线粒体自噬在肝脏相关疾病发生发展中的作用
DOI: 10.12449/JCH240232
-
摘要: 线粒体自噬是细胞在营养缺乏或受到外界刺激时,通过对受损线粒体的特异性清除,来维持线粒体功能完整性和细胞稳态的选择性自噬。近年来,大量研究证明线粒体自噬功能失调与非酒精性脂肪性肝病、药物性肝损伤、病毒性肝炎和肝细胞癌等多种肝脏相关疾病的发生发展密切相关。本文通过对线粒体自噬调控肝脏相关疾病的具体机制进行总结,进一步阐述了线粒体自噬在肝脏相关疾病中的潜在治疗靶点,以期为肝病的临床治疗提供更为有效的策略。Abstract: Mitophagy is a type of selective autophagy during which cells specifically remove damaged mitochondria in response to nutrient deficiency or external stimulation and thus maintain the integrity of mitochondrial function and cellular homeostasis. In recent years, a large number of studies have shown that dysfunction of mitophagy is closely associated with the development and progression of various liver-related diseases such as nonalcoholic fatty liver disease, drug-related liver injury, viral hepatitis, and hepatocellular carcinoma. This article summarizes the specific mechanisms of mitophagy in regulating liver-related diseases and further elaborates on the potential therapeutic targets of mitophagy in liver-related diseases, in order to provide more effective therapeutic strategies for the clinical treatment of liver diseases.
-
Key words:
- Liver Diseases /
- Mitophagy /
- Pathologic Processes
-
肝脏作为机体代谢的主要器官,参与多种生理过程,如血浆蛋白质合成、糖异生和糖原储存、胆固醇代谢和胆汁酸合成以及药物代谢和解毒等[1]。维持生理过程所需的能量主要由线粒体产生,同时线粒体还参与机体的物质代谢,在肝脏的生理病理中发挥着重要作用。肝脏疾病的发生和发展往往伴随线粒体功能障碍,如形态结构异常、活性氧(reactive oxygen species,ROS)产生增多、ATP合成减少、自由基生成增加等,这些异常可能是肝细胞损伤和坏死的重要原因[2-5]。而线粒体自噬作为细胞自我保护的重要机制之一[6-7],通过选择性清除受损或功能失调的线粒体,以维持线粒体数目和质量的平衡[8],进而在维持细胞稳态方面发挥至关重要的作用。有研究[9]表明,线粒体自噬功能失调会导致多种肝脏疾病的发生发展。本文通过综述线粒体自噬在肝脏相关疾病中的作用机制,以及靶向线粒体自噬的潜在治疗方案,为线粒体自噬在肝脏相关疾病中的进一步研究和应用提供参考依据。
1. 线粒体自噬概述
自噬是细胞中的一种分解代谢过程,主要通过将大分子、受损或老化的细胞器等细胞成分运送到溶酶体降解回收[10-11],促进营养物质的循环利用,进而在细胞稳态中发挥关键作用[12-13]。根据细胞成分运输至溶酶体内的途径不同,可将自噬分为巨自噬、微自噬和分子伴侣介导的自噬三种类型。其中线粒体自噬作为一种选择性的巨自噬,是细胞为应对氧化应激、营养缺乏、衰老等外界刺激启动的防御机制,该过程通过激活自噬相关蛋白诱导内质网来源的膜包裹受损线粒体形成自噬体,随后自噬体与溶酶体融合发生降解[14],最终受损或衰老的线粒体得以清除。通过这种自我保护机制可避免功能失调的线粒体累积和过量ROS的产生,从而避免细胞损伤和坏死。
2. 线粒体自噬的调控机制
线粒体自噬的调控机制主要包括两种:(1)以PTEN诱导激酶1(PTEN induced putative kinase 1,PINK1)和Parkin蛋白构成的PINK1/Parkin通路为代表的非受体介导的线粒体自噬;(2)以Bcl-2/腺病毒E1B相互作用蛋白3(Bcl-2/adenovirus E1B interacting protein 3,BNIP3)和FUN14结构域包含蛋白1(FUN14 domain containing 1,FUNDC1)通路为代表的受体介导的线粒体自噬。
2.1 非受体介导的线粒体自噬
在非受体介导的线粒体自噬中,PINK1/Parkin通路发挥着关键作用[15]。在正常情况下,PINK1进入线粒体后被线粒体内膜中的蛋白酶早老素相关菱形样蛋白(presenilin-associated rhomboid-like protease,PARL)识别并剪切[16],最终被蛋白酶体降解。当线粒体受损时,线粒体膜电位降低,PINK1无法正常进入线粒体内膜,从而大量聚集在线粒体外膜(outer mitochondrial membrane,OMM)上,进而磷酸化OMM蛋白底物上的泛素[17]。Parkin作为一种对磷酸化泛素有高亲和力的E3泛素连接酶,一方面可被磷酸化的泛素大量招募至OMM而被PINK1激活;另一方面,Parkin也可以直接被PINK1磷酸化,然后与磷酸化的泛素结合而激活[18]。激活后的Parkin促使线粒体底物泛素化,使得PINK1可进一步磷酸化泛素,形成可使泛素链快速聚合的正反馈。泛素链与自噬受体蛋白p62结合,招募微管相关蛋白轻链3(microtubule-associated protein light chain 3,LC3)阳性的自噬体,进而吞噬受损的线粒体,最后自噬体转移至溶酶体完成降解[19](图1)。
