中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层粘连蛋白α3亚基(LAMA3)对胰腺癌上皮间质转化、侵袭和转移能力的影响

杨能红 任笠坤 田舍 韩民 李铸 赵宇翔 刘鹏

引用本文:
Citation:

层粘连蛋白α3亚基(LAMA3)对胰腺癌上皮间质转化、侵袭和转移能力的影响

DOI: 10.12449/JCH250219
基金项目: 

贵州省科技计划项目 (QKH-JC2024-ZK[2024]230);

贵州省卫健委科学技术基金项目 (gzwkj2024-373)

伦理学声明:本研究方案于2023年6月14日经由贵州医科大学附属医院伦理委员会审批,批号:2023伦审第494号。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:杨能红、李铸、赵宇翔负责课题设计,资料分析,撰写论文;任笠坤、田舍、韩民参与细胞培养、实验操作、收集数据和修改论文;刘鹏负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    刘鹏, liupeng5061@126.com (ORCID: 0000-0003-0471-3836)

Effect of laminin subunit α3 on epithelial-mesenchymal transition, invasion, and metastasis abilities of pancreatic cancer

Research funding: 

Guizhou Provincial Science and Technology Program (QKH-JC2024-ZK[2024]230);

Guizhou Provincial Health Commission Science and Technology Fund Project (gzwkj2024-373)

More Information
  • 摘要:   目的  探索层粘连蛋白α3亚基(LAMA3)对胰腺癌(PC)上皮间质转化(EMT)、侵袭和转移能力的影响。  方法  综合分析肿瘤和EMT相关数据库,筛选出与PC相关的EMT基因LAMA3。通过qRT-PCR和Western Blot检测LAMA3在PC组织和细胞系中的表达水平,免疫荧光确定LAMA3在PANC-1细胞中的定位,Transwell实验评估LAMA3对PC细胞侵袭和迁移能力的影响。计量资料组间比较采用t检验。  结果  利用TCGA数据库筛选出3个EMT相关PC致癌因子LAMA3、AREG和SDC1。LASSO-Cox回归模型显示,LAMA3对PC预后影响最为显著(风险评分=0.256 1×LAMA3+0.043 1×SDC1+0.071 4×AREG)。Cox回归模型和列线图显示,LAMA3的高表达是PC不良预后的独立危险因素(HR=1.32,95%CI:1.07~1.62,P<0.01)。实验结果显示,相对于正常胰腺组织,LAMA3在PC组织中的表达显著上调。相对于HPDE细胞株,LAMA3在PC细胞株AsPC-1、BxPC-3、PANC-1、MIA PaCa-2、SW1990中的表达均有不同程度的升高,其中在PANC-1细胞中的表达最高。富集分析表明,LAMA3与EMT、胶原代谢、细胞外基质降解、TGF-β通路和PI3K通路等生物过程和信号通路相关。敲低LAMA3后,N-Cadherin、Vimentin和Snail的表达水平下降,而E-Cadherin的表达水平上升。Transwell实验结果显示,LAMA3敲低后,PANC-1细胞的侵袭和迁移能力明显减弱。  结论  LAMA3在PC中高表达,促进PC细胞EMT、侵袭和迁移,可能是PC的新型诊断标志物和基因治疗靶点。

     

  • 注: a,利用TCGA数据库筛选出298个PC致癌因子; b,将200个EMT相关基因与298个PC致癌因子取交集。

    图  1  LAMA3、AREG和SDC1为潜在的EMT相关PC基因

    Figure  1.  LAMA3, AREG, and SDC1 identified as potential EMT-related genes in PC

    注: a、b,基于TCGA-PAAD样本构建LASSO-Cox回归模型并通过交叉验证方法选择最优基因;c,该模型与PC患者预后风险的关系;d,高风险组和低风险组PC患者的预后比较;e,利用该预后模型构建的随时间变化的ROC曲线。

    图  2  基于LASSO回归构建LAMA3、AREG和SDC1的PC预后模型

    Figure  2.  Prognostic Model for PC Constructed Based on LASSO Regression for LAMA3, AREG, and SDC1

    注: a、b,单、多因素Cox回归分析研究AREG、LAMA3和SDC1表达与PC预后的关系;c,LAMA3对患者的1年和3年生存率的预测;d,列线图模型的预测生存率与实际观察到的生存率高度一致。

    图  3  基于列线图构建LAMA3、AREG和SDC1的PC预后模型

    Figure  3.  Prognostic model for PC constructed using a Nomogram for LAMA3, AREG, and SDC1

    注: a~f,TCGA+GTEx和GEO数据库显示LAMA3在PC组织中高表达;g~l,LAMA3高表达与PC患者多种临床病理参数相关;m~o,LAMA3高表达导致患者较差的OS、DSS和PFI。*P<0.05,**P<0.01,***P<0.001,****P<0.000 1。

    图  4  LAMA3表达与PC患者临床病理及预后的关系

    Figure  4.  The relationship between LAMA3 expression and the clinicopathological features and prognosis of PC patients

