微波消融与手术切除治疗肝细胞癌合并肝硬化效果及安全性的Meta分析
DOI: 10.12449/JCH240915
Efficacy and safety of microwave ablation versus hepatic resection in treatment of hepatocellular carcinoma with liver cirrhosis: A Meta-analysis
-
摘要:
目的 通过Meta分析系统评价微波消融(MWA)和手术切除(HR)在肝细胞癌(HCC)合并肝硬化中的有效性及安全性。 方法 本研究根据PRISMA指南完成,PROSPERO注册号:CRD42024509185。检索PubMed、Cochrane Library、EMBASE、Web of Science、中国知网、维普、万方数据库,时间均为从建库至2023年11月,搜索MWA对比HR治疗HCC合并肝硬化的随机对照试验(RCT)和队列研究,采用Stata 12.0软件进行Meta分析。 结果 共纳入3项RCT和5项回顾性队列研究,共953例患者。Meta分析显示:MWA的1/2/3/5年总生存率(OS)与HR相比无统计学差异(P值均>0.05)。MWA的1/2/5年复发率与HR相比无统计学差异(P值均>0.05)。MWA的3年复发率高于HR(RR=1.59,95%CI:1.08~2.33,P=0.017)。MWA的1/3/5年无复发生存率(DFS)低于HR(RR=0.94,95%CI:0.89~0.99,P=0.018,I2=0.0%;RR=0.84,95%CI:0.72~0.98,P=0.023,I2=25.4%;RR=0.75,95%CI:0.58~0.98,P=0.032,I2=34.6%)。但亚组分析表明,在RCT组,MWA的1/2/3年OS和1/3年DFS与HR相比无统计学差异(P值均>0.05)。MWA的术中出血量、手术时间、住院时间、不良反应及肝功能均优于HR(SMD=-2.31,95%CI:-2.64~-1.97,P<0.001,I2=3.1%;SMD=-3.38,95%CI:-4.05~-2.71,P<0.001,I2=73.8%;SMD=-2.54,95%CI:-3.27~-1.80,P<0.001,I2=92.8%;RR=0.42,95%CI:0.30~0.59,P<0.001,I2=0.0%;SMD=-1.43,95%CI:-1.89~-0.97,P<0.001)。 结论 MWA与HR在局部复发、DFS及OS方面无明显差异。MWA术中出血量更少,手术时间更短,不良反应更少,对肝功能影响更小,住院时间更短。 Abstract:Objective To investigate the efficacy and safety of microwave ablation (MWA) versus hepatic resection (HR) in the treatment of hepatocellular carcinoma (HCC) with liver cirrhosis using a meta-analysis. Methods This study was conducted according to the PRISMA guideline, with a PROSPERO registration number of CRD42024509185. PubMed, the Cochrane Library, EMBASE, Web of Science, CNKI, VIP, and Wanfang Data were searched for randomized controlled trials (RCTs) and cohort studies on MWA versus HR in the treatment of HCC with liver cirrhosis published up to November 2023, and Stata 12.0 was used to perform the meta-analysis. Results A total of 3 RCTs and 5 retrospective cohort studies were included, with 953 patients in total. The meta-analysis showed that there were no differences between MWA and HR in 1-, 2-, 3-, and 5-year overall survival (OS) rates (all P>0.05) and 1-, 2-, and 5-year recurrence rates (all P>0.05). Compared with HR, MWA had a significantly higher 3-year recurrence rate (risk ratio [RR]=1.59, 95% confidence interval [CI]: 1.08 — 2.33, P=0.017) and significantly lower 1-, 3-, and 5-year disease-free survival (DFS) rates (1-year DFS rate: RR=0.94, 95%CI: 0.89 — 0.99, P=0.018, I2=0.0%; 3-year DFS rate: RR=0.84, 95%CI: 0.72 — 0.98, P=0.023, I2=25.4%; 5-year DFS rate: RR=0.75, 95%CI: 0.58 — 0.98, P=0.032, I2=34.6%). However, subgroup analysis showed that there were no significant differences between MWA and HR in 1-, 2-, and 3-year OS rates