中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微RNA-128-3p、沉默信息调节因子1(SIRT1)和AMP活化蛋白激酶(AMPK)对2型糖尿病合并非酒精性脂肪性肝病的诊断价值

李居一 倪英群 张媛媛 刘怀珍

引用本文:
Citation:

微RNA-128-3p、沉默信息调节因子1(SIRT1)和AMP活化蛋白激酶(AMPK)对2型糖尿病合并非酒精性脂肪性肝病的诊断价值

DOI: 10.12449/JCH250310
基金项目: 

国家自然科学基金 (82274468);

安徽省高校科学研究项目-重大项目 (2023AH040103);

安徽中医药大学临床科研项目 (2021yfylc49)

伦理学声明:本研究于2021年3月8日通过安徽中医药大学第一附属医院伦理委员会审批,批号:2020AH-14。所有受试者均签署知情同意书。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:李居一负责拟定数据收集,统计学分析和撰写论文;张媛媛负责数据收集和绘制图表;倪英群负责论文修改;刘怀珍负责拟定写作思路,指导文章撰写并定稿。
详细信息
    通信作者:

    刘怀珍, liuhuaizhen0723@163.com (ORCID: 0009-0002-6533-969X)

Diagnostic value of miR-128-3p, SIRT1, and AMPK in patients with type 2 diabetes mellitus comorbid with nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (82274468);

Anhui Provincial University Scientific Research Project-Major Project (2023AH040103);

Anhui University of Traditional Chinese Medicine Research Project (2021yfylc49)

More Information
  • 摘要:   目的  分析2型糖尿病(T2DM)合并非酒精性脂肪性肝病(NAFLD)患者外周血中微RNA(miRNA)-128-3p、沉默信息调节因子1(SIRT1)和AMP活化蛋白激酶(AMPK)的表达情况,探讨miRNA-128-3p对T2DM患者发生NAFLD的预测作用。  方法  选取2022年9月—2023年8月在安徽中医药大学第一附属医院住院的80例T2DM患者,分为T2DM组(40例)和合并NAFLD组(40例),并依据肝纤维化评分(NFS)分为T2DM合并进行性肝纤维化组(16例)和T2DM未合并进行性肝纤维化组(64例),收集基本资料和生化指标,采用定量实时PCR方法检测外周血miRNA-128-3p、SIRT1、AMPK的mRNA表达水平,Western Blot方法检测SIRT1、AMPK蛋白表达水平。正态分布的数据两组间比较采用成组t检验,偏态分布的数据两组间比较采用Mann-Whitney U检验,计数资料两组间比较采用χ2检验;Logistic回归分析NAFLD及进行性肝纤维化的影响因素;使用受试者操作特征曲线(ROC曲线)以确定根据miRNA-128-3p水平判断发生NAFLD的最佳阈值。  结果  合并NAFLD组和T2DM组BMI、空腹血糖、糖化血红蛋白、空腹胰岛素、空腹C肽、ALT、AST、GGT、ALP、纤维连接蛋白、TG、HDL-C、总三碘甲状腺原氨酸(TT3)、胰岛素抵抗指数(HOMA-IR)、NFS比较差异均有统计学意义(P值均<0.05)。合并NAFLD组外周血miRNA-128-3p的mRNA表达水平高于T2DM组(t=-8.765,P<0.001),而SIRT1和AMPK的mRNA及蛋白表达水平均明显降低(P值均<0.001)。T2DM合并进行性肝纤维化组与T2DM未合并进行性肝纤维化组的年龄、ALT、游离三碘甲状腺原氨酸、TT3、超氧化物歧化酶、miRNA-128-3p比较差异均有统计学意义(P值均<0.05)。Logistic回归分析表明,miRNA-128-3p是发生NAFLD和进行性肝纤维化的独立危险因素(OR=8.221,95%CI:2.735~24.714,P<0.001;OR=1.493,95%CI:1.117~1.997,P=0.007);ROC曲线显示其曲线下面积为0.890(95%CI:0.829~0.950),最佳截断值为13.165,敏感度89.3%,特异度72.7%。  结论  miRNA-128-3p在T2DM合并NAFLD患者外周血中表达增高,SIRT1、AMPK表达降低,miRNA-128-3p水平对识别NAFLD及肝纤维化具有一定诊断价值。