2.2 受体介导的线粒体自噬
BNIP3和FUNDC1均是位于OMM上的自噬受体,其可以通过LC3结合区域(LC3-interacting region,LIR)基序与LC3连接,诱导线粒体自噬的发生[20](图1)。BNIP3在细胞质中通常表达为一种无活性的单体,在缺氧时上调并通过其C端跨膜结构域锚定在OMM上,具有LIR基序的N端结构域暴露于细胞质中,随后与LC3结合激活线粒体自噬[21]。FUNDC1的磷酸化与去磷酸化是调控线粒体自噬的关键环节。在生理条件下,FUNDC1被活化的酪氨酸蛋白激酶磷酸化,线粒体自噬被抑制;在缺氧状态下,酪氨酸蛋白激酶失活,FUNDC1去磷酸化,使得FUNDC1与LC3之间的相互作用增强,促进受损线粒体和自噬体的结合,最终在溶酶体内降解[22]。综上所述,受体介导的信号通路对于线粒体自噬同样发挥着不可或缺的作用。
3. 线粒体自噬在肝脏相关疾病中的调控作用
线粒体自噬通过清除肝细胞内功能障碍的线粒体使肝组织免受损伤,从而维持肝脏的正常功能,进而发挥对肝脏的保护作用[23]。尽管各种肝病的发病原因和进展机制不尽相同,但近年来有大量文献显示线粒体自噬与多个肝脏相关疾病的发生发展密切相关。
3.1 线粒体自噬与非酒精性脂肪性肝病(NAFLD)
NAFLD是一种常见的慢性肝病[24]。近年来,因肥胖导致NAFLD患病人数激增[25],但NAFLD的发病机制复杂,主要与肥胖、胰岛素抵抗、代谢综合征相关[26]。当肝脂质代谢出现紊乱时,导致肝细胞内脂质聚积,随之引发细胞内生物学过程的异常,即NAFLD的起始病理过程被开启[27]。这一过程可能促进炎症、线粒体功能障碍、氧化应激反应和细胞死亡,进而加剧NAFLD的发展进程,导致肝纤维化和肝硬化,甚至肝癌的发生[28]。大量研究证实,调节线粒体自噬相关信号通路,例如腺苷酸激活蛋白激酶[Adenosine 5′-monophosphate (AMP)-activated protein kinase,AMPK]、PINK1/Parkin等,可以改善肥胖相关NAFLD的病理表现。Zhou等[29]研究肥胖相关的NAFLD发现,哺乳动物不育系20样激酶1(mammalian sterile 20-like kinase 1,Mst1)在高脂肪饮食(high fat diet,HFD)小鼠的肝脏中显著上调,敲低Mst1可抑制HFD介导的肝脏氧化应激和炎症反应,并减弱肝细胞线粒体凋亡,Mst1通过激活AMPK信号通路来抑制Parkin依赖的线粒体自噬,加重NAFLD的进展。Li等[30]研究发现,HFD介导的肝损伤与去乙酰化酶3(Sirtuin 3,Sirt3)下调有关,Sirt3可激活细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)-环磷腺苷效应元件结合蛋白(cAMP response element-binding protein,CREB)信号通路,上调BNIP3介导的线粒体自噬,从而减轻线粒体损伤并抑制肝细胞线粒体凋亡,通过增强Sirt3活性可用于治疗NAFLD。此外,在HFD介导的NAFLD中,硒蛋白对于维持线粒体自噬平衡至关重要。硒蛋白可通过AMPK通路激活Parkin介导的线粒体自噬,减少线粒体凋亡并去除由HFD引起的损伤线粒体[31]。Li等[32]采用花青素-3-O-葡萄糖苷治疗由HFD诱导的NAFLD小鼠模型,发现花青素-3-O-葡萄糖苷通过靶向PINK1介导的线粒体自噬,来抑制NAFLD小鼠肝脏的氧化应激、核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体活化和脂肪变性。上述研究发现,促进线粒体自噬可通过减少肝细胞线粒体凋亡、氧化应激和炎症反应,来预防和治疗肥胖相关的NAFLD。
3.2 线粒体自噬与药物性肝损伤(DILI)
DILI是指当个体暴露于某些药物的有毒剂量后发生的一种急性肝损伤,其中以对乙酰氨基酚(APAP)中毒引起的药物性肝损伤(acetaminophen-induced liver injury,AILI)最为常见,严重者可发展为急性肝衰竭[33]。AILI的形成是由于APAP进入人体后生成了反应性代谢物N-乙酰基-对苯醌亚胺,与细胞蛋白形成APAP加合物(APAP-AD)[34],而线粒体蛋白是APAP-AD形成的主要结合蛋白[35]。APAP-AD形成后会损害线粒体内膜上的电子传递链从而导致电子泄漏和氧化应激升高,进而诱导线粒体过氧亚硝酸盐形成,引发线粒体功能障碍和肝细胞死亡[36-37]。Yan等[38]采用木豆素(cajaninstilbene acid,CSA)治疗AILI小鼠模型,证明CSA可减轻APAP中毒引起的肝脏炎症、氧化应激和线粒体功能障碍。进一步探寻其分子机制,发现CSA通过激活Sestrin2/AMPK通路可减轻APAP诱导的氧化应激损伤,且增强线粒体自噬,从而改善APAP所致的肝损伤。Tan等[39]研究发现,中度低温(32 ℃)可激活AMPKα促进UNC-51样激酶1非依赖性线粒体自噬,并且通过减少还原型谷胱甘肽的消耗和阻碍c-Jun氨基末端激酶信号通路,来减轻APAP诱导的氧化损伤。上述研究结果均证实,促进线粒体自噬可缓解APAP引起的氧化损伤、炎症反应,从而延缓DILI的进展。
