中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脂代谢重编程与原发性肝癌发生发展的关系

李飞燕 王明刚 毛德文 张日云 王娜 罗银冰 刘晓萍 林玉培

引用本文:
Citation:

脂代谢重编程与原发性肝癌发生发展的关系

DOI: 10.12449/JCH240829
基金项目: 

国家自然科学基金 (82274434);

国家自然科学基金 (81960841);

国家自然科学基金 (82060848);

广西自然科学基金 (2020GXNSFBA297115);

广西自然科学基金 (2020GXNSFAA297070);

广西中医药大学博士启动基金 (2020BS026);

广西中医药大学第一附属医院博士启动基金 (2020BS003);

广西研究生教育创新计划项目 (YCSW2023378);

广西研究生教育创新计划项目 (YCBZ2023157);

广西研究生教育创新计划项目 (YCSW2023384);

广西中医药大学研究生教育创新计划项目 (YCSY2022024);

广西高校中青年教师科研基础能力提升项目 (2022KY0284);

广西高校中青年教师科研基础能力提升项目 (2023KY0324)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:王明刚负责研究思路的设计;罗银冰、林玉培、刘晓萍负责查阅相关文献;张日云、王娜负责资料归纳和分析;李飞燕负责撰写论文;毛德文负责指导修改论文及最后定稿。
详细信息
    通信作者:

    王明刚, wmgyx2012@163.com (ORCID: 0000-0002-2781-6777)

Association of lipid metabolism reprogramming with the development and progression of primary liver cancer

Research funding: 

National Natural Science Foundation of China (82274434);

National Natural Science Foundation of China (81960841);

National Natural Science Foundation of China (82060848);

Guangxi Natural Science Foundation (2020GXNSFBA297115);

Guangxi Natural Science Foundation (2020GXNSFAA297070);

Doctoral Start-up Fund of Guangxi University of Chinese Medicine (2020BS026);

The First Affiliated Hospital of Guangxi University of Chinese Medicine Doctoral Start-up Fund (2020BS003);

Innovation Project of Guangxi Graduate Education (YCSW2023378);

Innovation Project of Guangxi Graduate Education (YCBZ2023157);

Innovation Project of Guangxi Graduate Education (YCSW2023384);

Innovation Project of Guangxi Graduate Education of GXUCM (YCSY2022024);

Project on Enhancement of Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities and Colleges (2022KY0284);

Project on Enhancement of Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities and Colleges (2023KY0324)

More Information
    Corresponding author: WANG Minggang, wmgyx2012@163.com (ORCID: 0000-0002-2781-6777)
  • 摘要: 脂质代谢作为维持生命之本,是保持细胞存活的前提,脂质稳态能迅速对代谢变化做出协调反应。在癌症发生发展过程中,为了满足质膜合成和能量产生,癌细胞的脂质代谢会升高。脂质代谢异常对原发性肝癌的进展起着重要作用。本文综述二者之间的关联,以期寻找进一步防治原发性肝癌的靶点。

     

  • [1] LI X, RAMADORI P, PFISTER D, et al. The immunological and metabolic landscape in primary and metastatic liver cancer[J]. Nat Rev Cancer, 2021, 21( 9): 541- 557. DOI: 10.1038/s41568-021-00383-9.
    [2] JIANG TT, SUN FF, ZENG Z, et al. Progress on metabolic associated fatty liver disease related liver cancer[J/CD]. Chin J Liver Dis(Electronic Version), 2022, 14( 3): 14- 17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.

