中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晚期肝细胞癌的系统治疗

徐家豪 尹东旭 李宇辰 陈富杰 王明达 杨田

刘亚杰, 王睿林, 梁子晗, 等 . 尿液铊与非酒精性脂肪性肝病的相关性分析[J]. 临床肝胆病杂志, 2024, 40(4): 688-693. DOI: 10.12449/JCH240408.
引用本文: 刘亚杰, 王睿林, 梁子晗, 等 . 尿液铊与非酒精性脂肪性肝病的相关性分析[J]. 临床肝胆病杂志, 2024, 40(4): 688-693. DOI: 10.12449/JCH240408.
LIU YJ, WANG RL, LIANG ZH, et al. Association between urinary thallium and nonalcoholic fatty liver disease [J]. J Clin Hepatol, 2024, 40(4): 688-693. DOI: 10.12449/JCH240408.
Citation: LIU YJ, WANG RL, LIANG ZH, et al. Association between urinary thallium and nonalcoholic fatty liver disease [J]. J Clin Hepatol, 2024, 40(4): 688-693. DOI: 10.12449/JCH240408.

晚期肝细胞癌的系统治疗

DOI: 10.12449/JCH241127
基金项目: 

国家自然科学基金 (81972726);

上海市自然科学基金 (22ZR1477900)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:徐家豪、尹东旭负责查阅文献,撰写论文;李宇辰、陈富杰负责收集数据,查阅文献;王明达、杨田负责指导论文写作,审校定稿。徐家豪和尹东旭对本文贡献等同,同为第一作者。
详细信息
    通信作者:

    杨田, yangtian6666@hotmail.com (ORCID: 0000-0003-1544-0976)

Systemic therapy for advanced hepatocellular carcinoma

Research funding: 

National Natural Science Foundation of China (81972726);

Natural Science Foundation of Shanghai (22ZR1477900)

More Information
  • 摘要: 肝细胞癌是全球范围内发病率和死亡率前列的恶性肿瘤。随着分子生物学和肿瘤免疫学的进步,以酪氨酸激酶抑制剂(如索拉非尼、仑伐替尼等)为代表的分子靶向药物和以程序性死亡受体-1/程序性死亡配体-1单抗为代表的免疫治疗为晚期肝细胞癌患者带来福音。免疫治疗联合抗血管生成治疗可进一步提高疗效。此外,立体定向放疗、局部治疗与系统治疗的优化整合有望使得患者获益最大化。未来,深入理解肝细胞癌异质性,发展精准分子分型和个体化治疗,建立多学科协作诊疗体系,系统治疗有望实现晚期肝细胞癌的长期管理。本文就晚期肝细胞癌系统治疗的研究现状和进展作一综述。

     

  • 非酒精性脂肪性肝病(NAFLD)是指在影像学或组织学检查中存在肝脂肪变性,并排除大量饮酒及长期应用促脂肪形成药物、单基因遗传紊乱、自身免疫性肝病、慢性病毒性肝炎等引起肝脂肪变性竞争性病因的疾病1。据相关流行病学研究2报道,NAFLD的全球患病率为25.24%(95%CI:22.10%~28.65%)。NAFLD的全球负担与全球肥胖率的增加平行,随着肥胖和代谢综合征的全球化流行,预测2030年NAFLD的病例将达到1.01亿3-4。NAFLD的谱系疾病广泛,已成为21世纪第二大肝脏疾病,未来10年NAFLD可能逐渐成为终末期肝病、肝移植和原发性肝癌主要因素之一5

    铊(TL)是一种常见的天然微量金属,黄铁矿开采和相关炼钢业是环境中TL污染的主要来源6。高水平的TL可诱导不良的抗氧化反应,降低还原型谷胱甘肽和超氧化物歧化酶(Mn-SOD)的水平,并产生高水平的活性氧(ROS)7。虽然NAFLD的发病机制尚未明确,但是ROS的产生,氧化应激、炎症对NAFLD的发病至关重要8。TL对人类的毒性比汞、镉、铅、铜、锌更大,但人们对它的研究程度远低于汞、镉、铅等其他有毒金属9。当TL从人体缓慢释放后,它可以积聚在头发和指甲中,而尿液中的TL水平比头发、指甲中TL水平能更好地作为中毒指标10。目前,美国食品和药物监督管理局尚未批准针对NAFLD安全有效的治疗药物,生活方式(饮食和锻炼)的改变是治疗的主要方式,NAFLD的预防极其重要11。本研究通过探讨尿液TL与NAFLD疾病进展的风险相关性,旨在从不同角度探索NAFLD发展的生物标志物,以便在个人和人群水平上制订预防策略。

    国家健康与营养检查调查(NHANES)是一项评估美国人口健康和营养状况的横断面调查,主要收集参与者的人口统计学数据、生活方式以及健康和营养状况信息12。本研究中,选取NHANES 2017—2020年数据。纳入标准:NHANES数据库中2017—2020年18岁及以上的注册参与者(n=9 693)。排除标准:(1)缺乏肝脏瞬时弹性成像数据的人群(n=1 376);(2)患有乙型肝炎、丙型肝炎人群(n=128);(3)饮酒量显著的人群(男>30 g/d,女>20 g/d)(n=456);(4)缺乏尿液TL指标的人群(n=5 222)。最终共有2 511例受试者纳入分析。详细筛选流程见图1

