基因工程人血清白蛋白的研发与应用
DOI: 10.12449/JCH250304
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:高沿航负责论文设计,拟定写作思路,撰写论文;牛俊奇指导撰写文章并最后定稿。
-
摘要: 人血清白蛋白(HSA)是血浆中最丰富的蛋白质,具有多种生物学功能及临床用途。易于储存、半衰期长且充足、稳定的功能性HSA分子供应,一直是未被满足的临床需求,因此,亟需开发大规模生产HSA的替代方法。基因工程技术可将HSA基因克隆到微生物、动物、植物宿主上进行高效表达,为HSA的大规模生产提供了新的可能。本文通过对重组HSA(rHSA)在不同表达系统以及利用异种动物如猪、牛等生产rHSA的研究进展进行综述,以期引发对基因工程技术在HSA生产中的应用潜力以及rHSA在未来生物医药领域重要性的关注。Abstract: Human serum albumin (HSA) is the most abundant protein in plasma and has many biological functions and clinical applications. An adequate and stable supply of functional HSA molecules that are easy to store and have a long half-life is still an unmet clinical need. Therefore, it is extremely necessary to develop alternative methods for large-scale production of HSA. Genetic engineering techniques can clone the HSA gene into microorganism, animal, and plant hosts for efficient expression, which provides new possibilities for the large-scale production of HSA. This article reviews the advances in recombinant HSA (rHSA) in different expression systems and the production of rHSA by xenogeneic animals such as pigs and cattle, in order to draw attention to the application potential of genetic engineering techniques in HSA production and the importance of rHSA in the biomedical field in future.
-
Key words:
- Human Serum Albumin /
- Liver Diseases /
- Genetic Engineering
-
[1] ASHRAF S, QAISER H, TARIQ S, et al. Unraveling the versatility of human serum albumin-A comprehensive review of its biological significance and therapeutic potential[J]. Curr Res Struct Biol, 2023, 6: 100114. DOI: 10.1016/j.crstbi.2023.100114. [2] GUZZI R, BARTUCCI R. Thermal effects and drugs competition on the palmitate binding capacity of human serum albumin[J]. Biochem Biophys Res Commun, 2024, 722: 150168. DOI: 10.1016/j.bbrc.2024.150168. [3] ERSTAD BL. Introduction to the concept of effective albumin concentration[J]. Am J Health Syst Pharm, 2024, 82( 1): 5- 11. DOI: 10.1093/ajhp/zxae232. [4] JAGDISH RK, MARAS JS, SARIN SK. Albumin in advanced liver diseases: The good and bad of a drug![J]. Hepatology, 2021, 74( 5): 2848- 2862. DOI: 10.1002/hep.31836. [5] SHARMA A, CHAUDHURI TK. Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin[J]. Microb Cell Fact, 2017, 16( 1): 173. DOI: 10.1186/s12934-017-0784-8. [6] SHARMA A, CHAUDHURI TK. Physicochemical characterization of E. coli-derived human serum albumin and its comparison with the human plasma counterpart reveals it as a promising biosimilar[J]. J Biotechnol, 2018, 274: 1- 8. DOI: 10.1016/j.jbiotec.2018.03.004. [7] NGUYEN MT, HEO Y, DO BH, et al. Bacterial overexpression and purification of soluble recombinant human serum albumin using maltose-binding protein and protein disulphide isomerase[J]. Protein Expr Purif, 2020, 167: 105530. DOI: 10.1016/j.pep.2019.105530. [8] OHYA T, OHYAMA M, KOBAYASHI K. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation[J]. Biotechnol Bioeng, 2005, 90( 7): 876- 887. DOI: 10.1002/bit.20507. [9] MAITY N, MISHRA S. Statistically designed medium reveals interactions between metabolism and genetic information processing for production of stable human serum albumin in Pichia pastoris[J]. Biomolecules, 2019, 9( 10): 568. DOI: 10.3390/biom9100568. [10] DALVIE NC, LORGEREE TR, YANG YC, et al. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome[J]. Microb Cell Fact, 2024, 23( 1): 217. DOI: 10.1186/s12934-024-02466-2. [11] LIANG ZC, DENG ML, ZHANG Z, et al. One-step construction of a food-grade expression system based on the URA3 gene in Kluyveromyces lactis[J]. Plasmid, 2021, 116: 102577. DOI: 10.1016/j.plasmid.2021.102577. [12] LIN YP, FENG YZ, ZHENG L, et al. Improved protein production in yeast using cell engineering with genes related to a key factor in the unfolded protein response[J]. Metab Eng, 2023, 77: 152- 161. DOI: 10.1016/j.ymben.2023.04.004. [13] SUN QY, DING LW, LOMONOSSOFF GP, et al. Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture[J]. J Biotechnol, 2011, 155( 2): 164- 172. DOI: 10.1016/j.jbiotec.2011.06.033. [14] MOGHADDASSI S, EYESTONE W, BISHOP CE. TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin[J]. PLoS One, 2014, 9( 2): e89631. DOI: 10.1371/journal.pone.0089631. [15] PENG J, WANG Y, JIANG JY, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Sci Rep, 2015, 5: 16705. DOI: 10.1038/srep16705. -

计量
- 文章访问数: 1744
- HTML全文浏览量: 91
- PDF下载量: 34
- 被引次数: 0