中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自噬在对乙酰氨基酚诱导肝损伤中的作用

邢国静 王丽菲 罗龙龙 郑晓凤 高春 于晓辉 张久聪

引用本文:
Citation:

自噬在对乙酰氨基酚诱导肝损伤中的作用

DOI: 10.12449/JCH250229
基金项目: 

甘肃省卫生健康行业科研项目 (GSWSKY2023-34);

第九四〇医院研究生导师专项课题 (2023YXKY020);

中央高校优秀青年团队培育项目 (31920220065);

甘肃省非感染性肝病临床医学研究中心 (21JR7RA017)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:邢国静负责课题设计,撰写论文;王丽菲、罗龙龙负责归纳文献,分析资料;郑晓凤、高春、于晓辉参与修改论文;张久聪负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    张久聪, zhangjiucong@163.com (ORCID: 0000-0003-4006-3033)

Role of autophagy in treatment of paracetamol-induced liver injury

Research funding: 

Gansu Province Health Care Industry Research Program (GSWSKY2023-34);

Special Projects for Graduate Student Supervisors of the 940th Hospital (2023YXKY020);

Project of Excellent Youth Team Training for the Central Universities (31920220065);

Gansu Provincial Clinical Medical Research Center for Non-infectious Liver Diseases (21JR7RA017)

More Information
  • 摘要: 对乙酰氨基酚(APAP)是临床上常用的解热镇痛药,过量服用则会造成严重肝损伤甚至死亡。近年来,APAP诱导的肝损伤(AILI)发生率呈上升趋势,已成为全球肝移植的第二大常见原因。自噬是一种高度保守的分解代谢过程,通过溶酶体降解去除不需要的胞质蛋白和细胞器,以实现细胞本身的代谢需要和细胞器的更新。大量研究表明,自噬在AILI的病理生理中起着关键作用,其机制涉及APAP蛋白加合物、氧化应激、JNK活化、线粒体功能障碍、炎症反应和细胞凋亡等。本文通过阐述自噬在AILI中的生物学机制,为AILI的治疗和自噬调节剂的开发提供理论依据。

     

  • 图  1  AILI的发病机制

    Figure  1.  The pathogenesis of AILI

    图  2  自噬过程

    Figure  2.  The process of autophagy

  • [1] CHOWDHURY A, NABILA J, ADELUSI TEMITOPE I, et al. Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity[J]. Pharmacol Res, 2020, 161: 105102. DOI: 10.1016/j.phrs.2020.105102.
    [2] JAESCHKE H, MURRAY FJ, MONNOT AD, et al. Assessment of the biochemical pathways for acetaminophen toxicity: Implications for its carcinogenic hazard potential[J]. Regul Toxicol Pharmacol, 2021, 120: 104859. DOI: 10.1016/j.yrtph.2020.104859.
    [3] EICHENBAUM G, YANG K, GEBREMICHAEL Y, et al. Application of the DILIsym® Quantitative Systems Toxicology drug-induced liver injury model to evaluate the carcinogenic hazard potential of acetaminophen[J]. Regul Toxicol Pharmacol, 2020, 118: 104788. DOI: 10.1016/j.yrtph.2020.104788.
    [4] BUNCHORNTAVAKUL C, RAJENDER REDDY K. Acetaminophen(APAP or N-acetyl-p-aminophenol) and acute liver failure[J]. Clin Liver Dis, 2018, 22( 2): 325- 346. DOI: 10.1016/j.cld.2018.01.007.
    [5] BUDNITZ DS, LOVEGROVE MC, CROSBY AE. Emergency department visits for overdoses of acetaminophen-containing products[J]. Am J Prev Med, 2011, 40( 6): 585- 592. DOI: 10.1016/j.amepre.2011.02.026.
    [6] YOON E, BABAR A, CHOUDHARY M, et al. Acetaminophen-induced hepatotoxicity: A comprehensive update[J]. J Clin Transl Hepatol, 2016, 4( 2): 131- 142. DOI: 10.14218/JCTH.2015.00052.
    [7] DU YH, LIU Y, ZHANG QH, et al. Rescue of liver injury caused by acetaminophen and its precursor poisoning[J]. Shanxi Med J, 2018, 47( 18): 2206- 2209. DOI: 10.3969/j.issn.0253-9926.2018.18.034.