     

  • 图  1  T2DM与合并NAFLD组SIRT1、AMPK、p-AMPK蛋白表达水平

    Figure  1.  Expression levels of SIRT1, AMPK, and p-AMPK proteins in peripheral blood inT2DM groups with or without NAFLD

    图  2  miR-128-3p预测T2DM患者发生NAFLD的ROC曲线

    Figure  2.  Receiver operating characteristic curve of miR-128-3p for predicting NAFLD in T2DM patients

    表  1  Q-PCR引物序列

    Table  1.   Q-PCR primer sequences

    基因 方向 序列(5'-3') 大小(bp)
    miR-128-3p F CGCTCACAGTGAACCGGTCTCTTT 24
    R AGTGCAGGGTCCGAGGTATT 20
    SIRT1 F ACGCCTTATCCTCTAGTTCCTGTGTG 26
    R GGTCTGTCAGCATCATCTTCCAAG 24
    AMPK F GCCTCGCCATACTCTTGATGAGC 23
    R TTCTTCCGTCGAACACGCAAGTAG 24
    U6 F CTCGCTTCGGCAGCACA 17
    R AACGCTTCACGAATTTGCGT 20
    GAPDH F CTGCAGACACCTGCCAAGTATG 22
    R GCTGCAAGAATGCGAGTTGCT 21
    下载: 导出CSV

    表  2  T2DM组及T2DM合并NAFLD组临床资料的比较

    Table  2.   Comparison of clinical data in T2DM groups with or without NAFLD

    指标 T2DM组(n=40) 合并NAFLD组(n=40) 统计值 P
    年龄(岁) 55.00(46.50~64.25) 57.50(47.75~62.75) Z=-0.313 0.754
    男[例(%)] 25(62.50) 24(60.00) χ2=1.507 0.818
    BMI(kg/m2 23.57(22.07~24.89) 25.54(23.69~27.96) Z=-3.729 <0.001
    FBG(mmol/L) 6.00(4.96~8.45) 8.17(6.55~10.25) Z=-3.233 0.001
    PPG(mmol/L) 11.73(9.69~18.01) 13.89(10.36~17.85) Z=-1.275 0.202
    HBA1c(%) 6.90(6.05~8.75) 8.40(7.28~10.06) Z=-3.200 0.001
    FINS(μU/mL) 5.88(4.29~8.69) 10.18(6.68~15.30) Z=-3.743 <0.001
    FCP(ng/mL) 1.47±0.87 2.61±1.10 t=-5.123 <0.001
    ALT(U/L) 14.55(10.20~18.05) 22.45(14.70~29.70) Z=-3.739 <0.001
    AST(U/L) 15.95(13.90~18.50) 18.30(16.20~22.48) Z=-3.238 0.001
    GGT(U/L) 13.50(12.00~20.75) 26.50(20.25~44.25) Z=-4.770 <0.001
    ALP(U/L) 63.50(54.00~75.75) 74.50(62.50~85.75) Z=-2.460 0.014
    LDH(U/L) 154.00(144.00~171.50) 168.00(149.50~178.00) Z=-1.078 0.281
    ADA(U/L) 6.80(5.75~9.13) 6.30(6.60~10.10) Z=-1.906 0.057
    FN(mg/L) 313.65(295.23~339.25) 328.90(315.08~368.90) Z=-2.016 0.048
    Cr(μmol/L) 65.92±14.94 60.37±11.87 t=1.840 0.07
    UA(μmol/L) 289.50(257.50~375.75) 329.50(275.25~403.25) Z=-1.564 0.118
    TG(mmol/L) 1.28(0.91~1.87) 2.36(1.54~3.81) Z=-4.229 <0.001
    TC(mmol/L) 4.96±1.28 4.95±1.35 t=0.009 0.993
    HDL-C(mmol/L) 1.28(1.01~1.48) 1.05(0.95~1.26) Z=-2.382 0.017
    LDL-C(mmol/L) 3.14±0.92 3.02±0.76 t=0.668 0.506
    HCY(mg/L) 9.25(7.60~10.65) 9.95(8.43~10.95) Z=-1.429 0.153
    RBP(mg/L) 32.56(28.19~42.46) 33.08(29.32~40.96) Z=-0.443 0.658
    cysC(mg/L) 0.86(0.76~1.04) 0.89(0.80~1.00) Z=-0.809 0.419
    SOD(U/mL) 172.50(166.25~188.00) 178.00(155.25~190.50) Z=-0.515 0.607
    ACR(mg/g) 10.73(5.19~48.55) 11.53(6.37~27.44) Z=-0.313 0.754
    FT3(pmol/L) 4.09±0.47 4.14±0.58 t=-0.483 0.63
    FT4(pmol/L) 12.48(11.86~13.49) 12.65(11.47~13.32) Z=-0.515 0.607
    TT3(nmol/L) 1.26±0.21 1.30±0.22 t=-0.685 0.049
    TT4(nmol/L) 92.29±14.60 91.49±17.32 t=0.222 0.825
    TSH(mIU/L) 1.47(1.08~2.26) 1.78(1.14~2.89) Z=-0.529 0.597
    HOMA-IR 2.56(2.36~2.92) 3.68(3.02~4.78) Z=-5.810 <0.001
    NFS -0.04±0.81 -0.29±0.97 t=-3.127 0.040