    图  1  筛选流程图
    Figure  1.  Filter flow chart

    肝脏瞬时弹性成像已被广泛用于普通人群中检测NAFLD13。受控衰减参数(CAP)对NAFLD检测的可靠性可与肝活检(金标准)相比,以CAP≥238 db/m,同时排除患有乙型肝炎、丙型肝炎及饮酒量显著的人群(男>30 g/d,女>20 g/d)确诊为NAFLD14

    采用高效液相色谱-电喷雾电离-串联质谱和在线固相萃取联合同位素稀释等方法定量检测尿液TL水平15。本研究尿液TL的检出限为0.02 μg/L,低于检测限的值被替换为检测限除以2的平方根。

    采用R4.2.2软件,计量资料若符合正态分布用x¯±s表示,若是偏态分布用MP25P75)表示,两组间比较采用成组t检验或Wilicoxon秩和检验;计数资料两组间比较采用χ2检验。通过描述性分析、多因素Logistic回归、限制性三次样条回归分析、亚组分析、交互作用,探究尿液TL与NAFLD的风险关联。将尿液TL分为连续变量和分类变量(根据四分位数分为四组,第一个四分位数为参考)并计算3个模型中的比值比(OR)和95%CI。在Model 1中未调整变量,在Model 2中调整年龄、性别、种族、教育、婚姻状况、家庭收入与贫困比比值(FMPIR)、体质量指数(BMI)、社会人口学变量,Model 3在Model 2的基础上调整吸烟、喝酒、糖尿病(DM)、高血压(HTN)、高脂血症(HL)相关健康因素变量。使用限制性三次样条回归分析,以检验尿液TL与NAFLD是否存在非线性关联,并可视化两者之间的剂量-反应关系。此外,在亚组分析中以年龄、性别、种族、教育、婚姻状况、FMPIR、BMI、吸烟、喝酒、DM、HTN、HL分类,并采用相加模型和相乘模型来估计患病风险的交互作用,以检测尿液TL与NAFLD关系可能的差异。考虑到尿液的稀释,尿液TL采用尿肌酐进行校准。P<0.05为差异有统计学意义。

    本研究符合条件的研究对象共2 511例(NAFLD组1 612例,Non-NAFLD组899例)。NAFLD组尿液TL水平明显高于Non-NAFLD组(0.18 μg/L vs 0.16 μg/L),差异具有统计学意义(Z=-2.76,P=0.01)。与Non-NAFLD组相比,NAFLD组的年龄、BMI较高,且主要集中在40~59岁、BMI≥30 kg/m2的肥胖人群。此外,两组比较,NAFLD组更倾向于男性、墨西哥裔美国人、丧偶/离婚/分居、喝酒、患有DM、HTN、HL的人群,差异均具有统计学意义(P值均<0.01)(表1)。

    表  1  研究对象基本特征
    Table  1.  Basic characteristics of research objects
    变量 总人数(n=2 511) Non-NAFLD组(n=899) NAFLD组(n=1 612) 统计值 P
    年龄(岁) 51(34~64) 42(28~61) 54(40~65) Z=-4.55 <0.01
    年龄分组[例(%)] χ2=23.22 <0.01
    18~39岁 822(32.74) 419(46.61) 403(25.00)
    40~59岁 806(32.10) 220(24.47) 586(36.35)
    ≥60岁 883(35.17) 260(28.92) 623(38.65)
    性别[例(%)] χ2=10.63 <0.01
    1 262(50.26) 491(54.62) 771(47.83)
    1 249(49.74) 408(45.38) 841(52.17)
    种族[例(%)] χ2=20.94 <0.01
    墨西哥裔美国人 326(12.98) 88(9.79) 238(14.76)
    非西班牙裔黑人 672(26.76) 279(31.03) 393(24.38)
    非西班牙裔白人 828(32.97) 288(32.04) 540(33.50)
    其他 685(27.28) 244(27.14) 441(27.36)
    教育[例(%)] χ2=1.85 0.26
    大专或以上学历 1 371(54.60) 501(55.73) 870(53.97)
    高中或同等学历 666(26.52) 241(26.81) 425(26.36)
    高中以下 474(18.88) 157(17.46) 317(19.67)
    吸烟[例(%)] χ2=0.08 0.82
    一生吸烟<100支 1 502(59.82) 541(60.18) 961(59.62)
    一生吸烟≥100支 1 009(40.18) 358(39.82) 651(40.38)
    婚姻状况[例(%)] χ2=24.41 <0.01
    已婚/与伴侣同居 1 450(57.75) 485(53.95) 965(59.86)
    从来没有结过婚 527(20.99) 237(26.36) 290(17.99)
    丧偶/离婚/分居 534(21.27) 177(19.69) 357(22.15)
    喝酒[例(%)] χ2=10.66 <0.01
    277(11.03) 120(13.35) 157(9.74)
    2 234(88.97) 779(86.65) 1 455(90.26)
    FMPIR 2.26(1.17~4.14) 2.19(1.16~4.14) 2.32(1.17~4.15) Z=-0.99 0.34
    BMI(kg/m2 28.40(24.55~33.75) 24.60(21.60~27.90) 30.85(27.10~35.80) Z=-24.99 <0.01
    BMI分组[例(%)] χ2=76.56 <0.01
    BMI<25 kg/m2 685(27.28) 477(53.06) 208(12.90)
    BMI≥30 kg/m2 1 031(41.06) 138(15.35) 893(55.40)
    25 kg/m2≤BMI<30 kg/m2 795(31.66) 284(31.59) 511(31.70)
    HTN[例(%)] χ2=18.44 <0.01
    2 077(82.72) 770(85.65) 1 307(81.08)
    434(17.28) 129(14.35) 305(18.92)
    HL[例(%)] χ2=51.83 <0.01
    2 223(88.53) 851(94.66) 1 372(85.11)
    288(11.47) 48(5.34) 240(14.89)
    DM[例(%)] χ2=67.38 <0.01
    2 163(86.14) 852(94.77) 1 311(81.33)
    348(13.86) 47(5.23) 301(18.67)
    尿液TL(μg/L) 0.17(0.10~0.26) 0.16(0.09~0.25) 0.18(0.11~0.26) Z=-2.76 0.01
    下载: 导出CSV 
    | 显示表格

