中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原发性胆汁性胆管炎遗传易感性的研究现状

赵春梅 马狄 邰文琳

引用本文:
Citation:

原发性胆汁性胆管炎遗传易感性的研究现状

DOI: 10.12449/JCH240328
基金项目: 

国家自然科学基金 (82060385);

昆明医科大学2023年研究生创新基金 (2023S321)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:赵春梅负责文献查找、阅读及文章撰写;马狄负责撰写框架的构建;邰文琳负责文章修改。
详细信息
    通信作者:

    邰文琳, taiwenlinlin@sohu.com (ORCID: 0000-0002-8278-929X)

Current status of research on the genetic susceptibility of primary biliary cholangitis

Research funding: 

National Natural Science Foundation of China (82060385);

Postgraduate Innovation Fund of Kunming Medical University in 2023 (2023S321)

More Information
  • 摘要: 原发性胆汁性胆管炎(PBC)是一种以胆管上皮细胞变性坏死为主,好发于中老年女性,具有强烈的遗传倾向性的肝脏自身免疫性疾病。随着全基因组关联分析(GWAS)的不断发展,PBC的遗传易感性备受关注。本文阐述了与PBC密切相关的遗传易感基因的研究进展,以期为PBC治疗提供有效靶点。

     

  • 表  1  与中国PBC显著相关的易感位点

    Table  1.   Susceptible loci significantly associated with Chinese PBC

    候选基因 基因位置 SNP 组合P 比值比 (95%可信区间)
    HLA-DRA 6p21 rs9268644 2.41×10-19 0.51(0.44~0.59)
    HLA-DPB1 6p21 rs9501251 8.17×10-13 1.94(1.61~2.33)
    IL1RL1 2q12.1 rs12712133 5.19×10-9 1.14(1.07~1.21)
    IL-12A 3q25.33 rs485499 4.20×10-2 1.20(1.01~1.44)
    IL-12RB2 1p31.3 rs11209050 4.00×10-4 1.27(1.11~1.44)
    CXCR5 11q23.3 rs715412 1.30×10-2 1.26(1.05~1.52)
    DDX6,CXCR5 11q23.3 rs77871618 9.12×10-14 1.55(1.38~1.74)
    CCL20 2q36.3 rs4973341 2.34×10-10 0.82(0.74~0.90)
    TNFSF15,TNFSF8 9q32 rs4979467 8.28×10-12 1.40(1.27~1.54)
    TNFRSF1A 12p13.31 rs4149576 1.11×10-5 1.35(1.18~1.55)
    TNFAIP3 6q23.3 rs6933404 1.27×10-10 1.18(1.09~1.27)
    ORMDL3,GSDMB,IKZF3 17q12 5.58×10-7 1.381)
    SNRPGP8 2q36.3 rs4973341 2.34×10-10 0.82(0.74~0.90)
    ARID3A 19p13.3 rs2238571 5.24×10-10 0.771)
    FCRL3 1q32.1 rs117214467 8.55×10-3
    DNMT3A 3q24.2 rs6807549 1.37×10-3
    RARB 4q24 rs79109654 8.56×10-5
    TRIM14 10q11.23 rs76129863 4.83×10-3
    WDFY4 11p15.5 rs3216 8.17×10-2
    TMEM163 6q21 rs4134466 6.71×10-7
    RPL3,SYNGR1 22q13.1 rs137603 2.06×10-7 0.68(0.59~0.79)
    HELZ2 20q13.33 rs79267778 1.87×10-4 4.20(1.67~10.58)
    注:1)95%可信区间无法获取;SNP,单核苷酸多态性。
    下载: 导出CSV
  • [1] YANG HQ, CHEN LL, LIU YH. A large-scale plasma proteome Mendelian randomization study identifies novel causal plasma proteins related to primary biliary cholangitis[J]. Front Immunol, 2023, 14: 1052616. DOI: 10.3389/fimmu.2023.1052616.
    [2] YOU H, MA X, EFE C, et al. APASL clinical practice guidance: The diagnosis and management of patients with primary biliary cholangitis[J]. Hepatol Int, 2022, 16( 1): 1- 23. DOI: 10.1007/s12072-021-10276-6.
    [3] AHOUSSOUGBEMEY MELE A, MAHMOOD R, OGBUAGU H, et al. Hyperlipidemia in the setting of primary biliary cholangitis: A case report and review of management strategies[J]. Cureus, 2022, 14( 11): e31411. DOI: 10.7759/cureus.31411.
    [4] COLAPIETRO F, LLEO A, GENERALI E. Antimitochondrial antibodies: From bench to bedside[J]. Clin Rev Allergy Immunol, 2022, 63( 2): 166- 177. DOI: 10.1007/s12016-021-08904-y.
    [5] QIAN Q, HE W, TANG R, et al. Implications of gut microbiota in autoimmune liver diseases[J]. Minerva Gastroenterol(Torino), 2023, 69( 1): 95- 106. DOI: 10.23736/S2724-5985.21.02860-9.