and 1- and 3-year DFS rates in the RCT subgroup (all P>0.05). Compared with HR, MWA had significantly better intraoperative blood loss (standardized mean difference [SMD]=-2.31, 95%CI: -2.64 to -1.97, P<0.001, I2=3.1%), time of operation (SMD=-3.38, 95%CI: -4.05 to -2.71, P<0.001, I2=73.8%), length of hospital stay (SMD=-2.54, 95%CI: -3.27 to -1.80, P<0.001, I2=92.8%), adverse reactions (RR=0.42, 95%CI: 0.30 — 0.59, P<0.001, I2=0.0%), and liver function (SMD=-1.43, 95%CI: -1.89 — -0.97, P<0.001). Conclusion There are no significant differences between MWA and HR in local recurrence, DFS, and OS, but MWA tends to have a less intraoperative blood loss, a shorter time of operation, fewer adverse reactions, a less impact on liver function, and a shorter length of hospital stay. -
Key words:
- Carcinoma, Hepatocellular /
- Liver Cirrhosis /
- Meta-Analysis
-
中性粒细胞胞外诱捕网(neutrophil extracellular traps,NET)可由致病菌、免疫复合物、血小板、佛波酯(phorbol myristate acetate,PMA)和脂多糖(lipopolysaccharide,LPS)等刺激中性粒细胞产生[1]。其释放过度会导致多种免疫细胞相互作用,促使IL-8、IL-6、TNF-α等多种细胞因子分泌,从而促进炎症引发组织损伤[2]。NET不但与自身免疫疾病、癌症和血栓形成在内的几种疾病的病理生理有关,而且近些年研究表明,NET在肝脏疾病中发挥重要作用,且NET的过度释放还可加速肝脏疾病向肝癌的进展。本文通过综述NET在乙型肝炎、非酒精性脂肪性肝炎(NASH)、缺血再灌注损伤、肝脏肿瘤中的最新研究进展,为相关肝病的诊疗和肝癌的预防提供新的思路。
1. NET形成机制与肝脏病理机制
1.1 NET形成机制
NET是细菌、病毒、细胞因子、LPS和PMA等物质刺激中性粒细胞产生的,其中PMA[3]能够最大限度激活中性粒细胞,形成由中性粒细胞弹性酶(neutrophil elastase,NE)、髓过氧化物酶(myeloperoxidase,MPO)、瓜氨酸化组蛋白(H3 citrullination,H3cit)等组成的纤维网状结构[4]。此过程不同于凋亡和坏死的死亡方式,被称为“NETosis”。且根据是否导致中性粒细胞死亡分为可溶性NET和非可溶性NET两种,又称为氧化依赖性和非氧化依赖性。
可溶性NET是中性粒细胞在PMA[3]刺激下,结合PKC和RAF-MEK-MARK信号通路,使NADPH酶激活释放氧自由基(ROS),从而激活肽基精氨酸脱亚胺酶4(peptidyl arginine deiminase 4,PAD4)使组蛋白上精氨酸正电消失,并转化为瓜氨酸,导致DNA和组蛋白间电荷破坏,染色质解体。解体的染色质和颗粒蛋白释放到细胞外空间形成NET,其中,ROS产生是NET形成的关键。在可溶性NET形成后,由于染色质的解体,中性粒细胞丧失吞噬和趋化作用。非可溶性NET是细菌[5]、Toll样受体2(TLR2)[6]刺激中性粒细胞,激活PAD4,使NE易位进入细胞核,细胞核中的染色质通过囊泡形式排出细胞外形成的。此过程不依赖NADPH酶,且不破坏质膜,因此,在非可溶性NET形成过程中中性粒细胞仍具有吞噬和趋化能力。
1.2 NET形成与肝脏病理机制
NET在肝脏中通过Kupffer细胞和中性粒细胞清除血源性细菌,发挥先天自身免疫的关键任务。其中,Kupffer细胞具有免疫球蛋白超家族补体受体(CRIg),可识别补体C3调理颗粒、外源性抗原及病原体,捕获及吞噬病原体[7]。另外,Kupffer细胞可通过招募血小板,使Kupffer细胞表面血管性血友病因子(vWF)与血小板糖蛋白(GPIb)相结合,导致血小板聚集,促进细菌的清除(图1)。其机制尚未清楚,可能原因是Kupffer细胞激活内皮细胞Toll样受体4(TLR4),使得中性粒细胞黏附于肝窦内皮细胞,包围感染的Kupffer细胞,从而阻止病原体通过血液传播。研究表明,黏附的中性粒细胞能与整合素介导的血小板相结合触发NET释放,通过中性粒细胞-血小板-NET轴刺激颗粒蛋白,其中组蛋白激活凝血酶[8],使其进而形成纤维蛋白原,导致肝窦内微血管血栓的形成(图1)。凝血酶的产生不仅导致纤维蛋白原凝块的形成,还可通过蛋白酶激活受体增强血小板的活性。NE和MPO又通过蛋白酶激活受体激活血小板,释放NET。综上所述,NET在肝脏中形成过程是一种循环,即肝脏中性粒细胞-血小板-NET轴,血小板诱导NET形成,NET自身蛋白颗粒又激活血小板,此循环既有利于致病菌的清除,又加重了炎症的进展,促进凝血和组织损伤。
2. NET与肝脏疾病的联系
肝脏是杀死致病菌,发挥免疫防御的重要器官。NET被报道参与一系列疾病的发生发展,如自身免疫性疾病、血液性疾病、癌症等。现有研究表明,NET也在肝脏疾病中扮演着重要的角色。
2.1 HBV感染