    构建多元Logistic回归模型,探究尿液TL与NAFLD的关系。首先将尿液TL作为连续性指标分析,在Model 1、Model 2、Model 3中,尿液TL每上升一个四分位数,NAFLD的患病风险分别增加13%(OR=1.13,95%CI:1.02~1.25)、29%(OR=1.29,95%CI:1.15~1.44)、30%(OR=1.30,95%CI:1.16~1.46)。

    将尿液TL作为四分位数指标分析,在Model 3中与尿液TL最低组Q1相比,尿液TL Q2、Q3、Q4组患NAFLD的风险分别增加29%(OR=1.29,95%CI:1.02~1.63)、52%(OR=1.52,95%CI:1.20~1.94)、90%(OR=1.90,95%CI:1.48~2.44)(表2)。

    表  2  尿液TL与NAFLD的Logistic分析
    Table  2.  Logistic analysis of urinary TL and NAFLD
    变量 Model 1 P Model 2 P Model 3 P
    OR(95%CI OR(95%CI OR(95%CI
    尿液TL 1.13(1.02~1.25) 0.03 1.29(1.15~1.44) <0.01 1.30(1.16~1.46) <0.01
    尿液TL(人数/构成比)
    Q1(682/27.16%)
    Q2(631/25.13%) 1.21(0.97~1.50) 0.10 1.29(1.03~1.62) 0.03 1.29(1.02~1.63) 0.03
    Q3(648/25.81%) 1.28(1.02~1.61) 0.03 1.48(1.17~1.87) <0.01 1.52(1.20~1.94) <0.01
    Q4(550/21.90%) 1.36(1.08~1.71) 0.01 1.86(1.46~2.39) <0.01 1.90(1.48~2.44) <0.01
    下载: 导出CSV 
    | 显示表格

    调整年龄、性别、种族、教育、婚姻状况、FMPIR、BMI、吸烟、喝酒、DM、HTN、HL后进一步使用限制性三次样条回归分析,尿液TL与患NAFLD的风险存在正向剂量-反应关系(P<0.01)且为非线性关系(P<0.01),尿液TL<0.17 μg/L时,尿液TL为NAFLD的保护因素且随含量升高保护降低,当尿液0.17 μg/L≤TL≤0.44 μg/L时,尿液TL为NAFLD的危险因素且随含量升高危险度升高,然而当TL>0.44 μg/L时,其与NAFLD的患病风险无关(图2)。

    图  2  尿液TL与NAFLD之间的剂量-反应关系
    Figure  2.  Dose-response relationship between urinary TL and NAFLD

    调整年龄、性别、种族、教育、婚姻状况、FMPIR、BMI、吸烟、喝酒、DM、HTN、HL多个协变量,本研究发现尿液TL与吸烟、BMI之间存在显著的交互作用,差异有统计学意义(P交互作用<0.05)。进一步开展尿液TL与吸烟、BMI之间的亚组分析发现,一生吸烟≥100支的人群尿液TL每上升一个四分位数患NAFLD的风险增加50%(OR=1.50,95%CI:1.24~1.80),一生吸烟<100支的人群尿液TL每上升一个四分位数患NAFLD的风险增加20%(OR=1.20,95%CI:1.03~1.40),BMI≥30 kg/m2的人群尿液TL每上升一个四分位数患NAFLD的风险增加30%(OR=1.30,95%CI:1.05~1.70),差异具有统计学意义(P<0.05)(表3)。

