氨氯地平及左氨氯地平对大鼠体内仑伐替尼药物动力学的影响及其机制
DOI: 10.12449/JCH241118
Effect of amlodipine and levamlodipine on the pharmacokinetics of lenvatinib in rats and related mechanisms
-
摘要:
目的 研究氨氯地平及左氨氯地平对仑伐替尼药物动力学的影响并探究相关机制。 方法 选取18只雄性SD大鼠随机分为3组,包括仑伐替尼(1.2 mg/kg)组、氨氯地平(1.0 mg/kg)联合仑伐替尼组和左氨氯地平(0.5 mg/kg)联合仑伐替尼组,每组各6只。分别用0.5%羧甲基纤维素钠、氨氯地平及左氨氯地平灌胃液预处理8 d,末次灌胃后给予仑伐替尼,并按照规定的采血时间点眼内眦静脉丛采血。采用超高效液相色谱串联质谱(UPLC-MS/MS)法测定大鼠血浆中仑伐替尼的药物浓度,非房室模型计算药物动力学参数。采用RT-qPCR检测大鼠肝组织中细胞色素P450 3A1(CYP3A1)、P-糖蛋白(P-gp)和乳腺癌耐药蛋白(BCRP)mRNA表达。符合正态分布的计量资料多组间比较采用单因素方差分析,进一步两两比较采用Dunnett-t检验;不符合正态分布的计量资料多组间比较采用Kruskal-Wallis H检验。 结果 3组间药时曲线下面积AUC0-∞(F=4.567,P<0.05)、清除率CLz/F(F=5.038,P<0.05)和峰浓度Cmax(F=11.667,P<0.01)比较差异均存在统计学意义(P值均<0.05),与仑伐替尼组比较,氨氯地平联合仑伐替尼组AUC0-∞升高36.1%(P<0.05)、CLz/F下降26.1%(P<0.05)、Cmax升高56.7%(P<0.01),左氨氯地平联合仑伐替尼组Cmax升高37.7%(P<0.05);RT-qPCR结果显示,3组间CYP3A1、P-gp和BCRP mRNA的表达差异均有统计学意义(F值分别为10.160、5.350、5.237,P值均<0.05),与仑伐替尼组比较,氨氯地平联合仑伐替尼组大鼠肝脏CYP3A1、P-gp和BCRP mRNA表达水平明显下降(P值均<0.05),而左氨氯地平联合仑伐替尼组大鼠肝脏中CYP3A1 mRNA表达水平也明显下降(P<0.05)。 结论 氨氯地平可以增加仑伐替尼的体内暴露量,作用机制可能与抑制肝脏中CYP3A1、P-gp和BCRP的mRNA表达有关;而左氨氯地平仅增加仑伐替尼的峰浓度。 -
关键词:
- 癌, 肝细胞 /
- 大鼠, Sprague-Dawley /
- 氨氯地平 /
- 仑伐替尼
Abstract:Objective To investigate the effect of amlodipine and levamlodipine on the pharmacokinetics of lenvatinib and related mechanisms. Methods A total of 18 male Sprague-Dawley rats were randomly divided into lenvatinib (1.2 mg/kg) group, amlodipine (1.0 mg/kg)+lenvatinib group, and levamlodipine (0.5 mg/kg)+lenvatinib group, with 6 rats in each group. The rats were pretreated with 0.5% sodium carboxymethyl cellulose, amlodipine or levamlodipine by gavage for 8 days, and lenvatinib was given after the last intragastric administration. Blood samples were collected from the intraocular canthus venous plexus at the specified time points. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure the plasma concentration of lenvatinib in rats, and a non-compartment model was used to calculate pharmacokinetic parameters. RT-qPCR was used to measure the mRNA expression levels of cytochrome P450 3A1 (CYP3A1), P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) in rat liver tissue. A one-way analysis of variance was used for comparison of normally distributed continuous