    注:ACR,尿白蛋白/尿肌酐比值;FT3,游离三碘甲状腺原氨酸;FT4,游离甲状腺素;TSH,促甲状腺激素。

    下载: 导出CSV

    表  3  T2DM合并与未合并进行性肝纤维化的临床资料及miR-128-3p表达水平的比较

    Table  3.   Comparison of clinical data and miR-128-3p expression levels in T2DM groups with or without progressive liver fibrosis

    指标

    T2DM合并进行性肝纤维化

    n=16)

    T2DM未合并进行性肝纤维化(n=64) 统计值 P
    年龄(岁) 65.50(60.25~68.00) 53.00(45.99~59.75) Z=-3.853 <0.001
    男[例(%)] 8(50.00) 41(60.33) χ2=1.047 0.226
    BMI(kg/m2 24.33(22.77~28.29) 24.50(22.87~25.73) Z=-0.628 0.524
    FBG(mmol/L) 7.15(5.49~8.98) 6.66(4.90~12.74) Z=-0.006 0.995
    PPG(mmol/L) 13.27(9.97~20.18) 13.10(9.87~17.66) Z=-0.638 0.524
    HBA1c(%) 7.22(6.72~9.69) 7.91(6.55~9.50) Z=-0.475 0.635
    FINS(μU/mL) 8.69(3.98~14.96) 7.63(5.22~10.87) Z=-0.096 0.923
    FCP(ng/mL) 2.07±1.23 2.03±1.12 t=-0.123 0.903
    ALT(U/L) 13.95(11.53~17.08) 18.00(13.00~25.48) Z=-2.111 0.035
    AST(U/L) 18.25(15.58~22.00) 17.25(14.93~20.63) Z=-0.301 0.764
    GGT(U/L) 15.50(13.00~31.25) 21.50(12.25~30.75) Z=-0.801 0.423
    ALP(U/L) 56.00(55.50~83.75) 70.00(55.00~82.75) Z=-0.361 0.718
    LDH(U/L) 173.50(155.25~184.25) 157.50(144.00~171.50) Z=-1.955 0.051
    ADA(U/L) 7.40(6.82~10.53) 7.65(5.83~9.68) Z=-1.011 0.312
    FN(mg/L) 316.95(303.13~351.63) 323.30(300.18~351.93) Z=-0.090 0.928
    Cr(μmol/L) 63.03±13.95 63.61±13.08 t=0.795 0.880
    UA(μmol/L) 321(263.25~374.25) 321(262.25~386.75) Z=-0.102 0.919
    TG(mmol/L) 1.53(0.99~2.34) 1.71(1.15~3.16) Z=-1.107 0.268
    TC(mmol/L) 5.00±1.31 4.77±1.28 t=0.617 0.539
    HDL-C(mmol/L) 1.13(0.95~1.57) 1.14(0.98~1.30) Z=-0.451 0.652
    LDL-C(mmol/L) 3.11±0.84 2.97±0.87 t=0.591 0.556
    HCY(mg/L) 9.45(8.13~10.40) 9.50(7.75~10.95) Z=-0.337 0.736
    RBP(mg/L) 32.70(29.33~43.44) 32.69(29.16~39.93) Z=-0.150 0.880
    cysC(mg/L) 0.95(0.82~1.06) 0.87(0.78~0.99) Z=-1.432 0.152
    SOD(U/mL) 178.77±15.93 160.56±13.75 t=0.255 <0.001
    ACR(mg/g) 15.11(6.14~27.54) 10.93(5.85~38.81) Z=-0.613 0.540
    FT3(pmol/L) 4.19±0.50 3.81±0.53 t=0.655 0.008
    FT4(pmol/L) 12.69±1.34 12.30±1.00 Z=0.213 0.274
    TT3(nmol/L) 1.31±0.20 1.14±0.22 t=0.951 0.005
    TT4(nmol/L) 92.20±16.65 90.65±12.98 t=0.393 0.731
    TSH(mIU/L) 1.48(1.15~1.90) 1.70(1.08~2.77) Z=-0.529 0.597
    HOMA-IR 2.84(2.57~4.07) 3.05(2.46~4.25) Z=-0.325 0.745
    miR-128-3p 15.73±1.87 13.13±2.50 t=-4.513 <0.001
    下载: 导出CSV