    表  3  尿液TL与NAFLD的亚组分析及交互作用
    Table  3.  Subgroup analysis and interaction effect of urinary TL and NAFLD
    变量 OR(95%CI P 交互作用P
    年龄分组 0.58
    18~39岁 1.22(1.09~1.36) <0.01
    40~59岁 1.44(1.15~1.81) <0.01
    ≥60岁 1.09(0.91~1.31) 0.36
    性别 0.34
    1.35(1.13~1.60) <0.01
    1.28(1.09~1.50) <0.01
    种族 0.25
    墨西哥裔美国人 1.44(1.01~2.06) 0.04
    非西班牙裔黑人 1.33(1.07~1.66) 0.01
    非西班牙裔白人 1.41(1.15~1.72) <0.01
    其他 1.12(0.89~1.41) 0.34
    教育 0.74
    高中以下 1.45(1.09~1.93) 0.01
    高中或同等学历 1.22(0.99~1.51) 0.06
    大专或以上学历 1.32(1.13~1.54) <0.01
    婚姻状况 0.90
    已婚/与伴侣同居 1.30(1.12~1.51) <0.01
    从来没有结过婚 1.42(1.08~1.88) 0.01
    丧偶/离婚/分居 1.22(0.95~1.57) 0.11
    FMPIR 0.14
    <1.30 1.40(1.14~1.73) <0.01
    1.30≤FMPIR<3.50 1.31(1.08~1.59) 0.01
    ≥3.50 1.18(0.97~1.44) 0.10
    BMI分组 0.02
    <25 kg/m2 1.00(0.78~1.27) 0.37
    ≥30 kg/m2 1.30(1.05~1.70) 0.04
    25 kg/m2≤BMI<30 kg/m2 1.20(0.97~1.48) 0.09
    吸烟 0.03
    一生吸烟≥100支 1.50(1.24~1.80) <0.01
    一生吸烟<100支 1.20(1.03~1.40) 0.02
    喝酒 0.65
    1.30(1.15~1.47) <0.01
    1.28(0.91~1.80) 0.15
    DM 0.16
    1.64(1.01~2.64) 0.04
    1.29(1.15~1.46) <0.01
    HTN 0.37
    1.23(0.94~1.62) 0.14
    1.32(1.16~1.50) <0.01
    HL 0.14
    1.36(0.86~2.14) 0.19
    1.30(1.15~1.46) <0.01
    下载: 导出CSV 
    | 显示表格

    已有相关研究证明血清镉16、铜17、硒18、锰19、铅20、汞21、TL22及其他金属23,尿液锰19、砷24、镉25、钠26与NAFLD显著相关。肝功能受损与儿童尿液TL浓度升高有关27。在大鼠肝损伤实验28中,TL可导致大鼠肝细胞线粒体膜电位塌陷继而导致肝细胞死亡。暴露于TL(Ⅰ)和TL(Ⅲ)的小鼠肝脏HE染色显示肝窦充血和肝细胞坏死,肝脏/体质量比显著降低20。TL可诱导大鼠肝细胞中ROS形成,还原谷胱甘肽氧化,膜脂质过氧化和线粒体膜电位崩溃,致使线粒体膜电位塌陷和细胞色素C释放显著增加,破坏肝细胞的正常结构29。尿液TL浓度与肝损伤标志物ALT、AST、GGT和ALP呈显著正相关30。以上研究均表明尿液TL与肝细胞损伤密切相关,基于尿液TL与肝细胞损伤的相关性研究,本研究首次创造性探讨了尿液TL与患NAFLD的风险关联性,通过对NHANES 2017—2020年纳入NAFLD患者尿液TL水平进行评估,发现尿液高水平的TL是NAFLD患病风险增高的危险因素。燃煤、采矿和冶炼厂的工人是接触TL的高危人群,在NAFLD的预防和临床实践中,检测尿液TL水平有利于NAFLD的早期预防和高危人群筛查。

    目前尿液TL与NAFLD之间的关联研究较少,还需要进一步的研究来证实本次研究的结论。

  • 图  1  晚期HCC系统治疗代表性临床研究

    Figure  1.  Representative clinical studies of systemic therapy for advanced hepatocellular carcinoma

    表  1  ICI联合治疗在晚期HCC一线治疗中的Ⅲ期临床研究结果汇总

    Table  1.   Summary of phase Ⅲ clinical trial results of ICI-combined regimen in advanced HCC first-line treatment

    类别 IO+大分子单抗 IO+小分子TKI IO+IO
    IMbrave 15024 ORIENT-3229 SHR-1210-Ⅲ-31030 LEAP-00231 COSMIC-31233 HIMALAYA36
    ICI药物种类 PD-L1抑制剂 PD-1抑制剂 PD-1抑制剂 PD-1抑制剂 PD-L1抑制剂