慢性HBV感染与肝纤维化、肝硬化及肝癌的发生密切相关。越来越多的研究表明,HBV感染与NET间存在一定联系。当机体感染HBV时,中性粒细胞功能降低,ROS的产生出现障碍,进而抑制NET形成。Hu等[9]研究表明,HBV C蛋白或HBV E蛋白通过减少ROS的产生和自噬来抑制NET释放,其中自噬机制是纤维蛋白原样蛋白2(Fgl2)与粘脂蛋白3(Mccoln3)直接结合,调节钙离子内流启动自噬,引发Fgl2-Mccoln3-自噬轴,从而触发NET的形成,加重病毒性肝炎的肝损伤[10](图2)。另外,对HBV感染小鼠模型的研究发现,NET形成区域有大量的纤维蛋白沉积。这意味着NET与血栓可能存在关联,可能是由于Fgl2将凝血酶原转化为凝血酶,促进纤维蛋白沉积,其具体机制值得进一步研究。综上所述,在HBV感染时,NET不仅能捕获病毒,还能引起纤维蛋白的沉积和血栓的形成,也可加重病毒性肝炎的肝损伤。
2.2 NASH
NASH是最常见的肝病之一,可由肝纤维化发展为肝硬化和肝细胞癌(HCC)[11]。研究发现,NET中的标志蛋白MPO和NE在NASH的发生发展过程中发挥着重要作用。Puli等[12]通过NE基因敲除的小鼠和野生型小鼠建立NASH模型,发现野生型NASH小鼠肝组织中NE表达增加,且NASH患者血清标志物MPO-DNA水平升高,抑制MPO能显著降低肝星状细胞的激活,导致肝纤维化发展和肝细胞损伤。Xu等[13]发现丹参酮(TⅡA)能够抑制MPO和H3cit,进而抑制NET释放,同时也证明TⅡA能够改善NASH小鼠的肝脂肪变性,降低血清中肝功能障碍标志物的表达水平。其次,多种细胞因子也可作用于NET与NASH,如IL-6和TNF-α促炎因子,刺激NASH患者NET的形成,且增强NASH促凝血活性[14]。另外,Wang等[15]通过小鼠模型研究发现,NET可通过促进调节性T淋巴细胞(Treg)分化,促进NASH脂肪变性,导致肝脏肿瘤的发生和发展(图2),抑制NET可降低NASH肝脏中Treg活性及肿瘤的发生。
2.3 肝缺血再灌注损伤
缺血再灌注损伤是先天免疫性的无菌炎症反应,常发生于肝移植术后和肝切除术后。越来越多的研究发现,中性粒细胞作为肝缺血再灌注损伤的主要驱动力,缺血后释放ROS,促进NET形成,进而加重肝损伤[16]。如高迁移率族蛋白1(nuclear factor high mobility group box 1,HMGB1)通过TLR4诱导染色体解聚,形成NET发挥促炎作用[17],而羟氯喹通过阻断TLR9抑制PAD4的表达来抑制NET形成[16],保护肝缺血再灌注损伤。除这些化学物质外,一些炎性因子也会导致肝缺血再灌注损伤加剧,研究人员[18]通过计算机动态网络分析,发现肝缺血再灌注损伤后,IL-17A促进中性粒细胞浸润和NET形成,加重肝损伤。在富含组氨酸糖蛋白(histidine-rich glycoprotein,HRG)小鼠模型中发现,HRG小鼠存在严重肝损伤且伴有中性粒细胞和NET形成增加,通过HRG预处理后可抑制中性粒细胞和NET形成,减轻小鼠缺血再灌注损伤[19]。另外,黄姜素也可通过抑制MEK/ERK信号通路来减轻肝缺血再灌注损伤[20]。此外,研究[21]发现苯甲酸酰肼、西维来司等化学物质也可通过抑制NET的形成减轻缺血再灌注损伤(表1)。综上所述,抑制NET的释放可减轻肝缺血再灌注损伤,这为肝移植术后和肝切除术后的缺血再灌注损伤提供了治疗策略。
表 1 影响肝缺血再灌注损伤的因素Table 1. Factors that influence hepatic ischemia and reperfusion injury2.4 NET与肝癌
HCC是我国发病率和病死率较高的恶性肿瘤,超过90%的HCC发生于HBV、NASH等代谢性疾病和缺血再灌注损伤引起的肝损伤[23]。研究[24]表明,肿瘤细胞通过释放趋化因子、蛋白酶及活化的血小板触发肿瘤微环境,将中性粒细胞招募至肿瘤微环境形成肿瘤相关中性粒细胞释放NET。相反,NET释放的NE、基质金属蛋白酶9(MMP-9)、组织蛋白酶G(CG)也可刺激癌细胞的增殖和迁移,进而促进肿瘤转移(图2)。随着研究深入,人们发现NET能促进HCC的生长和转移,主要表现为血管生成增加、上皮-间质转化(EMT)相关细胞迁移、细胞外基质降解和细胞捕获。研究[25]发现,NET血浆标志物在肝硬化中升高,与肝硬化和/或HCC患者的肝功能障碍程度相关。Kaltenmeier等[26]和Wang等[27]通过对肝脏恶性肿瘤患者的血清和组织进行回顾性分析证明,NET能促进HCC的生长和转移,通过阻断CXCL2可减弱中性粒细胞向肿瘤的募集和NET的形成,并抑制HCC进展,同时该研究表明NET血清标志物可作为术前判断HCC复发风险的指标。Guan等[28]研究发现NET可捕获HCC细胞,被捕获的HCC细胞通过中和Toll样受体TLR4/9-CCOX2信号传导,激发肝细胞的转移潜能,若抑制TLR4/9-CCOX2信号传导或DNaseⅠ直接破坏NET,就可减少小鼠模型HCC的转移。Yang等[29]研究发现,HCC能够刺激富含氧化线粒体DNA的NET,从而促进HCC的转移。综上所述,NET在HCC中发挥了重要作用,干预肿瘤相关中性粒细胞抑制NET形成可成为肝癌治疗的新靶标[30]。
3. 小结
近年来,国内外研究表明,NET除发挥免疫防御作用外,还从多方面参与肝脏疾病的病理生理过程,其关键成分MPO、H3cit等蛋白对疾病的发生发展都起着关键作用。本文总结了NET在乙型肝炎、NASH、缺血再灌注损伤等多种疾病发生发展中的作用。虽然NET在肝脏疾病中的具体作用机制研究尚处于起步阶段,但已有的研究[31]结果表明,DNase Ⅰ或PAD4抑制剂通过抑制NET形成,可减少多种原因所致肝损伤及肝癌的发展,使用此类抑制剂可减少中性粒细胞向肿瘤的募集。但目前NET在肝脏疾病中的研究尚处于初级阶段,未来深入研究NET对肝脏疾病的影响及机制,以期为肝脏疾病治疗和预后的早期识别提供新的思路。
-
表 1 纳入文献的基本特征
Table 1. The characteristics of studies
纳入研究 国家 例数
(T/C)
研究类型 年龄(岁)
(T/C)
男女比例
(T/C)