data between multiple groups, and the Dunnett-t test was used for further comparison between two groups; the Kruskal-Wallis H test was used for comparison of non-normally distributed continuous data between groups. Results There were significant differences between the three groups in the area under the concentration-time curve AUC0-∞ (F=4.567, P<0.05), clearance rate CLz/F (F=5.038, P<0.05), and peak concentration Cmax (F=11.667, P<0.01). Compared with the lenvatinib group, the amlodipine+lenvatinib group had an increase in AUC0-∞ by 36.1% (P<0.05), a reduction in CLz/F by 26.1% (P<0.05), and an increase in Cmax by 56.7% (P<0.01), and the levamlodipine+lenvatinib group had an increase in Cmax by 37.7% (P<0.05). RT-qPCR showed that there were significant differences in the mRNA expression levels of CYP3A1, P-gp, and BCRP between the three groups (F=10.160, 5.350, and 5.237, all P<0.05), and compared with the lenvatinib group, the amlodipine+lenvatinib group had significant reductions in the mRNA expression levels of CYP3A1, P-gp, and BCRP in rat liver tissue (all P<0.05), while the levamlodipine+lenvatinib group had a significant reduction in the mRNA expression level of CYP3A1 in rat liver tissue (P<0.05). Conclusion Amlodipine can increase the in vivo exposure of lenvatinib possibly by inhibiting the mRNA expression of CYP3A1, P-gp, and BCRP in the liver, while levamlodipine only increases the peak concentration of lenvatinib. -
Key words:
- Carcinoma, Hepatocellular /
- Rats, Sprague-Dawley /
- Amlodipin /
- Lenvatinib
-
1. 病例资料
病例1:患者女性,58岁,以“体检发现胰腺尾部占位3天”于2019年3月4日入本院,患者2年来体质量下降5 kg,增强CT检查示:胰腺尾部动脉期以及门静脉期显著强化结节,动脉期CT值为198 HU,考虑神经内分泌肿瘤(图1)。超声胃镜示:胰腺尾部低回声病灶(0.6 cm×0.8 cm),为富血供结节。患者癌胚抗原、糖类抗原(CA)19-9、CA125等肿瘤标志物指标正常,既往无糖耐量异常病史,口服葡萄糖耐量试验结果正常。术前诊断为胰腺神经内分泌肿瘤(pancreatic neuroendocrine tumor,pNET),患者在全麻下行腹腔镜下胰腺体尾切除术,术后标本可见胰腺内副脾(intrapancreatic accessory spleen,IPAS)组织,切面红褐色、质韧(图2);术后病理示:胰腺体尾部副脾组织,胰腺组织切缘未见癌(图3)。
病例1误诊原因分析:(1)CT影像学表现是主要原因之一。胰腺尾部动脉早期和门静脉期均呈显著强化结节,边缘规则,未见腹膜后和周围肿大淋巴结,这些影像学特点与pNET的特点相符。其中,非功能性pNET患者的症状隐蔽,激素水平正常,缺乏特异性肿瘤标志物,因其血供丰富且内部可有变性坏死,当病灶较大时,增强CT可见不均匀强化,但当pNET病灶较小也可表现为均匀强化,此时较难与IPAS区分;(2)该患者虽行超声胃镜检查,但患者家属拒绝行穿刺,遂未操作;(3)未能将病灶强化程度与脾脏强化程度相比,对IPAS的诊断缺乏经验。