    注: a、b,IHC实验证LAMA3在PC组织表达升高;c,HPA数据库示LAMA3在PC组织中高表达;d、e,qRT-PCR和Western Blot实验证实LAMA3在PC细胞系中表达上调。与HPDE比较,*P<0.01,**P<0.000 1。

    图  5  LAMA3在PC组织和细胞系中的表达情况

    Figure  5.  Expression of LAMA3 in PC tissues and cell lines

    注: a,免疫荧光实验显示LAMA3在PANC-1细胞中的定位情况(×400);b~g,HPA数据库显示LAMA3在细胞内主要定位于内质网中(HPA009309: A-431 cell)。

    图  6  LAMA3的亚细胞定位情况

    Figure  6.  Subcellular localisation of LAMA3

    注: a~f,ssGSEA分析显示LAMA3与EMT标志基因、胶原代谢、细胞外基质降解、活性氧代谢、TGF-β通路、PI3K通路存在明显的正相关性;g~h,小干扰RNA转染效率的验证;i,敲低LAMA3使EMT间质标志物表达降低,上皮标志物表达升高;j~k,敲低LAMA3显著抑制PANC-1的侵袭和迁移能力。*P<0.05,**P<0.01,***P<0.001,****P<0.000 1。

    图  7  LAMA3对PC细胞EMT、侵袭和迁移的调控作用

    Figure  7.  The regulatory role of LAMA3 in EMT, invasion, and migration of PC cells

    表  1  多因素Cox回归分析临床特征和LAMA3表达与PC预后的关系

    Table  1.   Multivariate Cox regression analysis of clinical characteristics and LAMA3 expression in relation to prognosis of pancreatic cancer