    表  4  T2DM组及合并NAFLD组miR-128-3p、SIRT1、AMPK表达水平的比较

    Table  4.   Comparison of the expression levels of miR-128-3p, SIRT1, and AMPK in T2DM groups with or without NAFLD

    指标 T2DM组(n=40) 合并NAFLD组(n=40) t P
    miR-128-3p 11.37±1.32 15.96±1.11 -8.765 <0.001
    SIRT1 13.26±5.23 8.45±3.28 -8.634 <0.001
    AMPK 53.50±10.60 41.20±9.37 -10.562 <0.001
    下载: 导出CSV

    表  5  NAFLD相关因素的Logistic回归分析

    Table  5.   The multivariable Logistic regression analysis for factors associated with NAFLD

    变量 β SE Wald OR 95%CI P
    miR-128-3p 2.107 0.562 14.074 8.221 2.735~24.714 <0.001
    ALT 0.152 0.077 3.873 1.164 1.001~1.353 0.049
    常量 -32.663 8.822 13.707
    下载: 导出CSV

    表  6  进行性肝纤维化相关因素的Logistic回归分析

    Table  6.   The multivariable Logistic regression analysis for factors associated with progressive liver fibrosis

    变量 β SE Wald OR 95%CI P
    miR-128-3p 0.401 0.148 7.316 1.493 1.117~1.997 0.007
    年龄 0.170 0.055 9.582 1.185 1.064~1.319 0.002
    SOD -0.065 0.025 7.064 0.937 0.893~0.983 0.008
    常量 -6.425 5.578 1.327
    下载: 导出CSV
  • [1] LI L, LIU DW, YAN HY, et al. Obesity is an independent risk factor for non-alcoholic fatty liver disease: Evidence from a meta-analysis of 21 cohort studies[J]. Obes Rev, 2016, 17( 6): 510- 519. DOI: 10.1111/obr.12407.
    [2] WORETA TA, van NATTA ML, LAZO M, et al. Validation of the accuracy of the FAST™ score for detecting patients with at-risk nonalcoholic steatohepatitis(NASH) in a North American cohort and comparison to other non-invasive algorithms[J]. PLoS One, 2022, 17( 4): e0266859. DOI: 10.1371/journal.pone.0266859.
    [3] CHO EEL, ANG CZ, QUEK J, et al. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: An updated systematic review and meta-analysis[J]. Gut, 2023, 72( 11): 2138- 2148. DOI: 10.1136/gutjnl-2023-330110.
    [4] SANYAL AJ, van NATTA ML, CLARK J, et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease[J]. N Engl J Med, 2021, 385( 17): 1559- 1569. DOI: 10.1056/NEJMoa2029349.
    [5] ALON L, CORICA B, RAPARELLI V, et al. Risk of cardiovascular events in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Eur J Prev Cardiol, 2022, 29( 6): 938- 946. DOI: 10.1093/eurjpc/zwab212.
    [6] BISACCIA G, RICCI F, KHANJI MY, et al. Cardiovascular morbidity and mortality related to non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Curr Probl Cardiol, 2023, 48( 6): 101643. DOI: 10.1016/j.cpcardiol.2023.101643.
    [7] WANG L, SINNOTT-ARMSTRONG N, WAGSCHAL A, et al. A MicroRNA linking human positive selection and metabolic disorders[J]. Cell, 2020, 183( 3): 684- 701. e 14. DOI: 10.1016/j.cell.2020.09.017.
    [8] ZHAO XR, JIN Y, LI L, et al. MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1[J]. Pharmacol Res, 2019, 146: 104276. DOI: 10.1016/j.phrs.2019.104276.
    [9] SHI RF, JIN YP, HU WW, et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy[J]. Am J Physiol Cell Physiol, 2020, 318( 5): C848- C856. DOI: 10.1152/ajpcell.00041.2020.
    [10] HAN JN, HAO WJ, MA YP, et al. MiR-128-3p promotes the progression of deep venous thrombosis through binding SIRT1[J]. Phlebology, 2023, 38( 8): 540- 549. DOI: 10.1177/02683555231190268.
    [11] Diabetes Society of Chinese Medical Association. Guideline for the prevention and treatment of type 2 diabetes mellitus in China(2020 edition)[J]. Chin J Diabetes, 2021, 13( 4): 315- 409. DOI: 10.3760/cma.j.cn115791-20210307-00135.