MWA方式 HBsAg阳性率(T/C,%) Child-Pugh分级 肿瘤个数及大小(cm) 随访时间(月) 结局指标 NOS(分) Zhang等2017[24] 中国 31/42 RCS 51.2±6.93/
54.1±7.23
20∶11/
29∶13
PMWA 45.2/61.9 A或B 单发且直径≤5或3个且最大直径≤3 >60 ①④ 6 Zhang等2016[25] 中国 68/122 RCS 55.4±9.9/
49.5±8.6
57∶11/
111∶11
PMWA 92.6/91.8 A 单个且直径<3 9~104 ①②③④⑧ 7 杨藩等2016[26] 中国 98/152 RCS 55.4±7.9/
52.5±8.0
82∶16/
133∶19
PMWA 91.8/91.4 A或B 单发且直径≤3 9~96 ①③④⑧ 8 黄炎等2017[27] 中国 26/24 RCS 57.6±6.0/
58.1±5.5
15∶11/
15∶9
LMWA - A或B 2.36±0.41/2.46±0.36;个数≤2 13~63/16~65 ①②④⑤⑥⑦⑧ 8 廖凌峰等2018[28] 中国 40/68 RCT 52.36±8.62/
52.20±8.60
28∶12/
50∶18
PMWA 90.00/88.24 A或B 2.32±0.64/
2.12±0.60
12~36 ①③④ 陈红健等2018[29] 中国 46/46 RCT 29~78 68∶24 UNK 100 A或B 单发且直径≤3或2个且直径之和≤3 24 ①④⑤⑥⑦⑧ 王辉坡等2019[30] 中国 45/45 RCT 53.8±3.2/
54.3±2.9
23∶22/
18∶27
UNK - - - - ⑥⑦⑧ 黄志明等2016[31] 中国 47/53 RCS 60.0±12.4/
55.8±11.3
42∶5/
48∶5
UNK - A或B 单发且直径≤3或3个且最大直径≤3 3~44 ①②④⑥⑧ 9 注:T,MWA组;C,HR组;UNK,未分类或未确定。①OS;②LR;③DFS;④不良反应;⑤肝功能;⑥手术时间;⑦术中出血量;⑧住院时间。-,未提供数据。
表 2 消融方式的亚组分析
Table 2. Subgroup analysis-method of ablation
亚组 结局指标 纳入研究数量 效应值[RR或SMD (95%CI)] 异质性(I2) P值 优势组 PMWA 1年OS 4 0.99(0.96~1.01) 0.0% 0.326 2年OS 1 0.94(0.83~1.08) 0.406 3年OS 4 0.93(0.97~1.00) 0.0% 0.067 1年LR 1 1.79(0.46~6.95) 0.397 不良反应 4 0.44(0.29~0.66) 24.0% <0.001 MWA 住院时间 2 -2.33(-2.84~-1.82) 75.4% <0.001 MWA LMWA 1年OS 1 - - 2年OS 1 0.97(0.80~1.16) 0.704 3年OS 1 0.97(0.75~1.26) 0.813 ALT 1 -0.99(-1.58~-0.40) 0.001 MWA AST 1 -0.88(-1.46~-0.30) 0.003 MWA Alb 1 1.97(1.29~2.65) <0.001 MWA 不良反应 1 0.42(0.17~1.03) 0.059 手术时间 1 -2.62(-3.39~-1.86) <0.001 MWA 住院时间 1 -2.25(-2.97~-1.54) <0.001 MWA 术中出血量 1 -1.89(-2.56~-1.22) <0.001 MWA 未分类 1年OS 2 0.98(0.91~1.07) 0.0% 0.711 2年OS 2 0.95(0.83~1.10) 0.0% 0.529 1年LR 1 1.25(0.43~3.59) 0.683 ALT 1 -3.06(-3.67~-2.45) <0.001 MWA AST 1 -6.48(-7.51~-5.45) <0.001 MWA Alb 1 0.30(-0.11~0.71) 0.153 不良反应 2 0.33(0.14~0.77) 0.0% 0.011 MWA 手术时间 3 -3.61(-4.34~-2.89) 71.8% <0.001 MWA 住院时间 3 -2.82(-4.73~-0.90) 96.9% 0.004 MWA 术中出血量 2 -2.45(-2.83~-2.06) 0.0% <0.001 MWA 表 3 研究类型的亚组分析
Table 3. Subgroup analysis-type of research
亚组 结局指标 纳入研究数量 效应值[RR或SMD (95%CI)] 异质性(I2) P值 优势组 RCT 1年OS 2 0.97(0.91~1.04) 0.0% 0.437 2年OS 2 0.95(0.85~1.06) 0.0% 0.324 3年OS 1 1.02(0.74~1.41) 0.904 1年DFS 1 0.92(0.81~1.04) 0.175 3年DFS 1 1.05(0.64~1.70) 0.855 ALT 1 -3.06(-3.67~-2.45) <0.001 MWA AST 1 -6.48(-7.51~-5.45) <0.001 MWA Alb 1 0.30(-0.11~0.71) 0.153 不良反应 2 0.36(0.15~0.90) 20.4% 0.029 MWA 手术时间 2 -3.93(-4.67~-3.19) 53.2% <0.001 MWA 术中出血量 2 -2.45(-2.83~-2.06) 0.0% <0.001 MWA 住院时间 2 -3.69(-5.17~-2.20) 89.1% <0.001 MWA RCS 1年OS 5 0.99(0.96~1.02) 0.0% 0.495 2年OS 2 0.96(0.83~1.13) 0.0% 0.652 3年OS 4 0.93(0.87~0.99) 0.0% 0.026 HR 1年DFS 2 0.95(0.89~1.00) 0.0% 0.050 3年DFS 2 0.81(0.69~0.95) 45.4% 0.009 HR ALT 1 -0.99(-1.58~-0.40) 0.001 MWA AST 1 -0.88(-1.46~-0.30) 0.003 MWA Alb 1 1.97(1.29~2.65) <0.001 MWA 不良反应 5 0.43(0.29~0.62) 0.0% <0.001 MWA 手术时间 2 -2.88(-3.34~-2.42) 0.0% <0.001 MWA 术中出血量 1 -1.89(-2.56~-1.22) <0.001 MWA 住院时间 4 -2.00(-2.65~-1.35) 89.1% <0.001 MWA -
