DUAN XH, ZHANG T, FENG LL, et al. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS[J]. Cell Stem Cell, 2024, 31( 1): 71- 88. e 8. DOI: 10.1016/j.stem.2023.11.011.
    [31] ROY S, DUKIC T, KEEPERS Z, et al. SOX2 and OCT4 mediate radiation and drug resistance in pancreatic tumor organoids[J]. Cell Death Discov, 2024, 10( 1): 106. DOI: 10.1038/s41420-024-01871-1.
    [32] LI YG, TANG SJ, SHI XH, et al. Metabolic classification suggests the GLUT1/ALDOB/G6PD axis as a therapeutic target in chemotherapy-resistant pancreatic cancer[J]. Cell Rep Med, 2023, 4( 9): 101162. DOI: 10.1016/j.xcrm.2023.101162.
    [33] SHI XH, LI YG, YUAN QY, et al. Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity[J]. Nat Commun, 2022, 13( 1): 2169. DOI: 10.1038/s41467-022-29857-6.
    [34] BOILÈVE A, CARTRY J, GOUDARZI N, et al. Organoids for functional precision medicine in advanced pancreatic cancer[J]. Gastroenterology, 2024, 167( 5): 961- 976. e 13. DOI: 10.1053/j.gastro.2024.05.032.
    [35] PARTE S, KAUR AB, NIMMAKAYALA RK, et al. Cancer-associated fibroblast induces acinar-to-ductal cell transdifferentiation and pancreatic cancer initiation via LAMA5/ITGA4 axis[J]. Gastroenterology, 2024, 166( 5): 842- 858. e 5. DOI: 10.1053/j.gastro.2023.12.018.
    [36] BIFFI G, ONI TE, SPIELMAN B, et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2019, 9( 2): 282- 301. DOI: 10.1158/2159-8290.CD-18-0710.
    [37] MUCCIOLO G, ARAOS HENRÍQUEZ J, JIHAD M, et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer[J]. Cancer Cell, 2024, 42( 1): 101- 118. e 11. DOI: 10.1016/j.ccell.2023.12.002.
    [38] WU YH, HUNG YP, CHIU NC, et al. Correlation between drug sensitivity profiles of circulating tumour cell-derived organoids and clinical treatment response in patients with pancreatic ductal adenocarcinoma[J]. Eur J Cancer, 2022, 166: 208- 218. DOI: 10.1016/j.ejca.2022.01.030.
    [39] HUANG LX, XU YQ, WANG N, et al. Next-generation preclinical functional testing models in cancer precision medicine: CTC-derived organoids[J]. Small Methods, 2024, 8( 1): e2301009. DOI: 10.1002/smtd.202301009.
    [40] JUN E, PARK Y, LEE W, et al. The identification of candidate effective combination regimens for pancreatic cancer using the histoculture drug response assay[J]. Sci Rep, 2020, 10( 1): 12004. DOI: 10.1038/s41598-020-68703-x.
    [41] SERETI E, PAPAPOSTOLOU I, DIMAS K. Pancreatic cancer organoids: An emerging platform for precision medicine?[J]. Biomedicines, 2023, 11( 3): 890. DOI: 10.3390/biomedicines11030890.
    [42] MONTEIRO MV, ROCHA M, CARVALHO MT, et al. Embedded bioprinting of tumor-scale pancreatic cancer-stroma 3D models for preclinical drug screening[J]. ACS Appl Mater Interfaces, 2024, 16( 42): 56718- 56729. DOI: 10.1021/acsami.4c11188.
  • 加载中
表(1)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  57
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-08
  • 录用日期:  2025-01-27
  • 出版日期:  2025-04-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回