病例2:患者男性,60岁,因“间断性腹痛10余天”于2022年9月15日入本院。既往病史:30年前因外伤行脾切除。CT平扫+增强检查示:胰腺钩突部占位,考虑恶性肿瘤可能(图4);胰尾部见类圆形低密度影,较大直径为3 cm,边缘见钙化,增强扫描轻度不均匀强化,实性假乳头状瘤待排除(图5)。术前诊断:胰头钩突肿瘤;胰尾部占位,考虑胰腺实性假乳头状瘤;脾切除术后。肿瘤标志物:CA19-9 1 537.07 U/mL,CA125 125.68 U/mL。术中行胰十二指肠联合胰尾部分切除术;术后病理示:钩突部胰腺导管腺癌(中低分化);胰体尾副脾组织(图6),胰腺组织切缘未见癌。
病例2误诊原因分析:(1)该患者有脾切除病史,术前影像学检查提示脾脏缺如,主观上忽视了副脾存在的可能,客观上影像学检查时缺少副脾组织与正常脾脏组织的影像学特点比较。(2)该患者CT特征为胰尾部见类圆形稍低密度影,增强扫描示轻度不均匀强化,边缘可见钙化,可能为胰腺实性假乳头状瘤,或者其他低度恶性肿瘤。而脾脏组织较少发生钙化,该患者胰尾部分占位的钙化表现进一步干扰了临床判断。而胰腺实性假乳头状瘤实性部分和囊壁常呈轻、中度强化,病灶内可见钙化灶,往往位于病灶实性部分、分隔处或其周边包膜。该患者的影像学表现与胰腺实性假乳头状瘤极为相似,对明确鉴别诊断造成严重影响[1]。
2. 讨论
副脾与胚胎阶段脾脏的胚芽形成密切相关,正常情况下,在胚胎发育第5周,来自间充质细胞的胃背系膜分化为脾脏,但如果脾脏胚芽未完全融合,或者分离出单个细胞,则发育形成副脾[2]。80%的副脾发生在脾门附近,17%发生在胰腺尾部,还可见于胃壁、大网膜、脾结肠韧带、睾丸、肾上腺等部位。副脾的发生率约为10%,其中完全包裹在胰腺内的副脾发生率仅为2%[3],即IPAS。IPAS最常被误诊为pNET,pNET分为功能性pNET和非功能性pNET,功能性pNET易通过患者激素水平及其他临床症状与IPAS鉴别诊断,而IPAS最易被误诊为非功能性pNET。pNET在所有胰腺肿瘤中占比不超过2%,非功能性pNET仅占全部pNET的15%~41%,其中大多数为恶性,肿瘤根治性切除是实现患者长期生存最重要的手段,因此对肿瘤最大径>2 cm的非功能性pNET必须手术切除,此外,除了肿瘤最大径<1 cm或手术风险较大者,其余≤2 cm的非功能性pNET也均应行手术切除。但IPAS无需外科干预,故对二者的明确鉴别诊断具有重要的临床意义[4]。
IPAS无明显特异性临床表现,其诊断主要依靠影像学检查。在CT平扫中,IPAS表现的密度与脾脏相似,增强扫描强化程度高于胰腺组织,与脾脏一致,动脉期表现为“花斑样”不均匀强化,门静脉期为均匀强化,但当IPAS直径较小时,动脉期也表现为均匀强化[5]。MRI对IPAS的诊断也有重要价值,IPAS的T1WI信号低于胰腺,T1WI可显示肿块的位置、边缘、形态,T2WI信号表现为与脾脏等信号,MRI强化特点与CT强化类似。由于IPAS的白髓与红髓比例较高,有时在T2加权像上IPAS的信号强度略高于脾脏[6]。此外,弥散加权成像对IPAS的诊断也有积极意义,尤其在鉴别IPAS与胰腺实体肿瘤方面[7]。比IPAS更罕见的是IPAS伴上皮样囊肿(epidermoid cyst in intrapancreatic accessory spleen,ECIPAS)[8]。ECIPAS直径通常为2~4 cm;病理学镜下通常表现为囊肿内衬复层鳞状上皮,囊外可见脾脏组织;CT和MRI检查的主要着眼点为识别囊肿周围的脾脏组织,ECIPAS的CT表现为实性部分强化,强化程度与脾脏类似,囊性部分CT平扫呈低密度,增强后不强化[9]。明确的术前影像学诊断和术中冰冻病理切片对于避免过度治疗至关重要。
此外,由于副脾和脾脏具有相同的生理功能,因此具有脾脏功能显示作用的放射性核素扫描在鉴别IPAS和pNET也有重要价值。脾脏组织利用网状内皮细胞可拦截并破坏衰老的红细胞,99mTc标记的热变性红细胞(99mTc-heat denaturation RBC,99mTc-HDRBC)可以在脾脏和IPAS处浓聚,并在核素检查中显影。然而,当脾脏包裹胰尾或覆盖IPAS时,IPAS处的显影被正常脾脏组织掩盖,易造成误诊[10]。非功能性pNET因其含有生长抑素受体,故可通过68Ga生长抑素类似物(68Ga somatostatin analogue imaging,68Ga-SSA)核素扫描进行鉴别,其在诊断pNET方面比MRI更敏感,但假阳性率较高,只有当68Ga-SSA图像中摄取显著高于脾脏才具有诊断价值,可能与脾脏组织中淋巴细胞同样含有生长抑素受体有关[11]。常规超声内镜(endoscopic ultrasonography,EUS)对IPAS的诊断价值有限,但可利用Levovist或Sonazid作为静脉造影剂的对比增强EUS来提高诊断IPAS的能力。Makino等[12]研究发现,以Sonazoid作为造影剂的增强EUS对IPAS中存在的丰富血管和网状内皮细胞系统较为敏感。此外,IPAS与pNET在EUS定性定量弹性成像下表现也有差异,IPAS由于病灶质地松软呈现绿色为主的图像,pNET则由于病灶质地较硬呈现质地均匀的蓝色图像[13]。进一步将弹性成像结果量化为弹性应变率比值可以提高诊断效率[14]。