[1] MURAI H, KODAMA T, MAESAKA K, et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma[J]. Hepatology, 2023, 77( 1): 77- 91. DOI: 10.1002/hep.32573. [2] LI BH, LI YZ, ZHOU HJ, et al. Multiomics identifies metabolic subtypes based on fatty acid degradation allocating personalized treatment in hepatocellular carcinoma[J]. Hepatology, 2024, 79( 2): 289- 306. DOI: 10.1097/HEP.0000000000000553. [3] SANKAR K, GONG J, OSIPOV A, et al. Recent advances in the management of hepatocellular carcinoma[J]. Clin Mol Hepatol, 2024, 30( 1): 1- 15. DOI: 10.3350/cmh.2023.0125. [4] HILL A, OLUMBA F, CHAPMAN W. Transplantation for hepatocellular carcinoma[J]. Surg Clin North Am, 2024, 104( 1): 103- 111. DOI: 10.1016/j.suc.2023.09.002. [5] YILMA M, MEHTA N. Optimal liver transplantation criteria for hepatocellular carcinoma[J]. Surg Oncol Clin N Am, 2024, 33( 1): 133- 142. DOI: 10.1016/j.soc.2023.06.011. [6] TRAN NH, MUÑOZ S, THOMPSON S, et al. Hepatocellular carcinoma downstaging for liver transplantation in the era of systemic combined therapy with anti-VEGF/TKI and immunotherapy[J]. Hepatology, 2022, 76( 4): 1203- 1218. DOI: 10.1002/hep.32613. [7] KARDASHIAN A, FLORMAN SS, HAYDEL B, et al. Liver transplantation outcomes in a U.S. multicenter cohort of 789 patients with hepatocellular carcinoma presenting beyond Milan criteria[J]. Hepatology, 2020, 72( 6): 2014- 2028. DOI: 10.1002/hep.31210. [8] IVANICS T, CLAASEN MPAW, SAMSTEIN B, et al. Living donor liver transplantation for hepatocellular carcinoma within and outside traditional selection criteria: A multicentric North American experience[J]. Ann Surg, 2024, 279( 1): 104- 111. DOI: 10.1097/SLA.0000000000006049. [9] CHOI J, JO C, LIM YS. Tenofovir versus entecavir on recurrence of hepatitis B virus-related hepatocellular carcinoma after surgical resection[J]. Hepatology, 2021, 73( 2): 661- 673. DOI: 10.1002/hep.31289. [10] ZHU P, LIAO W, ZHANG WG, et al. A prospective study using propensity score matching to compare long-term survival outcomes after robotic-assisted, laparoscopic, or open liver resection for patients with BCLC stage 0-a hepatocellular carcinoma[J]. Ann Surg, 2023, 277( 1): e103- e111. DOI: 10.1097/SLA.0000000000005380. [11] RASIC G, de GEUS SWL, BEAULIEU-JONES B, et al. A nationwide propensity score analysis comparing ablation and resection for