    蒋婷婷, 孙芳芳, 曾湛, 等. 代谢相关脂肪性肝病相关肝癌研究进展[J/CD]. 中国肝脏病杂志(电子版), 2022, 14( 3): 14- 17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.
    [3] SIA D, VILLANUEVA A, FRIEDMAN SL, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis[J]. Gastroenterology, 2017, 152( 4): 745- 761. DOI: 10.1053/j.gastro.2016.11.048.
    [4] CHIANG CL, CHIU KWH, CHAN KSK, et al. Sequential transarterial chemoembolisation and stereotactic body radiotherapy followed by immunotherapy as conversion therapy for patients with locally advanced, unresectable hepatocellular carcinoma(START-FIT): A single-arm, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2023, 8( 2): 169- 178. DOI: 10.1016/S2468-1253(22)00339-9.
    [5] RUFF SM, SHANNON AH, PAWLIK TM. Advances in targeted immunotherapy for hepatobiliary cancers[J]. Int J Mol Sci, 2022, 23( 22): 13961. DOI: 10.3390/ijms232213961.
    [6] CHOW A, PERICA K, KLEBANOFF CA, et al. Clinical implications of T cell exhaustion for cancer immunotherapy[J]. Nat Rev Clin Oncol, 2022, 19( 12): 775- 790. DOI: 10.1038/s41571-022-00689-z.
    [7] ALANNAN M, FAYYAD-KAZAN H, TRÉZÉGUET V, et al. Targeting lipid metabolism in liver cancer[J]. Biochemistry, 2020, 59( 41): 3951- 3964. DOI: 10.1021/acs.biochem.0c00477.
    [8] SKILL NJ, SCOTT RE, WU JM, et al. Hepatocellular carcinoma associated lipid metabolism reprogramming[J]. J Surg Res, 2011, 169( 1): 51- 56. DOI: 10.1016/j.jss.2009.09.005.
    [9] HAO Y, LI DX, XU Y, et al. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data[J]. BMC Bioinformatics, 2019, 20( Suppl 7): 195. DOI: 10.1186/s12859-019-2734-4.
    [10] YU WN, LEI QY, YANG L, et al. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment[J]. J Hematol Oncol, 2021, 14( 1): 187. DOI: 10.1186/s13045-021-01200-4.
    [11] COCKCROFT S. Mammalian lipids: Structure, synthesis and function[J]. Essays Biochem, 2021, 65( 5): 813- 845. DOI: 10.1042/EBC20200067.
    [12] GUO DL, BELL EH, MISCHEL P, et al. Targeting SREBP-1-driven lipid metabolism to treat cancer[J]. Curr Pharm Des, 2014, 20( 15): 2619- 2626. DOI: 10.2174/13816128113199990486.
    [13] REPA JJ, MANGELSDORF DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis[J]. Annu Rev Cell Dev Biol, 2000, 16: 459- 481. DOI: 10.1146/annurev.cellbio.16.1.459.
    [14] GUO YJ, ZHAO M, BO T, et al. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol[J]. Cell Res, 2019, 29( 2): 151- 166. DOI: 10.1038/s41422-018-0123-6.
    [15] SAHA P, SHUMATE JL, CALDWELL JG, et al. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins[J]. Elife, 2020, 9: e57089. DOI: 10.7554/eLife.57089.
    [16] van de SLUIS B, WIJERS M, HERZ J. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1[J]. Curr Opin Lipidol, 2017, 28( 3): 241- 247. DOI: 10.1097/MOL.0000000000000411.
    [17] LI ZY, ZHANG HF. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression[J]. Cell Mol Life Sci, 2016, 73( 2): 377- 392. DOI: 10.1007/s00018-015-2070-4.
    [18] CHENG CM, GENG F, CHENG X, et al. Lipid metabolism reprogramming and its potential targets in cancer[J]. Cancer Commun(Lond), 2018, 38( 1): 27. DOI: 10.1186/s40880-018-0301-4.
    [19] ZHANG M, WEI TJ, ZHANG XD, et al. Targeting lipid metabolism reprogramming of immunocytes in response to the tumor microenvironment stressor: A potential approach for tumor therapy[J]. Front Immunol, 2022, 13: 937406. DOI: 10.3389/fimmu.2022.937406.
    [20] BACCI M, LORITO N, SMIRIGLIA A, et al. Fat and furious: Lipid metabolism in antitumoral therapy response and resistance[J]. Trends Cancer, 2021, 7( 3): 198- 213. DOI: 10.1016/j.trecan.2020.10.004.
    [21] CHEN EB, YI J, JIANG J, et al. Identification and validation of a fatty acid metabolism-related lncRNA signature as a predictor for prognosis and immunotherapy in patients with liver cancer[J]. BMC Cancer, 2022, 22( 1): 1037. DOI: 10.1186/s12885-022-10122-4.