    中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13( 4): 315- 409. DOI: 10.3760/cma.j.cn115791-20210307-00135.
    [12] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association, Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

    中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
    [13] WANG XS, JIANG LJ, SHAO XN. Association analysis of insulin resistance and osteoporosis risk in Chinese patients with T2DM[J]. Ther Clin Risk Manag, 2021, 17: 909- 916. DOI: 10.2147/TCRM.S328510.
    [14] ANGULO P, HUI JM, MARCHESINI G, et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD[J]. Hepatology, 2007, 45( 4): 846- 854. DOI: 10.1002/hep.21496.
    [15] TARGHER G, COREY KE, BYRNE CD, et al. The complex link between NAFLD and type 2 diabetes mellitus—Mechanisms and treatments[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 9): 599- 612. DOI: 10.1038/s41575-021-00448-y.
    [16] STEFAN N, CUSI K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes[J]. Lancet Diabetes Endocrinol, 2022, 10( 4): 284- 296. DOI: 10.1016/S2213-8587(22)00003-1.
    [17] SONG SJ, LAI JCT, WONG GLH, et al. Can we use old NAFLD data under the new MASLD definition?[J]. J Hepatol, 2024, 80( 2): e54- e56. DOI: 10.1016/j.jhep.2023.07.021.
    [18] MANTOVANI A, CSERMELY A, TAVERNA A, et al. Association between metabolic dysfunction-associated fatty liver disease and supraventricular and ventricular tachyarrhythmias in patients with type 2 diabetes[J]. Diabetes Metab, 2023, 49( 2): 101416. DOI: 10.1016/j.diabet.2022.101416.
    [19] NI XT, TONG C, HALENGBIEKE A, et al. Association between nonalcoholic fatty liver disease and type 2 diabetes: A bidirectional two-sample Mendelian randomization study[J]. Diabetes Res Clin Pract, 2023, 206: 110993. DOI: 10.1016/j.diabres.2023.110993.
    [20] ISMAIL MH, ARGAN R AL, ELAMIN Y, et al. Automated fibrosis-4 index: Simplifying non-alcoholic fatty liver disease for diabetologists[J]. Medicina(Kaunas), 2024, 60( 8): 1278. DOI: 10.3390/medicina60081278.
    [21] O’CONNELL RM, RAO DS, BALTIMORE D. MicroRNA regulation of inflammatory responses[J]. Annu Rev Immunol, 2012, 30: 295- 312. DOI: 10.1146/annurev-immunol-020711-075013.
    [22] UDDIN A, CHAKRABORTY S. Role of miRNAs in lung cancer[J]. J Cell Physiol, 2018. DOI: 10.1002/jcp.26607.[ Online ahead of print]
    [23] YANG JN, JIANG TL, ZHU FB, et al. Research progress in effect of miRNA on podocyte injury in diabetic nephropathy and its mechanism[J]. J Jilin Univ(Med Edit), 2023, 49( 6): 1677- 1682. DOI: 10.13481/j.1671-587X.20230637.