除了影像学检查以外,EUS引导下细针穿刺(EUS-FNA)检查是鉴别IPAS的高特异性手段。Tatsas等[15]研究发现,脾窦薄层血管的内皮细胞中的CD8经免疫细胞化学染色可检出,只要取得脾窦的内皮细胞即可诊断为副脾。但由于肿块较小、位置较深等不利因素,往往无法准确取得病理标本,且细针穿刺可能导致胰漏、出血等不良事件。当影像学检查无法确诊且胰腺内肿块较大时,EUS-FNA仍值得考虑。近年来,基于探针的激光共聚焦显微内镜检查(confocal laser endomicroscopy,CLE)在诊断胰腺占位肿块的应用成为研究热点,CLE可以通过获取放大1 000倍后的黏膜图像来识别细胞和亚细胞的微结构,并进行活体组织学诊断(光学虚拟活检)。CLE既可以避免EUS-FNA的副损伤,又可与EUS-FNA联合应用提高胰腺肿块的诊断准确度[16]。
避免副脾的误诊,首先需要临床医师对IPAS具备充分的认识,对位于胰腺尾部、直径1~3 cm、边界清、质地均匀的富血管病灶,应考虑IPAS的可能性。其次,在鉴别诊断过程中需要综合利用CT、MRI、PET-CT等影像学检查,尤其是99mTc-HDRBC等敏感性较高的检查。必要时可采用EUS-FNA检查,但要提高操作技巧,避免发生不良事件。确诊IPAS的患者无需手术治疗,随访观察即可。总之,临床上应进一步提升对IPAS的认识与鉴别,避免IPAS患者被误诊并接受非必要手术,增加医疗负担。
-
表 1 引物序列
Table 1. Primer sequences
基因 正向引物序列 反向引物序列 GADPH 5'-GCCTTCCGTGTTCCTACC-3' 5'-GCCTGCTTCACCACCTTC-3' P-gp 5'-TCTGGTATGGGACTTCCTTGGT-3' 5'-TCCTTGTATGTTGTCGGGTTTG-3' BCRP 5'-TGAAGAGTGGCTTTCTAGTCCG-3' 5'-TTGAAATTGGCAGGTTGAGGTG-3' CYP3A1 5'-TGCATTGGCATGAGGTTTGC-3' 5'-TTCAGCAGAACTCCTTGAGGG-3' 表 2 大鼠血浆中仑伐替尼的精密度与准确度
Table 2. Precision and accuracy of LEN in rat plasma
理论质量浓度 批内(n=6) 批间(n=18) 实测质量浓度(ng/mL) RSD(%) RE(%) 实测质量浓度(ng/mL) RSD(%) RE(%) 2 ng/mL 2.09±0.12 5.6 4.5 2.05±0.09 4.6 2.7 5 ng/mL 5.47±0.15 2.7 9.0 5.45±0.14 2.5 9.0 100 ng/mL 102.90±3.56 3.5 2.9 103.22±4.38 4.2 3.2 2 000 ng/mL 2 068.33±126.56 6.1 3.4 2 067.78±107.73 5.2 3.4 表 3 大鼠血浆中仑伐替尼的提取回收率和基质效应
Table 3. Extraction recovery and matrix effect of LEN in rat plasma
理论质量浓度 提取回收率(%) RSD(%) 基质效应(%) RSD(%) 2 ng/mL 88.25±5.49 6.2 100.00±12.6 12.6 100 ng/mL 97.84±4.48 4.6 98.32±4.54 4.6 2 000 ng/mL 97.91±3.82 3.9 104.23±4.00 3.7 表 4 在不同条件下大鼠血浆中仑伐替尼的稳定性
Table 4. Stability of LEN in rat plasma under various conditions
条件 理论质量
浓度(ng/mL)
实测质量
浓度(ng/mL)
精密度
RSD(%)
准确度
RE(%)
室温8 h 5 5.47±0.11 2.0 9.4 100 103.85±6.58 6.3 3.9 2 000 2 053.33±107.83 5.3 2.7 进样器中12 h 5 5.40±0.16 2.9 8.1 100 102.75±3.22 3.1 2.8 2 000 2 081.67±106.47 5.1 4.1 -20 ℃冻融3次 5 5.42±0.16 2.9 8.3 100 105.83±3.76 3.6 5.8 2 000 1 945.00±106.16 5.5 -2.8 -20 ℃ 30 d 5 5.31±0.11 2.0 6.2 100 102.58±6.39 6.2 2.6 2 000 1 928.33±51.15 2.7 -3.6 表 5 单独使用及联合氨氯地平或左氨氯地平时仑伐替尼的药代动力学参数
Table 5. Pharmacokinetic parameters of lenvatinib alone andcombined with AML or LAML
参数 仑伐替尼组
(n=6)
仑伐替尼联合
氨氯地平组(n=6)
仑伐替尼联合
左氨氯地平组(n=6)