3.3 线粒体自噬与酒精性肝病(ALD)
ALD是一种由长期酗酒引起的肝病[40],研究[41-42]表明,炎症、氧化损伤和线粒体功能障碍是ALD发病的核心机制。肝细胞长期受到乙醇的刺激,会抑制其线粒体氧化磷酸化能力和细胞呼吸链复合物的形成,导致ATP产生减少以及代谢途径改变,并产生大量的ROS,引起细胞氧化损伤,最终发展为ALD甚至更为严重的肝病[43]。长期乙醇刺激会对肝脏中的线粒体造成损伤,线粒体自噬处理去极化线粒体的能力减弱,导致细胞内外释放线粒体损伤相关分子(mitochondria damage-associated molecular pattern,mtDAMP),mtDAMP可引起炎症小体的激活,从而促进炎症和促纤维化反应,最终引发肝炎和纤维化[44]。Lu等[45]研究发现,对小鼠采用150 mg/kg二甲双胍灌胃治疗,可显著减轻乙醇诱导的肝损伤。进一步研究发现,二甲双胍可通过激活AMPK,上调泛醌细胞色素C还原酶核心蛋白Ⅱ(recombinant ubiquinol cytochrome C reductase core proteinⅡ,UQCRC2)的表达,来增强线粒体自噬以延缓ALD的进展,同时UQCRC2也可显著减轻乙醇诱导的脂质积累。Li等[46]研究发现,酒精摄入会下调小鼠肝脏中双特异性磷酸酶1(dual specificity phosphatase 1,DUSP1)的表达,DUSP1转基因小鼠则表现出对酒精介导的肝功能障碍具有抑制作用,可改善酒精代谢,抑制肝纤维化以及肝脏炎症和氧化应激。乙醇介导的DUSP1下调中断了DUSP1与Cullin-1蛋白(CUL1)的相互作用,通过p62和Parkin的转录抑制,导致CUL1核易位和线粒体自噬抑制,靶向DUSP1/CUL1/p62轴将是恢复肝线粒体自噬以及缓解ALD进展的新方法。上述研究结果表明,通过促进线粒体自噬,可以清除受损的线粒体,降低细胞内氧化应激和炎症反应的程度,从而缓解ALD的进展。
3.4 线粒体自噬与乙型肝炎
乙型肝炎的病理过程涉及多种细胞信号途径和细胞器的功能失调[47]。既往研究[48]表明,线粒体自噬在乙型肝炎的感染过程中发挥了重要作用。Kim等[49]研究发现,通过下调HBV感染细胞中的Parkin或线粒体动力相关蛋白的表达来抑制线粒体自噬,会导致肝细胞大量死亡并有助于慢性感染的建立。有研究[50]发现,乙型肝炎病毒X蛋白(hepatitis B virus X protein,HBx)可协助共价闭合环状DNA对HBV转录的表观遗传调控,对于启动和维持HBV的复制至关重要。Huang等[51]研究发现,在营养缺乏的肿瘤微环境下,HBx通过降低线粒体Lon蛋白酶同源物的表达或增强线粒体未折叠蛋白反应,以增强PINK1/Parkin介导的线粒体自噬,从而减少肝细胞中的线粒体凋亡。因此,靶向HBx可阻碍乙型肝炎向肝细胞癌(HCC)发展。此外,有研究[52]发现,线粒体E3泛素连接酶MARCH5可通过降解HBx蛋白,来抑制HBx诱导的ROS产生、线粒体自噬。该结果表明,MARCH5是缓解HBV介导的肝病的新靶标。上述研究结果提示,通过降解HBx蛋白可抑制线粒体自噬,以缓解乙型肝炎的进展。
3.5 线粒体自噬与肝缺血再灌注损伤(HIRI)
HIRI是指肝脏在经历一段时间的缺血后,再次接受血液供应时的损伤,往往继发于肝切除术后、肝移植术或严重的缺血性休克等造成肝脏急性大量失血的疾病。缺血期间的缺氧和营养缺乏导致肝细胞和非实质肝细胞中的ATP缺乏,从而破坏细胞内需要耗能的代谢和转运过程,导致ROS和酸性代谢物的积累。氧化应激增加会促进线粒体通透性转换孔打开,随后诱导线粒体通透性改变,引起细胞凋亡和坏死细胞死亡[53]。有研究[54]表明,线粒体自噬的清除功能障碍对HIRI的恢复有着重要作用,PINK1介导的线粒体自噬通过抑制NLRP3炎症小体的活化来防止HIRI。另有研究发现,对C57BL/6小鼠肝脏部分缺血60 min再灌流6 h后,线粒体的生物合成和PINK1/Parkin介导的线粒体自噬作用被抑制,随后用京尼平治疗后,可增强线粒体自噬,改善HIRI所致的肝细胞氧化损伤和线粒体功能障碍。此外,芒柄花黄素可通过PHB2/PINK1/Parkin介导的线粒体自噬途径,促进AST和ALT水平恢复,同时抑制细胞凋亡,减少炎症,以保护肝脏免受HIRI诱导的损伤[55]。上述研究结果证实,增强线粒体自噬在改善HIRI方面发挥重要作用,主要通过减少肝脏氧化应激反应、炎症反应以及肝细胞凋亡来减轻HIRI诱导的肝损伤。
3.6 线粒体自噬与HCC
HCC是全球发病率和死亡率较高的原发性肝癌[56],由于HCC起病隐匿、恶性程度高和远处转移发生早,目前缺乏有效的应对手段[57]。HCC的发病机制复杂,其具体机制仍未被阐明[58]。但通过调节线粒体自噬促进HCC细胞凋亡是一种潜在的治疗策略。Chen等[59]研究发现,广谱抗真菌剂酮康唑可通过下调环氧合酶1来激活PINK1/Parkin介导的线粒体自噬,从而促进细胞凋亡,抑制HCC的生长。有研究[60]发现,在HCC细胞中,血根碱可损害溶酶体功能,并诱导ROS依赖性线粒体自噬和HCC细胞的线粒体凋亡。Zheng等[61]研究证实,抑制线粒体自噬可预防HCC的转移和侵袭,STOML2蛋白可通过相互作用和稳定PINK1来增强线粒体自噬,从而促进HCC转移并调节HCC对仑伐替尼的响应。因此阻断血管生成和线粒体自噬的药物抑制剂组合可作为HCC的有效治疗方法。此外,有研究[62]发现,线粒体自噬的激活在调节HCC细胞对索拉非尼的敏感性方面具有双重作用。缺氧条件下,PINK1/Parkin介导的线粒体自噬被过度激活,可能是索拉非尼耐药的主要原因。因此阻断线粒体自噬可以恢复在缺氧条件下HCC细胞对索拉非尼的敏感性。但在HBV相关HCC组织中PINK1的表达下调,乙型肝炎表面抗原L-HBs通过增加Wnt家族7B蛋白/β-连环蛋白信号传导,抑制索拉非尼诱导的线粒体自噬,导致索拉非尼耐药[63]。上述研究结果表明,线粒体自噬与HCC之间的关系十分复杂,线粒体自噬既可能促进HCC的发展,也可能成为治疗HCC的潜在靶点。目前,相关的研究还需要进一步深入探索。