hepatocellular carcinoma[J]. J Surg Oncol, 2023, 127( 7): 1125- 1134. DOI: 10.1002/jso.27232. [12] XU JB, QI FZ, XU G, et al. Adjuvant interferon therapy after surgical treatment for hepatitis B/C virus-related hepatocellular carcinoma: A meta-analysis[J]. Hepatol Res, 2014, 44( 2): 209- 217. DOI: 10.1111/hepr.12109. [13] YANG S, LIN Q, LIN W, et al. Effect of adjuvant interferon therapy on hepatitis B virus-related hepatocellular carcinoma: A systematic review[J]. World J Surg Oncol, 2016, 14( 1): 159. DOI: 10.1186/s12957-016-0912-7. [14] ADWAN H, HAMMANN L, VOGL TJ. Microwave ablation of recurrent hepatocellular carcinoma after curative surgical resection[J]. J Clin Med, 2023, 12( 7): 2560. DOI: 10.3390/jcm12072560. [15] RYU T, TAKAMI Y, WADA Y, et al. Combined hepatectomy and microwave ablation for multifocal hepatocellular carcinoma: Long-term outcomes and prognostic factors[J]. Asian J Surg, 2021, 44( 1): 186- 191. DOI: 10.1016/j.asjsur.2020.05.008. [16] WANG Z, LIU M, ZHANG DZ, et al. Microwave ablation versus laparoscopic resection as first-line therapy for solitary 3-5-cm HCC[J]. Hepatology, 2022, 76( 1): 66- 77. DOI: 10.1002/hep.32323. [17] WICKS JS, DALE BS, RUFFOLO L, et al. Comparable and complimentary modalities for treatment of small-sized HCC: Surgical resection, radiofrequency ablation, and microwave ablation[J]. J Clin Med, 2023, 12( 15): 5006. DOI: 10.3390/jcm12155006. [18] LIU KW, ZHENG H, SUI XZ, et al. Microwave ablation versus surgical resection for subcapsular hepatocellular carcinoma: A propensity score-matched study of long-term therapeutic outcomes[J]. Eur Radiol, 2023, 33( 3): 1938- 1948. DOI: 10.1007/s00330-022-09135-1. [19] DING WZ, YU J, LIU FY, et al. Percutaneous microwave ablation versus robot-assisted hepatectomy for early hepatocellular carcinoma: A real-world single-center study[J]. Dig Liver Dis, 2022, 54( 2): 243- 250. DOI: 10.1016/j.dld.2021.04.008. [20] TONG Y, CAI R, LI JX, et al. Liver resection versus microwave ablation for hepatocellular carcinoma in ideal candidates for ablation per Barcelona Clinic Liver Cancer staging: A propensity score matching and inverse probability of treatment weighting analysis[J]. Aliment Pharmacol Ther, 2022, 56( 11-12): 1602- 1614. DOI: 10.1111/apt.17263. [21] WANG WQ, LV X, LI J, et al. Repeat hepatectomy versus microwave ablation for solitary and small(≤3 cm) recurrent hepatocellular carcinoma with early or late recurrence: A propensity score matched study[J]. Eur J Surg Oncol, 2023, 49( 5): 1001- 1008. DOI: 10.1016/j.ejso.2022.12.016. [22] LIN YZ, SHI HY, MU XH. Diagnosis of small primary liver cancer under the background of liver cirrhosis by dual-source CT hepatic artery three-phase scanning and enhanced perfusion scanning[J]. J Pract Hepatol, 2023, 26( 3): 412- 415. DOI: 10.3969/j.issn.1672-5069.2023.03.028.