    [6] ÖRNOLFSSON KT, OLAFSSON S, BERGMANN OM, et al. Using the Icelandic genealogical database to define the familial risk of primary biliary cholangitis[J]. Hepatology, 2018, 68( 1): 166- 171. DOI: 10.1002/hep.29675.
    [7] SELMI C, MAYO MJ, BACH N, et al. Primary billiary cirrhosis in monozygotic twins: genetics, epigenetics, and environment[J]. Gastroenterology, 2004, 127( 2): 485- 492. DOI: 10.1053/j.gastro.2004.05.005.
    [8] ALWABEL AH, PEEDIKAYIL M, ALNASSER S, et al. Efficacy of ursodeoxycholic acid for primary biliary cholangitis: Experience from a tertiary care centre in Saudi Arabia[J]. Saudi J Gastroenterol, 2023, 29( 2): 135- 140. DOI: 10.4103/sjg.sjg_445_21.
    [9] GERUSSI A, CRISTOFERI L, CARBONE M, et al. The immunobiology of female predominance in primary biliary cholangitis[J]. J Autoimmun, 2018, 95: 124- 132. DOI: 10.1016/j.jaut.2018.10.015.
    [10] GOLDEN LC, ITOH Y, ITOH N, et al. Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes[J]. PNAS, 2019, 116( 52): 26779- 26787. DOI: 10.1073/pnas.1910072116.
    [11] CAO H, ZHU BK, QU Y, et al. Abnormal expression of ERα in cholangiocytes of patients with primary biliary cholangitis mediated intrahepatic bile duct inflammation[J]. Front Immunol, 2019, 10: 2815. DOI: 10.3389/fimmu.2019.02815.
    [12] QIU F, TANG RQ, ZUO XB, et al. A genome-wide association study identifies six novel risk loci for primary biliary cholangitis[J]. Nat Commun, 2017, 8: 14828. DOI: 10.1038/ncomms14828.
    [13] LI Y, LI ZQ, CHEN RL, et al. A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression[J]. Nat Commun, 2023, 14: 1732. DOI: 10.1038/s41467-023-37213-5.
    [14] CORDELL HJ, FRYETT JJ, UENO K, et al. Corrigendum to:“An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs”[J Hepatol 75(2021) 572-581][J]. J Hepatol, 2023, 78( 4): 883. DOI: 10.1016/j.jhep.2022.12.001.
    [15] DONG M, LI JX, TANG RQ, et al. Multiple genetic variants associated with primary biliary cirrhosis in a Han Chinese population[J]. Clin Rev Allergy Immunol, 2015, 48( 2-3): 316- 321. DOI: 10.1007/s12016-015-8472-0.
    [16] HITOMI Y, NAKAMURA M. The genetics of primary biliary cholangitis: A GWAS and post-GWAS update[J]. Genes, 2023, 14( 2): 405. DOI: 10.3390/genes14020405.
    [17] HUANG YQ. Recent advances in the diagnosis and treatment of primary biliary cholangitis[J]. World J Hepatol, 2016, 8( 33): 1419. DOI: 10.4254/wjh.v8.i33.1419.
    [18] JOSHITA S, UMEMURA T, TANAKA E, et al. Genetics and epigenetics in the pathogenesis of primary biliary cholangitis[J]. Clin J Gastroenterol, 2018, 11( 1): 11- 18. DOI: 10.1007/s12328-017-0799-z.
    [19] CHUNG BK, GUEVEL BT, REYNOLDS GM, et al. Phenotyping and auto-antibody production by liver-infiltrating B cells in primary sclerosing cholangitis and primary biliary cholangitis[J]. J Autoimmun, 2017, 77: 45- 54. DOI: 10.1016/j.jaut.2016.10.003.
    [20] DARLAY R, AYERS KL, MELLS GF, et al. Amino acid residues in five separate HLA genes can explain most of the known associations between the MHC and primary biliary cholangitis[J]. PLoS Genet, 2018, 14( 12): e1007833. DOI: 10.1371/journal.pgen.1007833.
    [21] LIU X, INVERNIZZI P, LU Y, et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis[J]. Nat Genet, 2010, 42( 8): 658- 660. DOI: 10.1038/ng.627.