4. 小结与展望
调控线粒体自噬是治疗肝病的新研究方向。通过调节线粒体自噬途径,可以有效减轻NAFLD、HCC等肝病的病理进程,并改善肝功能。未来的研究应着重探索更多药物和天然产物对线粒体自噬的影响,以及线粒体自噬通路的分子机制,为肝病的治疗提供更多选择和新的治疗靶点。目前对于线粒体自噬在肝病治疗中的应用仍需要更多的研究和探索。尽管已进行了一些相关的临床试验,但其安全性和有效性仍需进一步验证。此外,随着技术的不断发展,一些新的治疗手段逐渐被引入到肝病的治疗中。例如,基因编辑技术可以通过调节线粒体自噬通路中关键基因的表达来达到治疗效果,而光遗传学技术则可以通过光线控制线粒体自噬的激活和抑制,实现精准治疗。未来,期待更多的研究成果和临床试验结果,以期发现更加有效和安全的肝病治疗方案。
-
[1] QIAN H, CHAO XJ, WILLIAMS J, et al. Autophagy in liver diseases: A review[J]. Mol Aspects Med, 2021, 82: 100973. DOI: 10.1016/j.mam.2021.100973. [2] GRATTAGLIANO I, RUSSMANN S, DIOGO C, et al. Mitochondria in chronic liver disease[J]. Curr Drug Targets, 2011, 12( 6): 879- 893. DOI: 10.2174/138945011795528877. [3] SORRENTINO V, MENZIES KJ, AUWERX J. Repairing mitochondrial dysfunction in disease[J]. Annu Rev Pharmacol Toxicol, 2018, 58: 353- 389. DOI: 10.1146/annurev-pharmtox-010716-104908. [4] GOIKOETXEA-USANDIZAGA N, SERRANO-MACIÁ M, DELGADO TC, et al. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals[J]. Hepatology, 2022, 75( 3): 550- 566. DOI: 10.1002/hep.32149. [5] QIU YN, WANG GH, ZHOU F, et al. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy[J]. Ecotoxicol Environ Saf, 2019, 167: 178- 187. DOI: 10.1016/j.ecoenv.2018.08.050. [6] KE PY. Mitophagy in the pathogenesis of liver diseases[J]. Cells, 2020, 9( 4): 831. DOI: 10.3390/cells9040831. [7] GARZA-LOMBÓ C, PAPPA A, PANAYIOTIDIS MI, et al. Redox homeostasis, oxidative stress and mitophagy[J]. Mitochondrion, 2020, 51: 105- 117. DOI: 10.1016/j.mito.2020.01.002. [8] SUN K, JING XZ, GUO JC, et al. Mitophagy in degenerative joint diseases[J]. Autophagy, 2021, 17( 9): 2082- 2092. DOI: 10.1080/15548627.2020.1822097. [9] MA XW, MCKEEN T, ZHANG JH, et al. Role and mechanisms of mitophagy in liver diseases[J]. Cells, 2020, 9( 4): 837. DOI: 10.3390/cells9040837. [10] KLIONSKY DJ, EMR SD. Autophagy as a regulated pathway of cellular degradation[J]. Science, 2000, 290( 5497): 1717- 1721. DOI: 10.1126/science.290.5497.1717. [11] MIZUSHIMA N, LEVINE B, CUERVO AM, et al. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451( 7182): 1069- 1075. DOI: 10.1038/nature06639. [12] MIZUSHIMA N, KOMATSU M. Autophagy: Renovation of cells and tissues[J]. Cell, 2011, 147( 4): 728- 741. DOI: 10.1016/j.cell.2011.10.026. [13] YOULE RJ, NARENDRA DP. Mechanisms of mitophagy[J]. Nat Rev Mol Cell Biol, 2011, 12( 1): 9- 14. DOI: 10.1038/nrm3028. [14] LU YY, LI ZJ, ZHANG SQ, et al. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation[J]. Theranostics, 2023, 13( 2): 736- 766. DOI: 10.7150/thno.79876. [15] LIN JJ, CHEN K, CHEN WF, et al. Paradoxical mitophagy regulation by PINK1 and TUFm[J]. Mol Cell, 2020, 80( 4): 607- 620. DOI: 10.1016/j.molcel.2020.10.007. [16] YAN CJ, GONG LL, CHEN L, et al. PHB2(prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis[J]. Autophagy, 2020, 16( 3): 419- 434. DOI: 10.1080/15548627.2019.1628520. [17] KANE LA, LAZAROU M, FOGEL AI, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity[J]. J Cell Biol, 2014, 205( 2): 143- 153. DOI: 10.1083/jcb.201402104. [18] HARPER JW, ORDUREAU A, HEO JM. Building and decoding ubiquitin chains for mitophagy[J]. Nat Rev Mol Cell Biol, 2018, 19( 2): 93- 108. DOI: 10.1038/nrm.2017.129. [19] NGUYEN TN, PADMAN BS, LAZAROU M. Deciphering the molecular signals of PINK1/Parkin mitophagy[J]. Trends Cell Biol, 2016, 26( 10): 733- 744. DOI: 10.1016/j.tcb.2016.05.008. [20] ONISHI M, YAMANO K, SATO M, et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J, 2021, 40( 3): e104705. DOI: 10.15252/embj.2020104705. [21] HAMACHER-BRADY A, BRADY NR. Mitophagy programs: Mechanisms and physiological implications of mitochondrial targeting by autophagy[J]. Cell Mol Life Sci, 2016, 73( 4): 775- 795. DOI: 10.1007/s00018-015-2087-8. [22] LIU L, FENG D, CHEN G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nat Cell Biol, 2012, 14( 2): 177- 185. DOI: 10.1038/ncb2422. [23] FLORES-TORO JA, GO KL, LEEUWENBURGH C, et al. Autophagy in the liver: Cell's cannibalism and beyond[J]. Arch Pharm Res, 2016, 39( 8): 1050- 1061. DOI: 10.1007/s12272-016-0807-8. [24] ZHOU JH, ZHOU F, WANG WX, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71( 5): 1851- 1864. DOI: 10.1002/hep.31150. [25] YOUNOSSI ZM. Non-alcoholic fatty liver disease- A global public health perspective[J]. J Hepatol, 2019, 70( 3): 531- 544. DOI: 10.1016/j.jhep.2018.10.033. [26] FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24( 7): 908- 922. DOI: 10.1038/s41591-018-0104-9. [27] POUWELS S, SAKRAN N, GRAHAM Y, et al. Non-alcoholic fatty liver disease(NAFLD): A review of pathophysiology, clinical management and effects of weight loss[J]. BMC Endocr Disord, 2022, 22( 1): 63. DOI: 10.1186/s12902-022-00980-1. [28] ZHU LH, WU X, LIAO RR. Mechanism and regulation of mitophagy in nonalcoholic fatty liver disease(NAFLD): A mini-review[J]. Life Sci, 2023, 312: 121162. DOI: 10.1016/j.lfs.2022.121162. [29] ZHOU T, CHANG L, LUO Y, et al. Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy[J]. Redox Biol, 2019, 21: 101120. DOI: 10.1016/j.redox.2019.101120. [30] LI RB, XIN T, LI DD, et al. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy[J]. Redox Biol, 2018, 18: 229- 243. DOI: 10.1016/j.redox.2018.07.011. [31] CAI JZ, HUANG JQ, YANG J, et al. The protective effect of selenoprotein M on non-alcoholic fatty liver disease: The role of the AMPKα1-MFN2 pathway and Parkin mitophagy[J]. Cell Mol Life Sci, 2022, 79( 7): 354. DOI: 10.1007/s00018-022-04385-0. [32] LI XW, SHI Z, ZHU YW, et al. Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice[J]. Br J Pharmacol, 2020, 177( 15): 3591- 3607. DOI: 10.1111/bph.15083. [33] SHAN SL, SHEN ZY, SONG FY. Autophagy and acetaminophen-induced hepatotoxicity[J]. Arch Toxicol, 2018, 92( 7): 2153- 2161. DOI: 10.1007/s00204-018-2237-5. [34] MCGILL MR, JAESCHKE H. Metabolism and disposition of acetaminophen: Recent advances in relation to hepatotoxicity and diagnosis[J]. Pharm Res, 2013, 30( 9): 2174- 2187. DOI: 10.1007/s11095-013-1007-6. [35] RAMACHANDRAN A, JAESCHKE H. Acetaminophen toxicity: Novel insights into mechanisms and future perspectives[J]. Gene Expr, 2018, 18( 1): 19- 30. DOI: 10.3727/105221617X15084371374138. [36] KON K, KIM JS, JAESCHKE H, et al. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes[J]. Hepatology, 2004, 40( 5): 1170- 1179. DOI: 10.1002/hep.20437. [37] COVER C, MANSOURI A, KNIGHT TR, et al. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity[J]. J Pharmacol Exp Ther, 2005, 315( 2): 879- 887. DOI: 10.1124/jpet.105.088898. [38] YAN MZ, JIN SW, LIU YG, et al. Cajaninstilbene acid ameliorates acetaminophen-induced liver injury through enhancing Sestrin2/AMPK-mediated mitochondrial quality control[J]. Front Pharmacol, 2022, 13: 824138. DOI: 10.3389/fphar.2022.824138. [39] TAN YL, HO HK. Hypothermia advocates functional mitochondria and alleviates oxidative stress to combat acetaminophen-induced hepatotoxicity[J]. Cells, 2020, 9( 11): 2354. DOI: 10.3390/cells9112354. [40] HAN S, YANG ZH, ZHANG T, et al. Epidemiology of alcohol-associated liver disease[J]. Clin Liver Dis, 2021, 25( 3): 483- 492. DOI: 10.1016/j.cld.2021.03.009. [41] ZHU L, LI HD, XU JJ, et al. Advancements in the alcohol-associated liver disease model[J]. Biomolecules, 2022, 12( 8): 1035. DOI: 10.3390/biom12081035. [42] WILLIAMS JA, DING WX. Role