林永祝, 史红媛, 穆西虎. 双源CT肝动脉三期扫描和增强灌注扫描诊断肝硬化背景下小原发性肝癌价值研究[J]. 实用肝脏病杂志, 2023, 26( 3): 412- 415. DOI: 10.3969/j.issn.1672-5069.2023.03.028. [23] HE J, CHEN WQ, SHEN HB, et al. China guideline for liver cancer screening(2022, Beijing)[J]. J Clin Hepatol, 2022, 38( 8): 1739- 1758. DOI: 10.3969/j.issn.1001-5256.2022.08.007.赫捷, 陈万青, 沈洪兵, 等. 中国人群肝癌筛查指南(2022, 北京)[J]. 临床肝胆病杂志, 2022, 38( 8): 1739- 1758. DOI: 10.3969/j.issn.1001-5256.2022.08.007. [24] ZHANG QB, ZHANG XG, JIANG RD, et al. Microwave ablation versus hepatic resection for the treatment of hepatocellular carcinoma and oesophageal variceal bleeding in cirrhotic patients[J]. Int J Hyperthermia, 2017, 33( 3): 255- 262. DOI: 10.1080/02656736.2016.1257824. [25] ZHANG EL, YANG F, WU ZB, et al. Therapeutic efficacy of percutaneous microwave coagulation versus liver resection for single hepatocellular carcinoma ≤3 cm with Child-Pugh A cirrhosis[J]. Eur J Surg Oncol, 2016, 42( 5): 690- 697. DOI: 10.1016/j.ejso.2016.02.251. [26] YANG F, ZHANG EL, XIAO ZY, et al. Therapeutic outcomes of surgical resection versus percutaneous microwave coagulation therapy for single small hepatocellular carcinoma with cirrhosis(250 cases)[J]. Acta Med Univ Sci Technol Huazhong, 2016, 45( 2): 185- 189. DOI: 10.3870/j.issn.1672-0741.2016.02.014.杨藩, 张二雷, 肖震宇, 等. 经皮微波消融与手术切除治疗合并肝硬化的单发小肝癌的疗效比较(附250例)[J]. 华中科技大学学报(医学版), 2016, 45( 2): 185- 189. DOI: 10.3870/j.issn.1672-0741.2016.02.014. [27] HUANG Y, CHEN J, LIU XS. Clinical efficacy of laparoscopic microwave ablation in the treatment of small hepatocellular carcinoma with cirrhosis[J]. Chin J Minim Invasive Surg, 2017, 17( 6): 504- 508. DOI: 10.3969/j.issn.1009-6604.2017.06.008.黄炎, 陈坚, 刘绪舜. 腹腔镜微波消融治疗小肝癌合并肝硬化的临床疗效[J]. 中国微创外科杂志, 2017, 17( 6): 504- 508. DOI: 10.3969/j.issn.1009-6604.2017.06.008. [28] LIAO LF, XUE JZ, LI SK. Survival analysis of percutan eous microwave ablation for patients with small hepatocellular carcinoma with underlying liver cirrhosis[J]. J Pract Hepatol, 2018, 21( 2): 257- 260. DOI: 10.3969/j.issn.1672-5069.2018.02.025.廖凌峰, 薛建章, 李士坤. 经皮微波消融术治疗合并肝硬化的原发性小肝癌患者生存分析[J]. 实用肝脏病杂志, 2018, 21( 2): 257- 260. DOI: 10.3969/j.issn.1672-5069.2018.02.025. [29] CHEN HJ, CHEN Y, ZHANG SQ, et al. Comparison of microwave ablation and surgical resection in the treatment of 92 cases of small hepatocellular carcinoma complicated with cirrhosis[J]. Med J Commun, 2018, 32( 2): 163- 165.陈红健, 陈橼, 张素青, 等. 