    杨佳楠, 姜同连, 朱福彬, 等. miRNA在糖尿病肾病足细胞损伤中作用及其机制的研究进展[J]. 吉林大学学报(医学版), 2023, 49( 6): 1677- 1682. DOI: 10.13481/j.1671-587X.20230637.
    [24] WEI HF, NI ZQ, WEI YH, et al. Effects of miR-126 over-expression and ADAM9 gene silencing on biological behavior of gastric cancer SGC-7901 cells and their mechanisms[J]. J Jilin Univ(Med Edit), 2024, 50( 2): 310- 319. DOI: 10.13481/j.1671-587X.20240203.

    魏海峰, 倪志强, 魏雁虹, 等. MiR-126过表达和ADAM9基因沉默对胃癌SGC-7901细胞生物学行为的影响及其机制[J]. 吉林大学学报(医学版), 2024, 50( 2): 310- 319. DOI: 10.13481/j.1671-587X.20240203.
    [25] SUN T, WANG C, HUO L, et al. Serum cortistatin level in type 2 diabetes mellitus and its relationship with nonalcoholic fatty liver disease[J]. Int J Gen Med, 2023, 16: 631- 639. DOI: 10.2147/IJGM.S396315.
    [26] HIRANO T, SATOH N, ITO Y. Specific increase in small dense low-density lipoprotein-cholesterol levels beyond triglycerides in patients with diabetes: Implications for cardiovascular risk of MAFLD[J]. J Atheroscler Thromb, 2024, 31( 1): 36- 47. DOI: 10.5551/jat.64271.
    [27] BI TB. Relationship between thyroid hormone levels and metabolic dysfunction associated steatotic liver disease in patients with type 2 diabetes: A clinical study[J]. Medicine(Baltimore), 2024, 103( 26): e38643. DOI: 10.1097/MD.0000000000038643.
    [28] ZHANG XD, CHEN YM, YE HY, et al. Correlation between thyroid function, sensitivity to thyroid hormones and metabolic dysfunction-associated fatty liver disease in euthyroid subjects with newly diagnosed type 2 diabetes[J]. Endocrine, 2023, 80( 2): 366- 379. DOI: 10.1007/s12020-022-03279-2.
    [29] HEIANZA Y, XUE QC, ROOD J, et al. Circulating thrifty microRNA is related to insulin sensitivity, adiposity, and energy metabolism in adults with overweight and obesity: The POUNDS lost trial[J]. Am J Clin Nutr, 2023, 117( 1): 121- 129. DOI: 10.1016/j.ajcnut.2022.10.001.
    [30] CHANG E. Vitamin D mitigates hepatic fat accumulation and inflammation and increases SIRT1/AMPK expression in AML-12 hepatocytes[J]. Molecules, 2024, 29( 6): 1401. DOI: 10.3390/molecules29061401.
    [31] XIAO Q, ZHANG SJ, YANG C, et al. Ginsenoside Rg1 ameliorates palmitic acid-induced hepatic steatosis and inflammation in HepG2 cells via the AMPK/NF-κB pathway[J]. Int J Endocrinol, 2019, 2019: 7514802. DOI: 10.1155/2019/7514802.
    [32] WU LZ, ZHANG GR, GUO CB, et al. MiR-128-3p mediates TNF-α-induced inflammatory responses by regulating Sirt1 expression in bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2020, 521( 1): 98- 105. DOI: 10.1016/j.bbrc.2019.10.083.
    [33] SAMY AM, KANDEIL MA, SABRY D, et al. Exosomal miR-122, miR-128, miR-200, miR-298, and miR-342 as novel diagnostic biomarkers in NAFL/NASH: Impact of LPS/TLR-4/FoxO3 pathway[J]. Arch Pharm(Weinheim), 2024, 357( 4): e2300631. DOI: 10.1002/ardp.202300631.
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  74
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 录用日期:  2024-09-19
  • 出版日期:  2025-03-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回