    [22] TIAN W, PANG WX, GE Y, et al. Hepatocyte-generated 27-hydroxycholesterol promotes the growth of melanoma by activation of estrogen receptor alpha[J]. J Cell Biochem, 2018, 119( 3): 2929- 2938. DOI: 10.1002/jcb.26498.
    [23] LI YJ, KASIM V, YAN XS, et al. Yin Yang 1 facilitates hepatocellular carcinoma cell lipid metabolism and tumor progression by inhibiting PGC-1β-induced fatty acid oxidation[J]. Theranostics, 2019, 9( 25): 7599- 7615. DOI: 10.7150/thno.34931.
    [24] XIA LZ, OYANG L, LIN JG, et al. The cancer metabolic reprogramming and immune response[J]. Mol Cancer, 2021, 20( 1): 28. DOI: 10.1186/s12943-021-01316-8.
    [25] PAN MX, QIN C, HAN XL. Lipid metabolism and lipidomics applications in cancer research[J]. Adv Exp Med Biol, 2021, 1316: 1- 24. DOI: 10.1007/978-981-33-6785-2_1.
    [26] BROADFIELD LA, PANE AA, TALEBI A, et al. Lipid metabolism in cancer: New perspectives and emerging mechanisms[J]. Dev Cell, 2021, 56( 10): 1363- 1393. DOI: 10.1016/j.devcel.2021.04.013.
    [27] WANG MD, HAN J, XING H, et al. Dysregulated fatty acid metabolism in hepatocellular carcinoma[J]. Hepat Oncol, 2016, 3( 4): 241- 251. DOI: 10.2217/hep-2016-0012.
    [28] WANG B, ZHANG H, CHEN YF, et al. Acyl-CoA thioesterase 9 promotes tumour growth and metastasis through reprogramming of fatty acid metabolism in hepatocellular carcinoma[J]. Liver Int, 2022, 42( 11): 2548- 2561. DOI: 10.1111/liv.15409.
    [29] TOMACHA J, DOKDUANG H, PADTHAISONG S, et al. Targeting fatty acid synthase modulates metabolic pathways and inhibits cholangiocarcinoma cell progression[J]. Front Pharmacol, 2021, 12: 696961. DOI: 10.3389/fphar.2021.696961.
    [30] NATH A, LI I, ROBERTS LR, et al. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Sci Rep, 2015, 5: 14752. DOI: 10.1038/srep14752.
    [31] XU HJ, ZHOU S, TANG QL, et al. Cholesterol metabolism: New functions and therapeutic approaches in cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874( 1): 188394. DOI: 10.1016/j.bbcan.2020.188394.
    [32] WANG HL, SHANG XY, WAN X, et al. Increased hepatocellular carcinoma risk in chronic hepatitis B patients with persistently elevated serum total bile acid: A retrospective cohort study[J]. Sci Rep, 2016, 6: 38180. DOI: 10.1038/srep38180.
    [33] THOMAS CE, LUU HN, WANG RW, et al. Association between pre-diagnostic serum bile acids and hepatocellular carcinoma: The Singapore Chinese health study[J]. Cancers(Basel), 2021, 13( 11): 2648. DOI: 10.3390/cancers13112648.
    [34] WANG CZ, YANG MY, ZHAO JF, et al. Bile salt(glycochenodeoxycholate acid) induces cell survival and chemoresistance in hepatocellular carcinoma[J]. J Cell Physiol, 2019, 234( 7): 10899- 10906. DOI: 10.1002/jcp.27905.
    [35] XIE GX, WANG XN, HUANG FJ, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis[J]. Int J Cancer, 2016, 139( 8): 1764- 1775. DOI: 10.1002/ijc.30219.
    [36] RESSOM HW, XIAO JF, TULI L, et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis[J]. Anal Chim Acta, 2012, 743: 90- 100. DOI: 10.1016/j.aca.2012.07.013.
    [37] GAO CQ, CHU ZZ, ZHANG D, et al. Serine/threonine kinase TBK1 promotes cholangiocarcinoma progression via direct regulation of β-catenin[J]. Oncogene, 2023, 42( 18): 1492- 1507. DOI: 10.1038/s41388-023-02651-4.
    [38] PAUL B, LEWINSKA M, ANDERSEN JB. Lipid alterations in chronic liver disease and liver cancer[J]. JHEP Rep, 2022, 4( 6): 100479. DOI: 10.1016/j.jhepr.2022.100479.
    [39] SZLASA W, ZENDRAN I, ZALESIŃSKA A, et al. Lipid composition of the cancer cell membrane[J]. J Bioenerg Biomembr, 2020, 52( 5): 321- 342. DOI: 10.1007/s10863-020-09846-4.
    [40] POMYEN Y, CHAISAINGMONGKOL J, RABIBHADANA S, et al. Gut dysbiosis in Thai intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J]. Sci Rep, 2023, 13( 1): 11406. DOI: 10.1038/s41598-023-38307-2.
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  63
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 录用日期:  2023-11-08
  • 出版日期:  2024-08-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回