    [22] WANG C, ZHENG XD, TANG RQ, et al. Fine mapping of the MHC region identifies major independent variants associated with Han Chinese primary biliary cholangitis[J]. J Autoimmun, 2020, 107: 102372. DOI: 10.1016/j.jaut.2019.102372.
    [23] GERUSSI A, CARBONE M, CORPECHOT C, et al. The genetic architecture of primary biliary cholangitis[J]. Eur J Med Genet, 2021, 64( 9): 104292. DOI: 10.1016/j.ejmg.2021.104292.
    [24] LI YN, LIU X, WANG Y, et al. Novel HLA-DRB1 alleles contribute risk for disease susceptibility in primary biliary cholangitis[J]. Dig Liver Dis, 2022, 54( 2): 228- 236. DOI: 10.1016/j.dld.2021.04.010.
    [25] TANAKA A, LEUNG PSC, GERSHWIN ME. The genetics of primary biliary cholangitis[J]. Curr Opin Gastroenterol, 2019, 35( 2): 93- 98. DOI: 10.1097/MOG.0000000000000507.
    [26] CHOW IT, JAMES EA, GATES TJ, et al. Differential binding of pyruvate dehydrogenase complex-E2 epitopes by DRB1*08∶‍01 and DRB1*11∶01 is predicted by their structural motifs and correlates with disease risk[J]. J Immunol, 2013, 190( 9): 4516- 4524. DOI: 10.4049/jimmunol.1202445.
    [27] HUANG CY, ZHANG HP, HAN WJ, et al. Disease predisposition of human leukocyte antigen class II genes influences the gut microbiota composition in patients with primary biliary cholangitis[J]. Front Immunol, 2022, 13: 984697. DOI: 10.3389/fimmu.2022.984697.
    [28] GUO F, HAO YA, ZHANG L, et al. Asthma susceptibility gene ORMDL3 promotes autophagy in human bronchial epithelium[J]. Am J Respir Cell Mol Biol, 2022, 66( 6): 661- 670. DOI: 10.1165/rcmb.2021-0305oc.
    [29] JAMES BN, WEIGEL C, GREEN CD, et al. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice[J]. FASEB J, 2023, 37( 3): e22799. DOI: 10.1096/fj.202201821R.
    [30] CHEN R, MICHAELOUDES C, LIANG YM, et al. ORMDL3 regulates cigarette smoke-induced endoplasmic reticulum stress in airway smooth muscle cells[J]. J Allergy Clin Immunol, 2022, 149( 4): 1445- 1457. e 5. DOI: 10.1016/j.jaci.2021.09.028.
    [31] XIANG BY, DENG CY, QIU F, et al. Single cell sequencing analysis identifies genetics-modulated ORMDL3+ cholangiocytes having higher metabolic effects on primary biliary cholangitis[J]. J Nanobiotechnol, 2021, 19( 1): 1- 21. DOI: 10.1186/s12951-021-01154-2.
    [32] SCHMIEDEL BJ, SEUMOIS G, SAMANIEGO-CASTRUITA D, et al. 17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells[J]. Nat Commun, 2016, 7: 13426. DOI: 10.1038/ncomms13426.
    [33] ZHANG YT, ZENG WH, XIA YM. TWEAK/Fn14 axis is an important player in fibrosis[J]. J Cell Physiol, 2021, 236( 5): 3304- 3316. DOI: 10.1002/jcp.30089.
    [34] POVEDA J, VÁZQUEZ-SÁNCHEZ S, SANZ AB, et al. TWEAK-Fn14as a common pathway in the heart and the kidneys in cardiorenal syndrome[J]. J Pathol, 2021: path. 5631. DOI: 10.1002/path.5631.
    [35] PASCOE AL, JOHNSTON AJ, MURPHY RM. Controversies in TWEAK-Fn14 signaling in skeletal muscle atrophy and regeneration[J]. Cell Mol Life Sci, 2020, 77( 17): 3369- 3381. DOI: 10.1007/s00018-020-03495-x.
    [36] LIAO M, LIAO JW, QU JQ, et al. Hepatic TNFRSF12A promotes bile acid-induced hepatocyte pyroptosis through NFκB/Caspase-1/GSDMD signaling in cholestasis[J]. Cell Death Discov, 2023, 9: 26. DOI: 10.1038/s41420-023-01326-z.