    杜艳红, 刘研, 张秋红, 等. 对乙酰氨基酚及其前体中毒致肝损伤的解救[J]. 山西医药杂志, 2018, 47( 18): 2206- 2209. DOI: 10.3969/j.issn.0253-9926.2018.18.034.
    [8] CZAJA MJ, DING WX, DONOHUE TM Jr, et al. Functions of autophagy in normal and diseased liver[J]. Autophagy, 2013, 9( 8): 1131- 1158. DOI: 10.4161/auto.25063.
    [9] LANCASTER EM, HIATT JR, ZARRINPAR A. Acetaminophen hepatotoxicity: An updated review[J]. Arch Toxicol, 2015, 89( 2): 193- 199. DOI: 10.1007/s00204-014-1432-2.
    [10] CAI XP, CAI HQ, WANG J, et al. Molecular pathogenesis of acetaminophen-induced liver injury and its treatment options[J]. J Zhejiang Univ Sci B, 2022, 23( 4): 265- 285. DOI: 10.1631/jzus.B2100977.
    [11] QIU Y, BENET LZ, BURLINGAME AL. Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry[J]. J Biol Chem, 1998, 273( 28): 17940- 17953. DOI: 10.1074/jbc.273.28.17940.
    [12] WESTON CR, DAVIS RJ. The JNK signal transduction pathway[J]. Curr Opin Cell Biol, 2007, 19( 2): 142- 149. DOI: 10.1016/j.ceb.2007.02.001.
    [13] WIN S, THAN TA, MIN RWM, et al. C-Jun N-terminal kinase mediates mouse liver injury through a novel Sab(SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src[J]. Hepatology, 2016, 63( 6): 1987- 2003. DOI: 10.1002/hep.28486.
    [14] DU K, RAMACHANDRAN A, JAESCHKE H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential[J]. Redox Biol, 2016, 10: 148- 156. DOI: 10.1016/j.redox.2016.10.001.
    [15] WANG LM, KLIONSKY DJ, SHEN HM. The emerging mechanisms and functions of microautophagy[J]. Nat Rev Mol Cell Biol, 2023, 24( 3): 186- 203. DOI: 10.1038/s41580-022-00529-z.
    [16] YOSHII SR, MIZUSHIMA N. Monitoring and measuring autophagy[J]. Int J Mol Sci, 2017, 18( 9): 1865. DOI: 10.3390/ijms18091865.
    [17] KAUSHIK S, BANDYOPADHYAY U, SRIDHAR S, et al. Chaperone-mediated autophagy at a glance[J]. J Cell Sci, 2011, 124( Pt 4): 495- 499. DOI: 10.1242/jcs.073874.
    [18] FENG YC, HE D, YAO ZY, et al. The machinery of macroautophagy[J]. Cell Res, 2014, 24( 1): 24- 41. DOI: 10.1038/cr.2013.168.
    [19] LAMARK T, JOHANSEN T. Mechanisms of selective autophagy[J]. Annu Rev Cell Dev Biol, 2021, 37: 143- 169. DOI: 10.1146/annurev-cellbio-120219-035530.
    [20] TAKÁTS S, TÓTH S, SZENCI G, et al. Investigating non-selective autophagy in Drosophila[J]. Methods Mol Biol, 2019, 1880: 589- 600. DOI: 10.1007/978-1-4939-8873-0_38.
    [21] VARGAS JNS, HAMASAKI M, KAWABATA T, et al. The mechanisms and roles of selective autophagy in mammals[J]. Nat Rev Mol Cell Biol, 2023, 24( 3): 167- 185. DOI: 10.1038/s41580-022-00542-2.
    [22] WANG LM, QI H, TANG YC, et al. Post-translational modifications of key machinery in the control of mitophagy[J]. Trends Biochem Sci, 2020, 45( 1): 58- 75. DOI: 10.1016/j.tibs.2019.08.002.
    [23] PAN M, SHI XY. Role of mitophagy in the development and progression of liver-related diseases[J]. J Clin Hepatol, 2024, 40( 2): 413- 418. DOI: 10.12449/JCH240232.