    特征 例数 单因素分析 多因素分析
    HR(95%CI P HR(95%CI P
    性别
    80
    99 0.813(0.541~1.222) 0.319
    年龄
    ≤65岁 94
    >65岁 85 1.285(0.853~1.937) 0.230
    T分期
    T1 & T2 31
    T3 & T4 146 2.035(1.079~3.838) 0.028 2.225(0.808~6.126) 0.122
    N分期
    N0 50
    N1 124 2.161(1.287~3.627) 0.004 2.343(1.192~4.607) 0.014
    M分期
    M0 80
    M1 5 0.773(0.185~3.227) 0.724
    临床分期
    Stage Ⅰ 21
    Stage Ⅱ 147 2.349(1.077~5.123) 0.032 0.367(0.086~1.563) 0.175
    Stage Ⅳ & Ⅲ 8 1.464(0.374~5.734) 0.585 0.346(0.059~2.026) 0.239
    病理分级
    G1 31
    G2 96 1.974(1.016~3.834) 0.045 1.586(0.798~3.152) 0.188
    G3 & G4 50 2.586(1.288~5.192) 0.008 1.919(0.948~3.883) 0.070
    LAMA3
    低表达 89
    高表达 90 2.145(1.401~3.284) < 0.001 1.805(1.155~2.821) 0.010
    下载: 导出CSV
  • [1] HALBROOK CJ, LYSSIOTIS CA, PASCA DI MAGLIANO M, et al. Pancreatic cancer: Advances and challenges[J]. Cell, 2023, 186( 8): 1729- 1754. DOI: 10.1016/j.cell.2023.02.014.
    [2] GAIANIGO N, MELISI D, CARBONE C. EMT and treatment resistance in pancreatic cancer[J]. Cancers, 2017, 9( 9): 122. DOI: 10.3390/cancers9090122.
    [3] FRIEND C, PARAJULI P, RAZZAQUE MS, et al. Deciphering epithelial-to-mesenchymal transition in pancreatic cancer[J]. Adv Cancer Res, 2023, 159: 37- 73. DOI: 10.1016/bs.acr.2023.02.008.
    [4] KECHAGIA Z, SÁEZ P, GÓMEZ-GONZÁLEZ M, et al. The laminin-keratin link shields the nucleus from mechanical deformation and signalling[J]. Nat Mater, 2023, 22( 11): 1409- 1420. DOI: 10.1038/s41563-023-01657-3.
    [5] TAYEM R, NIEMANN C, PESCH M, et al. Laminin 332 is indispensable for homeostatic epidermal differentiation programs[J]. J Invest Dermatol, 2021, 141( 11): 2602- 2610. e 3. DOI: 10.1016/j.jid.2021.04.008.
    [6] O’CONNELL P. Of LAMA3 and LAMB3: A novel gene therapy for epidermolysis bullosa[J]. Mol Ther, 2024, 32( 5): 1197- 1198. DOI: 10.1016/j.ymthe.2024.04.014.
    [7] YAMASHITA H, TRIPATHI M, HARRIS MP, et al. The role of a recombinant fragment of laminin-332 in integrin alpha3beta1-dependent cell binding, spreading and migration[J]. Biomaterials, 2010, 31( 19): 5110- 5121. DOI: 10.1016/j.biomaterials.2010.03.003.
    [8] ZENZO GD, HACHEM ME, DIOCIAIUTI A, et al. A truncating mutation in the laminin-332α chain highlights the role of the LG45 proteolytic domain in regulating keratinocyte adhesion and migration[J]. Br J Dermatol, 2014, 170( 5): 1056- 1064. DOI: 10.1111/bjd.12816.
    [9] TOMCZAK K, CZERWIŃSKA P, WIZNEROWICZ M. The Cancer Genome Atlas(TCGA): An immeasurable source of knowledge[J]. Contemp Oncol, 2015, 19( 1A): A68- A77. DOI: 10.5114/wo.2014.47136.
    [10] SUBRAMANIAN A, TAMAYO P, MOOTHA VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A, 2005, 102( 43): 15545- 15550. DOI: 10.1073/pnas.0506580102.
    [11] CARITHERS LJ, MOORE HM. The genotype-tissue expression(GTEx) project[J]. Biopreserv Biobank, 2015, 13( 5): 307- 308. DOI: 10.1089/bio.2015.29031.hmm.
    [12] BARRETT T, WILHITE SE, LEDOUX P, et al. NCBI GEO: Archive for functional genomics data sets: Update[J]. Nucleic Acids Res, 2013, 41( Database issue): D991- D995. DOI: 10.1093/nar/gks1193.
    [13] UHLEN M, ZHANG C, LEE S, et al. A pathology atlas of the human cancer transcriptome[J]. Science, 2017, 357( 6352): eaan2507. DOI: 10.1126/science.aan2507.
    [14] HUANG CQ, CHEN J. Laminin-332 mediates proliferation, apoptosis, invasion, migration and epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma[J]. Mol Med Rep, 2021, 23( 1): 11. DOI: 10.3892/mmr.2020.11649.
    [15] TRAUB B, LINK KH, KORNMANN M. Curing pancreatic cancer[J]. Semin Cancer Biol, 2021, 76: 232- 246. DOI: 10.1016/j.semcancer.2021.05.030.
    [16] PARK W, CHAWLA A, O’REILLY EM. Pancreatic cancer: A review[J]. JAMA, 2021, 326( 9): 851- 862. DOI: 10.1001/jama.2021.13027.
    [17] DERYNCK R, WEINBERG RA. EMT and cancer: More than meets the eye[J]. Dev Cell, 2019, 49( 3): 313- 316. DOI: 10.1016/j.devcel.2019.04.026.
    [18] PALAMARIS K, FELEKOURAS E, SAKELLARIOU S. Epithelial to mesenchymal transition: Key regulator of pancreatic ductal adenocarcinoma progression and chemoresistance[J]. Cancers, 2021, 13( 21): 5532. DOI: 10.3390/cancers13215532.
    [19] SIEGEL RL, MILLER KD, JEMAL A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66( 1): 7- 30. DOI: 10.3322/caac.21332.
    [20] LI DD, XIA LY, HUANG P, et al. Heterogeneity and plasticity of epithelial-mesenchymal transition(EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms[J]. Cell Prolif, 2023, 56( 6): e13423. DOI: 10.1111/cpr.13423.
    [21] REN H, DU PZ, GE ZY, et al. TWIST1 and BMI1 in cancer metastasis and chemoresistance[J]. J Cancer, 2016, 7( 9): 1074- 1080. DOI: 10.7150/jca.14031.
    [22] PAUL MC, SCHNEEWEIS C, FALCOMATÀ C, et al. Non-canonical functions of SNAIL drive context-specific cancer progression[J]. Nat Commun, 2023, 14( 1): 1201. DOI: 10.1038/s41467-023-36505-0.
    [23] WEI T, ZHANG XY, ZHANG Q, et al. Vimentin-positive circulating tumor cells as a biomarker for diagnosis and treatment monitoring in patients with pancreatic cancer[J]. Cancer Lett, 2019, 452: 237- 243. DOI: 10.1016/j.canlet.2019.03.009.
    [24] MALTSEVA DV, RODIN SA. Laminins in metastatic cancer[J]. Mol Biol, 2018, 52( 3): 411- 434. DOI: 10.7868/S0026898418030059.
    [25] ROUSSELLE P, SCOAZEC JY. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement[J]. Semin Cancer Biol, 2020, 62: 149- 165. DOI: 10.1016/j.semcancer.2019.09.026.
    [26] NING BS, MEI YE. LAMA3 promotes tumorigenesis of oral squamous cell carcinoma by METTL3-mediated N6-methyladenosine modification[J]. Crit Rev Immunol, 2024, 44( 2): 49- 59. DOI: 10.1615/CritRevImmunol.2023051066.
    [27] ISLAM K, BALASUBRAMANIAN B, VENKATRAMAN S, et al. Upregulated LAMA3 modulates proliferation, adhesion, migration and epithelial-to-mesenchymal transition of cholangiocarcinoma cells[J]. Sci Rep, 2023, 13( 1): 22598. DOI: 10.1038/s41598-023-48798-8.
    [28] FENG LY, HUANG YZ, ZHANG W, et al. LAMA3 DNA methylation and transcriptome changes associated with chemotherapy resistance in ovarian cancer[J]. J Ovarian Res, 2021, 14( 1): 67. DOI: 10.1186/s13048-021-00807-y.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  61
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 录用日期:  2024-07-11
  • 出版日期:  2025-02-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回