    [37] WANG GY, GARCIA V, LEE J, et al. Nrf2 deficiency causes hepatocyte dedifferentiation and reduced albumin production in an experimental extrahepatic cholestasis model[J]. PLoS One, 2022, 17( 6): e0269383. DOI: 10.1371/journal.pone.0269383.
    [38] WANG N, CHEN P, SONG Y, et al. CD226 deficiency attenuates the homeostasis and suppressive capacity of Tr1 cells[J]. Mol Immunol, 2021, 132: 192- 198. DOI: 10.1016/j.molimm.2021.01.002.
    [39] BAI LF, JIANG JY, LI H, et al. Role of CD226 Rs763361 polymorphism in susceptibility to multiple autoimmune diseases[J]. Immunol Investig, 2020, 49( 8): 926- 942. DOI: 10.1080/08820139.2019.1703737.
    [40] CORDELL HJ, FRYETT JJ, UENO K, et al. An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs[J]. J Hepatol, 2021, 75( 3): 572- 581. DOI: 10.1016/j.jhep.2021.04.055.
    [41] TANAKA A, LEUNG PSC, YOUNG HA, et al. Therapeutic and immunological interventions in primary biliary cholangitis: From mouse models to humans[J]. Arch Med Sci, 2018, 14( 4): 930- 940. DOI: 10.5114/aoms.2017.70995.
    [42] SUN QN, WANG QA, FENG N, et al. The expression and clinical significance of serum IL-17 in patients with primary biliary cirrhosis[J]. Ann Transl Med, 2019, 7( 16): 389. DOI: 10.21037/atm.2019.07.100.
    [43] DENG CW, LI WL, FEI YY, et al. Imbalance of the CD226/TIGIT immune checkpoint is involved in the pathogenesis of primary biliary cholangitis[J]. Front Immunol, 2020, 11: 1619. DOI: 10.3389/fimmu.2020.01619.
    [44] DOUGALL WC, KURTULUS S, SMYTH MJ, et al. TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy[J]. Immunol Rev, 2017, 276( 1): 112- 120. DOI: 10.1111/imr.12518.
    [45] ADAM L, ZOLDAN K, HOFMANN M, et al. Follicular T helper cell signatures in primary biliary cholangitis and primary sclerosing cholangitis[J]. Hepatol Commun, 2018, 2( 9): 1051- 1063. DOI: 10.1002/hep4.1226.
    [46] LI YY, WANG WB, TANG LB, et al. Chemokine(C-X-C motif) ligand 13 promotes intrahepatic chemokine(C-X-C motif) receptor 5+ lymphocyte homing and aberrant B-cell immune responses in primary biliary cirrhosis[J]. Hepatology, 2015, 61( 6): 1998- 2007. DOI: 10.1002/hep.27725.
    [47] ZHOU ZQ, TONG DN, GUAN J, et al. Circulating follicular helper T cells presented distinctively different responses toward bacterial antigens in primary biliary cholangitis[J]. Int Immunopharmacol, 2017, 51: 76- 81. DOI: 10.1016/j.intimp.2017.08.004.
    [48] CIRULLI ET, GOLDSTEIN DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing[J]. Nat Rev Genet, 2010, 11( 6): 415- 425. DOI: 10.1038/nrg2779.
    [49] KUKSA PP, GREENFEST-ALLEN E, CIFELLO J, et al. Scalable approaches for functional analyses of whole-genome sequencing non-coding variants[J]. Hum Mol Genet, 2022, 31( R1): R62- R72. DOI: 10.1093/hmg/ddac191.
    [50] HIRSCHFIELD GM, CHAPMAN RW, KARLSEN TH, et al. The genetics of complex cholestatic disorders[J]. Gastroenterology, 2013, 144( 7): 1357- 1374. DOI: 10.1053/j.gastro.2013.03.053.
  • 加载中
表(1)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  120
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-27
  • 录用日期:  2023-07-20
  • 出版日期:  2024-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回