    潘萌, 史晓燕. 线粒体自噬在肝脏相关疾病发生发展中的作用[J]. 临床肝胆病杂志, 2024, 40( 2): 413- 418. DOI: 10.12449/JCH240232.
    [24] KIM J, GUAN KL. Regulation of the autophagy initiating kinase ULK1 by nutrients: Roles of mTORC1 and AMPK[J]. Cell Cycle, 2011, 10( 9): 1337- 1338. DOI: 10.4161/cc.10.9.15291.
    [25] ITAKURA E, KISHI C, INOUE K, et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG[J]. Mol Biol Cell, 2008, 19( 12): 5360- 5372. DOI: 10.1091/mbc.e08-01-0080.
    [26] CHEN T, TU SY, DING L, et al. The role of autophagy in viral infections[J]. J Biomed Sci, 2023, 30( 1): 5. DOI: 10.1186/s12929-023-00899-2.
    [27] DIAO JJ, LIU R, RONG YG, et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes[J]. Nature, 2015, 520( 7548): 563- 566. DOI: 10.1038/nature14147.
    [28] NI HM, BOCKUS A, BOGGESS N, et al. Activation of autophagy protects against acetaminophen-induced hepatotoxicity[J]. Hepatology, 2012, 55( 1): 222- 232. DOI: 10.1002/hep.24690.
    [29] IGUSA Y, YAMASHINA S, IZUMI K, et al. Loss of autophagy promotes murine acetaminophen hepatotoxicity[J]. J Gastroenterol, 2012, 47( 4): 433- 443. DOI: 10.1007/s00535-011-0500-0.
    [30] NI HM, MCGILL MR, CHAO XJ, et al. Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice[J]. J Hepatol, 2016, 65( 2): 354- 362. DOI: 10.1016/j.jhep.2016.04.025.
    [31] WEI MJ. Chlorogenic acid promotes liver regeneration and recovery after acetaminophen-induced liver injury via the regulation of Egr1[D]. Shanghai: Shanghai University of Traditional Chinese Medicine, 2020.

    卫梦娟. 绿原酸通过调控Egr1促进对乙酰氨基酚诱导肝损伤后再生修复的研究[D]. 上海: 上海中医药大学, 2020.
    [32] TAN YL, HO HK. Hypothermia advocates functional mitochondria and alleviates oxidative stress to combat acetaminophen-induced hepatotoxicity[J]. Cells, 2020, 9( 11): 2354. DOI: 10.3390/cells9112354.
    [33] YAN MZ, JIN SW, LIU YG, et al. Cajaninstilbene acid ameliorates acetaminophen-induced liver injury through enhancing Sestrin2/AMPK-mediated mitochondrial quality control[J]. Front Pharmacol, 2022, 13: 824138. DOI: 10.3389/fphar.2022.824138.
    [34] HU T. Study of the effects and mechanism of augmenter of liver regeneration in acetaminophen-induced acute liver injury[D]. Chongqing: Chongqing Medical University, 2020.

    胡婷. 肝再生增强因子在对乙酰氨基酚诱导的急性肝损伤中的作用及机制[D]. 重庆: 重庆医科大学, 2020.
    [35] WANG H, NI HM, CHAO XJ, et al. Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice[J]. Redox Biol, 2019, 22: 101148. DOI: 10.1016/j.redox.2019.101148.
    [36] ZHANG XH, GUO LL, ZHANG XY, et al. GLT25D2 is critical for inflammatory immune response to promote acetaminophen-induced hepatotoxicity by autophagy pathway[J]. Front Pharmacol, 2020, 11: 01187. DOI: 10.3389/fphar.2020.01187.
    [37] ZHANG JQ, ZHAO LC, HU C, et al. Fisetin prevents acetaminophen-induced liver injury by promoting autophagy[J]. Front Pharmacol, 2020, 11: 162. DOI: 10.3389/fphar.2020.00162.
    [38] SHAN SL, SHEN ZY, ZHANG CQ, et al. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2019, 169: 113643. DOI: 10.1016/j.bcp.2019.113643.
    [39] HU BY, LI J, GONG DY, et al. Long-term consumption of food-derived chlorogenic acid protects mice against acetaminophen-induced hepatotoxicity via promoting PINK1-dependent mitophagy and inhibiting apoptosis[J]. Toxics, 2022, 10( 11): 665. DOI: 10.3390/toxics10110665.
    [40] LI XY, YANG X, WANG Z, et al. Role of autophagy in development of hepatocellular carcinoma[J]. Acta Chin Med, 2024, 39( 3): 468- 474. DOI: 10.16368/j.issn.1674-8999.2024.03.079.

    李萧雨, 杨星, 王振, 等. 自噬在肝细胞癌发病中的作用[J]. 中医学报, 2024, 39( 3): 468- 474. DOI: 10.16368/j.issn.1674-8999.2024.03.079.
  • 加载中
图(2)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  57
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-23
  • 录用日期:  2024-07-04
  • 出版日期:  2025-02-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回