微波消融与手术切除治疗小肝癌合并肝硬化92例效果比较[J]. 交通医学, 2018, 32( 2): 163- 165. [30] WANG HP, JIA J. Comparative analysis of microwave ablation and surgical resection in the treatment of 90 cases of small hepatocellular carcinoma complicated with cirrhosis[J/CD]. Electron J Clin Med Lit, 2019, 6( 94): 52. DOI: 10.16281/j.cnki.jocml.2019.94.043.王辉坡, 贾静. 微波消融与手术切除治疗小肝癌合并肝硬化90例效果对比分析[J/CD]. 临床医药文献电子杂志, 2019, 6( 94): 52. DOI: 10.16281/j.cnki.jocml.2019.94.043. [31] HUANG ZM, ZHU CH, LI J. Clinical observation of microwave ablation and surgical resection in the treatment of small hepatocellular carcinoma with resectable cirrhosis[J]. Shenzhen J Integr Tradit Chin West Med, 2016, 26( 23): 16- 18, 199. DOI: 10.16458/j.cnki.1007-0893.2016.23.008.黄志明, 朱灿华, 李君. 微波消融与手术切除治疗可切除肝硬化型初治小肝癌的疗效观察[J]. 深圳中西医结合杂志, 2016, 26( 23): 16- 18, 199. DOI: 10.16458/j.cnki.1007-0893.2016.23.008. [32] WELLS G, SHEA B, O’CONNELL D, et al. The Newcastle-Ottawa Scale(NOS) for assessing the quality of nonrandomised studies in meta-analyses[EB/OL]. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. http: //www.ohri.ca/programs/clinical_epidemiology/oxford.asp [33] HIGGINS J, THOMAS J, CHANDLER J, et al. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3, 2022[EB/OL]. http://training.cochrane.org/handbook/current. http: //training.cochrane.org/handbook/current [34] General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer(2022 edition)[J]. J Clin Hepatol, 2022, 38( 2): 288- 303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38( 2): 288- 303. DOI: 10.3969/j.issn.1001-5256.2022.02.009. [35] XIONG K, ZHU LP, LU Y, et al. Network Meta-analysis on the efficacy and safety of surgical resection and thermal ablations for hepatocellular carcinoma in China[J]. Chin J Hepatobiliary Surg, 2019, 25( 11): 823- 827. DOI: 10.3760/cma.j.issn.1007-8118.2019.11.007.熊琨, 朱莉萍, 陆勇, 等. 我国肝细胞癌手术切除与热消融疗效和安全性比较的网络荟萃分析[J]. 中华肝胆外科杂志, 2019, 25( 11): 823- 827. DOI: 10.3760/cma.j.issn.1007-8118.2019.11.007. [36] ZHANG T, HU H, JIA YS, et al. Efficacy and safety of radiofrequency ablation and surgery for hepatocellular carcinoma in patients with cirrhosis: A meta-analysis[J]. Medicine, 2022, 101( 52): e32470. DOI: 10.1097/MD.0000000000032470. [37] WANG WX, ZHANG FZ, XU XX, et al. Comparison on efficacy of TACE combined with radiofrequency ablation or microwave ablation for primary hepatocellular carcinoma: Meta-analysis[J]. Chin J Interv Imag Ther, 2023, 20( 8): 467- 472. DOI: 10.13929/j.issn.1672-8475.2023.08.005.王文轩, 张福洲, 徐晓雪, 等. 对比TACE联合射频消融与联合微波消融治疗原发性肝细胞癌效果:Meta分析[J]. 中国介入影像与治疗学, 2023, 20( 8): 467- 472. DOI: 10.13929/j.issn.1672-8475.2023.08.005. -