    PD-L1、CTLA-4

    抑制剂

    药物

    阿替利珠单抗+贝伐珠单抗 vs

    索拉非尼

    信迪利单抗+ IBI305 vs 索拉非尼 卡瑞利珠单抗+阿帕替尼 vs 索拉非尼 帕博利珠单抗+仑伐替尼 vs 仑伐替尼 阿替利珠单抗+卡博替尼 vs 索拉非尼 度伐利尤单抗+替西木单抗 vs 索拉非尼
    研究设计 全球、多中心、开放标签、随机对照,Ⅲ期 多中心、开放标签、随机对照、Ⅱ/Ⅲ期 全球、随机、开放标签、Ⅲ期 全球、随机、双盲、安慰剂对照、Ⅲ期 全球多中心、开放标签、随机、Ⅲ期 全球、多中心、开放标签、随机对照,Ⅲ期
    入组人数(例) 501 571 543 794 837 782
    特有入组标准 内镜检查,排除出血或高出血风险 Child-Pugh评分≤7分 随机化后3个月内的内静检查;无门静脉主干侵犯(Vp4)

    无门静脉主干

    侵犯(Vp4)

    中位OS(月)

    19.2 vs 13.4

    HR=0.66

    NR vs 10.4

    HR=0.57

    22.1 vs 15.2

    HR=0.62

    21.2 vs 19.0

    HR=0.840

    15.4 vs 15.5

    HR=0.90

    16.4 vs 13.8

    HR=0.78

    中位PFS(月)

    6.9 vs 4.3

    HR=0.65

    4.6 vs 2.8

    HR=0.56

    5.6 vs 3.7

    HR=0.52

    8.2 vs 8.1

    HR=0.834

    6.8 vs 4.2

    HR=0.63

    3.78 vs 4.07

    HR=0.90

    ORR 30% vs 11% 21% vs 4% 25.4% vs 5.9% 26.1% vs 17.5% 11% vs 4% 20.1% vs 5.1%
    DCR 74% vs 55% 72% vs 64% 78.3% vs 53.9% 81.3% vs 78.4% 78% vs 65% 60.1% vs 60.7%
    PD 19% vs 25% 27% vs 33% 16.2% vs 36.5% 12.2% vs 15.0% 14% vs 20% 20.6% vs 6.7%
    任何级别AE发生率 86% vs 95% 89% vs 94% 96.5% vs 95.7% 93% vs 90% 76% vs 85%
    ≥3级AE发生率 45% vs 47% 34% vs 36% 81% vs 52% 63% vs 58% 55% vs 33% 26% vs 37%
    所有级别出血发生率 25% vs17.3% 4.7% vs 4.9% 1% vs 1% 1.8% vs 4.8%
    G3/4出血发生率 6.3% vs 5.8% 3.4% vs 2.7% 0.5% vs 1% 0.5% vs 1.6%

    注:IO,肿瘤免疫疗法;PD,疾病发展;NR,未达到。

    下载: 导出CSV

    表  2  正在进行的局部联合系统治疗不可切除HCC的Ⅲ期临床研究

    Table  2.   Ongoing phase Ⅲ clinical trials of locoreginal therapy combined with systemic therapy in patients with unresectable HCC

    研究编码 研究状态 研究类型 入组人数(例) 干预措施 主要终点 入组条件

    NCT03778957

    (EMERALD-1)

    活跃,未招募 Ⅲ期 RCT 600

    TACE+度伐利尤单抗+安慰剂;

    TACE+度伐利尤单抗+贝伐珠单抗;

    TACE+安慰剂+安慰剂

    PFS 适用于TACE,Child-Pugh≤7分,PS 0/1分

    NCT05301842

    (EMERALD-3)

    招募中 Ⅲ期 RCT 725

    TACE+曲美木单抗+度伐利尤单抗+仑伐替尼;

    TACE+曲美木单抗+度伐利尤单抗;

    TACE

    PFS

    适用于TACE,Child-Pugh A级,

    PS 0/1分

    NCT04246177

    (LEAP-012)

    活跃,未招募 Ⅲ期 RCT 450

    TACE+仑伐替尼+帕博利珠单抗;

    TACE

    OS和PFS 不适用于根治性治疗
    NCT04268888 招募中 Ⅱ/Ⅲ期 RCT 522

    TACE+纳武利尤单抗;

    TACE/TAE

    OS和TTTP

    不适用于外科切除或肝移植,

    Child-Pugh≤6分

    NCT04712643 活跃,未招募 Ⅲ期 RCT 342

    TACE+阿替利珠单抗+贝伐珠单抗;

    TACE

    OS和PFS

    适用于TACE,Child-Pugh A级,

    PS 0/1分,无PVTT

    NCT05738616 招募中 Ⅲ期 RCT 168

    TACE+卡瑞利珠单抗+仑伐替尼;

    TACE

    CRR和OS

    BCLC C,Child-Pugh A/B级,

    PS 0/1分,初治

    NCT05320692 招募中 Ⅲ期RCT 360

    TACE+卡瑞利珠单抗+阿帕替尼;

    TACE

    PFS Child-Pugh A级,PS 0/1分
    NCT05608213 招募中 Ⅲ期RCT 183

    仑伐替尼+I-125放射性粒子植入;