of autophagy in alcohol and drug-induced liver injury[J]. Food Chem Toxicol, 2020, 136: 111075. DOI: 10.1016/j.fct.2019.111075. [43] SILVA J, SPATZ MH, FOLK C, et al. Dihydromyricetin improves mitochondrial outcomes in the liver of alcohol-fed mice via the AMPK/Sirt-1/PGC-1α signaling axis[J]. Alcohol, 2021, 91: 1- 9. DOI: 10.1016/j.alcohol.2020.10.002. [44] ZHONG Z, LEMASTERS JJ. A unifying hypothesis linking hepatic adaptations for ethanol metabolism to the proinflammatory and profibrotic events of alcoholic liver disease[J]. Alcohol Clin Exp Res, 2018, 42( 11): 2072- 2089. DOI: 10.1111/acer.13877. [45] LU XY, XUAN WT, LI JJ, et al. AMPK protects against alcohol-induced liver injury through UQCRC2 to up-regulate mitophagy[J]. Autophagy, 2021, 17( 11): 3622- 3643. DOI: 10.1080/15548627.2021.1886829. [46] LI RB, DAI Z, LIU XM, et al. Interaction between dual specificity phosphatase-1 and cullin-1 attenuates alcohol-related liver disease by restoring p62-mediated mitophagy[J]. Int J Biol Sci, 2023, 19( 6): 1831- 1845. DOI: 10.7150/ijbs.81447. [47] NGUYEN MH, WONG G, GANE E, et al. Hepatitis B virus: Advances in prevention, diagnosis, and therapy[J]. Clin Microbiol Rev, 2020, 33( 2): e00046-19. DOI: 10.1128/CMR.00046-19. [48] LOUREIRO D, TOUT I, NARGUET S, et al. Mitochondrial stress in advanced fibrosis and cirrhosis associated with chronic hepatitis B, chronic hepatitis C, or nonalcoholic steatohepatitis[J]. Hepatology, 2023, 77( 4): 1348- 1365. DOI: 10.1002/hep.32731. [49] KIM SJ, KHAN M, QUAN J, et al. Hepatitis B virus disrupts mitochondrial dynamics: Induces fission and mitophagy to attenuate apoptosis[J]. PLoS Pathog, 2013, 9( 12): e1003722. DOI: 10.1371/journal.ppat.1003722. [50] LUCIFORA J, ARZBERGER S, DURANTEL D, et al. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection[J]. J Hepatol, 2011, 55( 5): 996- 1003. DOI: 10.1016/j.jhep.2011.02.015. [51] HUANG XY, LI D, CHEN ZX, et al. Hepatitis B Virus X protein elevates Parkin-mediated mitophagy through Lon Peptidase in starvation[J]. Exp Cell Res, 2018, 368( 1): 75- 83. DOI: 10.1016/j.yexcr.2018.04.016. [52] YOO YS, PARK YJ, LEE HS, et al. Mitochondria ubiquitin ligase, MARCH5 resolves hepatitis B virus X protein aggregates in the liver pathogenesis[J]. Cell Death Dis, 2019, 10( 12): 938. DOI: 10.1038/s41419-019-2175-z. [53] NING XJ, YAN X, WANG YF, et al. Parkin deficiency elevates hepatic ischemia/reperfusion injury accompanying decreased mitochondrial autophagy, increased apoptosis, impaired DNA damage repair and altered cell cycle distribution[J]. Mol Med Rep, 2018, 18( 6): 5663- 5668. DOI: 10.3892/mmr.2018.9606. [54] LIU Z, WANG MM, WANG X, et al. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA-cGAS-STING signaling in macrophages during acute liver injury[J]. Redox Biol, 2022, 52: 102305. DOI: 10.1016/j.redox.2022.102305. [55] LI HT, PAN YT, WU HJ, et al. Inhibition of excessive mitophagy by N-acetyl-L-tryptophan confers hepatoprotection against Ischemia-Reperfusion injury in rats[J]. PeerJ, 2020, 8: e8665. DOI: 10.7717/peerj.8665. [56] SAMANT H, AMIRI HS, ZIBARI GB. Addressing the worldwide hepatocellular carcinoma: Epidemiology, prevention and management[J]. J Gastrointest Oncol, 2021, 12( Suppl 2): S361- S373. DOI: 10.21037/jgo.2020.02.08. [57] ANWANWAN D, SINGH SK, SINGH S, et al. Challenges in liver cancer and possible treatment approaches[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873( 1): 188314. DOI: 10.1016/j.bbcan.2019.188314. [58] YANG WS, ZENG XF, LIU ZN, et al. Diet and liver cancer risk: A narrative review of epidemiological evidence[J]. Br J Nutr, 2020, 124( 3): 330- 340. DOI: 10.1017/S0007114520001208. [59] CHEN Y, CHEN HN, WANG K, et al. Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cyclooxygenase-2 in hepatocellular carcinoma[J]. J Hepatol, 2019, 70( 1): 66- 77. DOI: 10.1016/j.jhep.2018.09.022. [60] SU Q, WANG JJ, LIU F, et al. Blocking Parkin/PINK1-mediated mitophagy sensitizes hepatocellular carcinoma cells to sanguinarine-induced mitochondrial apoptosis[J]. Toxicol In Vitro, 2020, 66: 104840. DOI: 10.1016/j.tiv.2020.104840. [61] ZHENG YH, HUANG C, LU L, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib[J]. J Hematol Oncol, 2021, 14( 1): 16. DOI: 10.1186/s13045-020-01029-3. [62] WU H, WANG T, LIU YQ, et al. Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent Axis[J]. J Exp Clin Cancer Res, 2020, 39( 1): 274. DOI: 10.1186/s13046-020-01768-8. [63] LIU LJ, LV Z, XUE X, et al. Canonical WNT signaling activated by WNT7B contributes to L-HBs-mediated sorafenib resistance in hepatocellular carcinoma by inhibiting mitophagy[J]. Cancers(Basel), 2022, 14( 23): 5781. DOI: 10.3390/cancers14235781. 期刊类型引用(3)
1. 邢国静,王丽菲,罗龙龙,郑晓凤,高春,于晓辉,张久聪. 自噬在对乙酰氨基酚诱导肝损伤中的作用. 临床肝胆病杂志. 2025(02): 389-394 . 本站查看
2. 张乃凡,鲁英,储海燕. 多环芳烃菲对C57BL/6J雌鼠肝脏组织的损伤研究. 海南医科大学学报. 2025(06): 408-414 . 百度学术
3. 俞济,刘雅真,周文,刘端勇,赵海梅,邓柏龄. 补中益气汤及其有效成分调控能量代谢的药理作用研究进展. 中医临床研究. 2024(34): 133-138 . 百度学术
其他类型引用(4)
-