统计值 P值 AUC0-t (μg/L·h) 9 807.06±1 390.15 13 416.18±3 350.05 11 963.61±2 347.96 F=3.393 0.061 AUC0-∞(μg/L·h) 11 142.51±2 246.41 15 160.55±3 308.921) 12 456.64±2 788.95 F=4.567 0.028 t1/2(h) 55.22±37.64 74.10±50.40 35.01±13.90 F=2.317 0.133 Tmax(h) 1.50(0.50~3.00) 1.00(0.50~3.00) 1.00(1.00~2.00) H=2.686 0.261 Vz/F(L/kg) 8.18±4.81 8.63±6.00 4.96±1.89 F=1.065 0.369 CLz/F(L·h-1·kg-1) 0.11±0.02 0.08±0.021) 0.10±0.02 F=5.038 0.021 Cmax(μg/L) 1 238.33±164.25 1 940.00±344.272) 1 705.00±197.051) F=11.667 0.001 注:AUC0-t,0到最后一个采血点的药物浓度曲线下面积;AUC0-∞,时间从0到无穷大的药物浓度曲线下面积;t1/2,药物体内消除半衰期;Tmax,达峰时间;Vz/F,表观分布容积;CLz/F,清除率;Cmax,药峰浓度。与仑伐替尼组比较,1)P<0.05, 2)P<0.01。
-
[1] LI JJ, YANG HH, HUO G. Analysis of clinical features,cell morphology and prognostic factors in patients with primary liver cancer[J]. J Clin Exp Med, 2024, 23( 6): 566- 570. DOI: 10.3969/j.issn.1671-4695.2024.06.002.李姣姣, 杨会会, 霍刚. 原发性肝癌患者临床特征、细胞形态学分析及其预后的影响因素分析[J]. 临床和实验医学杂志, 2024, 23( 6): 566- 570. DOI: 10.3969/j.issn.1671-4695.2024.06.002. [2] General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer(2022 edition)[J]. J Clin Hepatol, 2022, 38( 2): 288- 303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38( 2): 288- 303. DOI: 10.3969/j.issn.1001-5256.2022.02.009. [3] LI J, ZHANG YJ, XIA JL. Interpretation of NCCN clinical practice guidelines for hepatocellular carcinoma, version 1.2023[J]. J Pract Oncol, 2023, 38( 5): 408- 415. DOI: 10.13267/j.cnki.syzlzz.2023.064.李婕, 章赟杰, 夏景林. 2023年第1版NCCN肝细胞癌临床实践指南更新解读[J]. 实用肿瘤杂志, 2023, 38( 5): 408- 415. DOI: 10.13267/j.cnki.syzlzz.2023.064. [4] XU HC, WANG FL, XIE LH. Current status and perspectives in clinical treatment of intermediate and advanced primary hepatocellular carcinoma[J]. J Changchun Univ Chin Med, 2024, 40( 1): 103- 107. DOI: 10.13463/j.cnki.cczyy.2024.01.024.许华晨, 王凤玲, 谢林虎. 中晚期原发性肝细胞癌的临床治疗现状与展望[J]. 长春中医药大学学报, 2024, 40( 1): 103- 107. DOI: 10.13463/j.cnki.cczyy.2024.01.024. [5] AL-SALAMA ZT, SYED YY, SCOTT LJ. Lenvatinib: A review in hepatocellular carcinoma[J]. Drugs, 2019, 79( 6): 665- 674. DOI: 10.1007/s40265-019-01116-x. [6] ZHAO Y, ZHANG YN, WANG KT, et al. Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874( 1): 188391. DOI: 10.1016/j.bbcan.2020.188391. [7] LI JM, WANG XQ, NING C, et al. Influences of ABC transporter and CYP3A4/5 genetic polymorphisms on the pharmacokinetics of lenvatinib in Chinese healthy subjects[J]. Eur J Clin Pharmacol, 2020, 76( 8): 1125- 1133. DOI: 10.1007/s00228-020-02879-z. [8] OZEKI T, NAGAHAMA M, FUJITA K, et al. Influence of CYP3A4/5 and ABC transporter polymorphisms on lenvatinib plasma trough concentrations in Japanese patients with thyroid cancer[J]. Sci Rep, 2019, 9( 1): 5404. DOI: 10.1038/s41598-019-41820-y. [9] YANG XR, SUN HC, XIE Q, et al. Chinese expert guidance on overall application of lenvatinib in hepatocellular carcinoma[J]. Chin J Dig Surg, 2023, 22( 2): 167- 180. DOI: 10.3760/cma.j.cn115610-20230201-00035.杨欣荣, 孙惠川, 谢青, 等. 仑伐替尼肝癌全病程应用中国专家指导意见[J]. 中华消化外科杂志, 2023, 22( 2): 167- 180. DOI: 10.3760/cma.j.cn115610-20230201-00035. [10] FOGLI S, GIANFILIPPO G, CUCCHIARA F, et al. Clinical pharmacology and drug-drug interactions of lenvatinib in thyroid cancer[J]. Crit Rev Oncol Hematol, 2021, 163: 103366. DOI: 10.1016/j.critrevonc.2021.103366. [11] KIM BH, YU SJ, KANG W, et al. Expert consensus on the management of adverse events in patients receiving lenvatinib for hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2022, 37( 3): 428- 439. DOI: 10.1111/jgh.15727. [12] WALIANY S, SAINANI KL, PARK LS, et al. Increase in blood pressure associated with tyrosine kinase inhibitors targeting vascular endothelial growth factor[J]. JACC CardioOncol, 2019, 1( 1): 24- 36. DOI: 10.1016/j.jaccao.2019.08.012. [13] CHEN SJ, KUANG ZM, YUAN H, et al. Advances in research on interactions between amlodipine and other drugs[J]. Chin J Clin Pharmacol Ther, 2014, 19( 6): 701- 706.陈沈珏, 匡泽民, 袁洪, 等. 氨氯地平与其他药物的相互作用研究进展[J]. 中国临床药理学与治疗学, 2014, 19( 6): 701- 706. [14] ZHU YL, WANG F, LI Q, et al. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation[J]. Drug Metab Dispos, 2014, 42( 2): 245- 249. DOI: 10.1124/dmd.113.055400. [15] NAIK KN, JHAJHARIA K, CHAUDHARY R, et al. Multidrug resistance 1 gene polymorphism in amlodipine-induced gingival enlargement[J]. J Indian Soc Periodontol, 2015, 19( 2): 239- 241. DOI: 10.4103/0972-124X.145837. [16] DARVARI R, BOROUJERDI M. Concentration dependency of modulatory effect of amlodipine on P-glycoprotein efflux activity of doxorubicin: A comparison with tamoxifen[J]. J Pharm Pharmacol, 2004, 56( 8): 985- 991. DOI: 10.1211/0022357043941. [17] TAKARA K, MATSUBARA M, YAMAMOTO K, et al. Differential effects of calcium antagonists on ABCG2/BCRP-mediated drug resistance and transport in SN-38-resistant HeLa cells[J]. Mol Med Rep, 2012, 5( 3): 603- 609. DOI: 10.3892/mmr.2011.734. [18] ZHOU YN, ZHANG BK, LI J, et al. Effect of amlodipine on the pharmacokinetics of tacrolimus in rats[J]. Xenobiotica, 2013, 43( 8): 699- 704. DOI: 10.3109/00498254.2012.756992. [19] KUZUYA T, KOBAYASHI T, MORIYAMA N, et al. Amlodipine, but not MDR1 polymorphisms, alters the pharmacokinetics of cyclosporine A in Japanese kidney transplant recipients[J]. Transplantation, 2003, 76( 5): 865- 868. DOI: 10.1097/01.TP.0000084873.20157.67. [20] CUI YJ, LI Y, FAN LJ, et al. UPLC-MS/MS method for the determination of Lenvatinib in rat plasma and its application to drug-drug interaction studies[J]. J Pharm Biomed Anal, 2021, 206: 114360. DOI: 10.1016/j.jpba.2021.114360. [21] CUI YJ, LI Y, GUO CH, et al. Pharmacokinetic interactions between canagliflozin and sorafenib or lenvatinib in rats[J]. Molecules, 2022, 27( 17): 5419. DOI: 10.3390/molecules27175419. [22] CUI YJ, MA YL, LI Y, et al. Influence of schisantherin A on the pharmacokinetics of lenvatinib in rats and its potential mechanism[J]. J Gastrointest Oncol, 2022, 13( 2): 802- 811. DOI: 10.21037/jgo-22-174. [23] CUI YJ, LI Y, LI X, et al. A simple UPLC/MS-MS method for simultaneous determination of lenvatinib and telmisartan in rat plasma, and its application to pharmacokinetic drug-drug interaction study[J]. Molecules, 2022, 27( 4): 1291. DOI: 10.3390/molecules27041291. [24] Center for Drug Evaluation, NMPA. Technical guidelines for drug interaction studies(Trial)[EB/OL].( 2021-01-26)[ 2024-03-12]. https://www.cde.org.cn/main/news/viewInfoCommon/5a15b727e605482c1cf594c689bb994b. https://www.cde.org.cn/main/news/viewInfoCommon/5a15b727e605482c1cf594c689bb994b国家药品监督管理局药品审评中心. 药物相互作用研究技术指导原则(试行)[EB/OL].( 2021-01-26)[ 2024-03-12]. https://www.cde.org.cn/main/news/viewInfoCommon/5a15b727e605482c1cf594c689bb994b. https://www.cde.org.cn/main/news/viewInfoCommon/5a15b727e605482c1cf594c689bb994b -