    仑伐替尼

    OS 由JSH判定TACE 抵抗,Child-Pugh A/B级,PS 0/1分,无PVTT
    NCT05608200 招募中 Ⅲ期 RCT 427

    仑伐替尼+信迪利单抗+TACE;

    仑伐替尼+TACE

    OS BCLC C,或CNL C Ⅲa and Ⅲb,Child-Pugh A级,PS 0/1分,初治,无PVTT
    NCT05985798 招募中 Ⅲ期 RCT 258

    信迪利单抗+贝伐珠单抗+TACE;

    仑伐替尼+TACE

    OS

    BCLC C,Child-Pugh A级,

    PS 0/1分,初治,无PVTT

    NCT04387695 招募中 Ⅲ期 RCT 54

    序贯SBRT+TACE+索拉非尼;

    索拉非尼

    PFS

    BCLC C,合并PVTT,

    Child-Pugh≤7分,PS≤2分,初治

    NCT05313282 招募中 Ⅲ期 RCT 140 mFOLFOX7-HAIC+阿帕替尼+卡瑞利珠单抗;阿帕替尼+卡瑞利珠单抗 PFS

    BCLC C,Child-Pugh A级,

    PS 0/1分,初治

    NCT05198609 招募中 Ⅲ期 RCT 214 mFOLFOX7-HAIC+阿帕替尼+卡瑞利珠单抗;阿帕替尼+卡瑞利珠单抗 OS 合并PVTT,初治
    下载: 导出CSV
  • [1] RUMGAY H, ARNOLD M, FERLAY J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77( 6): 1598- 1606. DOI: 10.1016/j.jhep.2022.08.021.
    [2] YANG T, WANG MD, XU XF, et al. Management of hepatocellular carcinoma in China: Seeking common grounds while reserving differences[J]. Clin Mol Hepatol, 2023, 29( 2): 342- 344. DOI: 10.3350/cmh.2023.0106.
    [3] YANG T, ZHANG H, LAU WY, et al. Liver disease in China: A long way to go[J]. Hepatology, 2015, 62( 5): 1640. DOI: 10.1002/hep.27769.
    [4] VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380( 15): 1450- 1462. DOI: 10.1056/nejmra1713263.
    [5] WANG MD, DIAO YK, YAO LQ, et al. Emerging role of molecular diagnosis and personalized therapy for hepatocellular carcinoma[J]. iLIVER, 2024, 3( 1): 100083. DOI: 10.1016/j.iliver.2024.100083.
    [6] YANG C, ZHANG HL, ZHANG LM, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 4): 203- 222. DOI: 10.1038/s41575-022-00704-9.
    [7] ZHU AX, DUDA DG, SAHANI DV, et al. HCC and angiogenesis: Possible targets and future directions[J]. Nat Rev Clin Oncol, 2011, 8( 5): 292- 301. DOI: 10.1038/nrclinonc.2011.30.
    [8] LLOVET JM, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359( 4): 378- 390. DOI: 10.1056/NEJMoa0708857.
    [9] CHENG AL, KANG YK, CHEN ZD, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial[J]. Lancet Oncol, 2009, 10( 1): 25- 34. DOI: 10.1016/S1470-2045(08)70285-7.
    [10] KUDO M, FINN RS, QIN SK, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial[J]. Lancet, 2018, 391( 10126): 1163- 1173. DOI: 10.1016/S0140-6736(18)30207-1.
    [11] ABOU-ALFA GK, MEYER T, CHENG AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma[J]. N Engl J Med, 2018, 379( 1): 54- 63. DOI: 10.1056/NEJMoa1717002.
    [12] BRUIX J, QIN SK, MERLE P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment(RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2017, 389( 10064): 56- 66. DOI: 10.1016/S0140-6736(16)32453-9.
    [13] QIN SK, LI Q, GU SZ, et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma(AHELP): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2021, 6( 7): 559- 568. DOI: 10.1016/S2468-1253(21)00109-6.
    [14] QIN SK, BI F, GU SZ, et al. Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: A randomized, open-label, parallel-controlled phase II-III trial[J]. J Clin Oncol, 2021, 39( 27): 3002- 3011. DOI: 10.1200/JCO.21.00163.
    [15] PINTER M, SCHEINER B, PECK-RADOSAVLJEVIC M. Immunotherapy for advanced hepatocellular carcinoma: A focus on special subgroups[J]. Gut, 2021, 70( 1): 204- 214. DOI: 10.1136/gutjnl-2020-321702.
    [16] LLOVET JM, MONTAL R, SIA D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15( 10): 599- 616. DOI: 10.1038/s41571-018-0073-4.
    [17] EL-KHOUEIRY AB, SANGRO B, YAU T, et al. Nivolumab in patients with advanced hepatocellular carcinoma(CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389( 10088): 2492- 2502. DOI: 10.1016/S0140-6736(17)31046-2.
    [18] KUDO M, MATILLA A, SANTORO A, et al. Checkmate-040: Nivolumab(NIVO) in patients(pts) with advanced hepatocellular carcinoma(aHCC) and Child-Pugh B(CPB) status[J]. J Clin Oncol, 2019, 37( 4_suppl): 327. DOI: 10.1200/jco.2019.37.4_suppl.327.
    [19] QIN SK, KUDO M, MEYER T, et al. Tislelizumab vs sorafenib as first-line treatment for unresectable hepatocellular carcinoma: A phase 3 randomized clinical trial[J]. JAMA Oncol, 2023, 9( 12): 1651- 1659. DOI: 10.1001/jamaoncol.2023.4003.
    [20] ZHU AX, FINN RS, EDELINE J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib(KEYNOTE-224): A non-randomised, open-label phase 2 trial[J]. Lancet Oncol, 2018, 19( 7): 940- 952. DOI: 10.1016/S1470-2045(18)30351-6.
    [21] FINN RS, RYOO BY, MERLE P, et al. Pembrolizumab As second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: A randomized, double-blind, phase III trial[J]. J Clin Oncol, 2020, 38( 3): 193- 202. DOI: 10.1200/JCO.19.01307.
    [22] QIN SK, CHEN ZD, LIU Y, et al. A phase II study of anti-PD-1 antibody camrelizumab plus FOLFOX4 or GEMOX systemic chemotherapy as first-line therapy for advanced hepatocellular carcinoma or biliary tract cancer[J]. J Clin Oncol, 2019, 37( 15_suppl): 4074. DOI: 10.1200/jco.2019.37.15_suppl.4074.
    [23] FINN RS, IKEDA M, ZHU AX, et al. Phase Ⅰb study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma[J]. J Clin Oncol, 2020, 38( 26): 2960- 2970. DOI: 10.1200/JCO.20.00808.
    [24] FINN RS, QIN SK, IKEDA M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020, 382( 20): 1894- 1905. DOI: 10.1056/NEJMoa1915745.
    [25] National Health Commission of the People’s Republic of China. Standard for diagnosis and treatment of primary liver cancer(2024 edition)[J]. J Clin Hepatol, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.

    中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.
    [26] National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology(NCCN Guidelines). Hepatocellular carcinoma. Version 2. 2024[EB/OL]. https://www.nccn.org/login?ReturnURL=tts://www.nccn.org/professionals/physician%20gls/pdf/hcc.pdf. https://www.nccn.org/login?ReturnURL=tts://www.nccn.org/professionals/physician%20gls/pdf/hcc.pdf
    [27] SINGAL AG, LLOVET JM, YARCHOAN M, et al. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma[J]. Hepatology, 2023, 78( 6): 1922- 1965. DOI: 10.1097/HEP.0000000000000466.
    [28] HUANG DX, CHEN Y, ZENG QL, et al. Blood supply characteristics of pedunculated hepatocellular carcinoma prior to and following transcatheter arterial chemoembolization treatment: An angiographic demonstration[J]. Oncol Lett, 2018, 15( 3): 3383- 3389. DOI: 10.3892/ol.2018.7844.
    [29] REN ZG, XU JM, BAI YX, et al. Sintilimab plus a bevacizumab biosimilar(IBI305) versus sorafenib in unresectable hepatocellular carcinoma(ORIENT-32): A randomised, open-label, phase 2-3 study[J]. Lancet Oncol, 2021, 22( 7): 977- 990. DOI: 10.1016/S1470-2045(21)00252-7.
    [30] QIN SK, CHAN SL, GU SZ, et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma(CARES-310): A randomised, open-label, international phase 3 study[J]. Lancet, 2023, 402( 10408): 1133- 1146. DOI: 10.1016/S0140-6736(23)00961-3.
    [31] LLOVET JM, KUDO M, MERLE P, et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma(LEAP-002): A randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2023, 24( 12): 1399- 1410. DOI: 10.1016/S1470-2045(23)00469-2.
    [32] QIN SK, XUR R, PAN HM, et al. First-line lenvatinib±pembrolizumab for advanced hepatocellular carcinoma: LEAP-002 China subgroup. APASL 2024, Abstr 100797[EB/OL]. https://www.apasl2024kyoto.org/docs/info/Accepted_Regular_Abstracts-APASL_2024_Kyoto-as_of_2023_12_18.pdf. https://www.apasl2024kyoto.org/docs/info/Accepted_Regular_Abstracts-APASL_2024_Kyoto-as_of_2023_12_18.pdf
    [33] KELLEY RK, RIMASSA L, CHENG AL, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma(COSMIC-312): a multicentre, open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2022, 23( 8): 995- 1008. DOI: 10.1016/S1470-2045(22)00326-6.
    [34] YAU T, KANG YK, KIM TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 randomized clinical trial[J]. JAMA Oncol, 2020, 6( 11): e204564. DOI: 10.1001/jamaoncol.2020.4564.
    [35] GALLE PR, DECAENS T, KUDO M, et al. Nivolumab(NIVO) plus ipilimumab(IPI) vs lenvatinib(LEN) or sorafenib(SOR) as first-line treatment for unresectable hepatocellular carcinoma(uHCC): First results from CheckMate 9DW[J]. J Clin Oncol, 2024, 42( 17_suppl): LBA4008. DOI: 10.1200/JCO.2024.42.17_suppl.LBA4008.
    [36] KELLEY RK, SANGRO B, HARRIS W, et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: Randomized expansion of a phase I/II study[J]. J Clin Oncol, 2021, 39( 27): 2991- 3001. DOI: 10.1200/JCO.20.03555.
    [37] ABOU-ALFA GK, LAU G, KUDO M, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma[J]. NEJM Evid, 2022, 1( 8): EVIDoa2100070. DOI: 10.1056/EVIDoa2100070.
    [38] KUDO M, UESHIMA K, IKEDA M, et al. Randomised, multicentre prospective trial of transarterial chemoembolisation(TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial[J]. Gut, 2020, 69( 8): 1492- 1501. DOI: 10.1136/gutjnl-2019-318934.
    [39] PENG Z, FAN W, ZHU B, et al. Lenvatinib combined with transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma: a phase Ⅲ, randomized clinical trial(LAUNCH)[J]. J Clin Oncol, 2023, 41( 1): 117- 127. DOI: 10.1200/JCO.22.00392.
    [40] ZHAO M, LYU N, ZHONG S, et al. 983P Safety and efficacy of durvalumab plus hepatic artery infusion chemotherapy in HCC with severe portal vein tumor thrombosis(Vp3/4)-the DurHope study[J]. Ann Oncol, 2023, 34: S608. DOI: 10.1016/j.annonc.2023.09.2128.
    [41] DAWSON LA, WINTER KA, KNOX JJ, et al. NRG/RTOG 1112: Randomized phase III study of sorafenib vs. stereotactic body radiation therapy(SBRT) followed by sorafenib in hepatocellular carcinoma(HCC)[J]. J Clin Oncol, 2023, 41( 4_suppl): 489. DOI: 10.1200/jco.2023.41.4_suppl.489.
    [42] YANG X, HU Y, YANG KY, et al. Cell-free DNA copy number variations predict efficacy of immune checkpoint inhibitor-based therapy in hepatobiliary cancers[J]. J Immunother Cancer, 2021, 9( 5): e001942. DOI: 10.1136/jitc-2020-001942.
    [43] ZAPPASODI R, WOLCHOK JD, MERGHOUB T. Strategies for predicting response to checkpoint inhibitors[J]. Curr Hematol Malig Rep, 2018, 13( 5): 383- 395. DOI: 10.1007/s11899-018-0471-9.
    [44] REN ZG, GUO YB, BAI YX, et al. Tebotelimab, a PD-1/LAG-3 bispecific antibody, in patients with advanced hepatocellular carcinoma who had failed prior targeted therapy and/or immunotherapy: An open-label, single-arm, phase 1/2 dose-escalation and expansion study[J]. J Clin Oncol, 2023, 41( 4_suppl): 578. DOI: 10.1200/jco.2023.41.4_suppl.578.
    [45] XING BC, DA X, ZHANG YQ, et al. A phase II study combining KN046(an anti-PD-L1/CTLA-4 bispecific antibody) and lenvatinib in the treatment for advanced unresectable or metastatic hepatocellular carcinoma(HCC): Updated efficacy and safety results[J]. J Clin Oncol, 2022, 40( 16_suppl): 4115. DOI: 10.1200/jco.2022.40.16_suppl.4115.
    [46] FINN RS, RYOO BY, HSU CH, et al. Results from the MORPHEUS-liver study: Phase Ib/II randomized evaluation of tiragolumab(tira) in combination with atezolizumab(atezo) and bevacizumab(bev) in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma(uHCC)[J]. J Clin Oncol, 2023, 41( 16_suppl): 4010. DOI: 10.1200/jco.2023.41.16_suppl.4010.
    [47] REN Z, HUANG Y, GUO Y, et al. 945MO AdvanTIG-206: Phase II randomized open-label study of ociperlimab(OCI)+tislelizumab(TIS)+BAT1706(bevacizumab biosimilar) versus TIS+BAT1706 in patients(pts) with advanced hepatocellular carcinoma(HCC)[J]. Ann Oncol, 2023, 34: S594. DOI: 10.1016/j.annonc.2023.09.2091.
    [48] LU MY, WILLIAMSON DFK, CHEN TY, et al. Data-efficient and weakly supervised computational pathology on whole-slide images[J]. Nat Biomed Eng, 2021, 5( 6): 555- 570. DOI: 10.1038/s41551-020-00682-w.
  • 期刊类型引用(1)

    1. 刘正一,庄颖洁,董旭,高利利,范振平,蒋丽娜. 非酒精性脂肪性肝病肝纤维化无创诊断模型构建. 临床军医杂志. 2024(07): 688-691 . 百度学术

    其他类型引用(0)

  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  125
  • PDF下载量:  149
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-03-31
  • 录用日期:  2024-05-30
  • 出版日期:  2024-11-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回