中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物型人工肝支持系统种子细胞的来源与应用

朱雪晶 黄伟健 鄢和新

刘亚杰, 王睿林, 梁子晗, 等 . 尿液铊与非酒精性脂肪性肝病的相关性分析[J]. 临床肝胆病杂志, 2024, 40(4): 688-693. DOI: 10.12449/JCH240408.
引用本文: 刘亚杰, 王睿林, 梁子晗, 等 . 尿液铊与非酒精性脂肪性肝病的相关性分析[J]. 临床肝胆病杂志, 2024, 40(4): 688-693. DOI: 10.12449/JCH240408.
LIU YJ, WANG RL, LIANG ZH, et al. Association between urinary thallium and nonalcoholic fatty liver disease [J]. J Clin Hepatol, 2024, 40(4): 688-693. DOI: 10.12449/JCH240408.
Citation: LIU YJ, WANG RL, LIANG ZH, et al. Association between urinary thallium and nonalcoholic fatty liver disease [J]. J Clin Hepatol, 2024, 40(4): 688-693. DOI: 10.12449/JCH240408.

生物型人工肝支持系统种子细胞的来源与应用

DOI: 10.12449/JCH240205
基金项目: 

国家自然科学基金 (82270635);

上海市2020年度“科技创新行动计划”生物医药科技支撑专项 (20S31906600)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:朱雪晶、黄伟健负责文献资料搜集和分析,撰写论文;鄢和新负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    鄢和新, hexinyw@163.com (ORCID: 0000-0001-8390-650X)

Source and application of seed cells in bioartificial liver support system

Research funding: 

National Natural Science Foundation of China (82270635);

Shanghai 2020“Science and Technology Innovation Action Plan” Biomedical Science and Technology Support Project (20S31906600)

More Information
    Corresponding author: YAN Hexin, hexinyw@163.com (ORCID: 0000-0001-8390-650X)
  • 摘要: 迄今为止,重症肝炎、肝衰竭尚无特效治疗方法,病死率高达70%,是国内外危重症中的治疗难点。肝移植术是目前终末期肝病最有效的治疗方法,然而仅有1%~2%的患者能够获得器官移植机会。生物型人工肝支持系统通过体外机械、理化以及生物装置,清除患者体内蓄积的各种有害物质,代偿肝脏代谢功能,补充必需物质,改善内环境,帮助患者恢复肝功能,度过危险期,亦为患者肝移植争取宝贵时间,因此被认为是治疗终末期肝病的重要方法之一。生物型人工肝的核心要素是肝细胞,本综述总结了当前生物型人工肝主要的肝种子细胞来源、3D培养方法以及相应的生物反应器培养系统,期望逐步实现肝细胞体外规模化制备,从而获得足够数量和质量的肝细胞这一临床应用亟待解决的核心问题。

     

  • 非酒精性脂肪性肝病(NAFLD)是指在影像学或组织学检查中存在肝脂肪变性,并排除大量饮酒及长期应用促脂肪形成药物、单基因遗传紊乱、自身免疫性肝病、慢性病毒性肝炎等引起肝脂肪变性竞争性病因的疾病1。据相关流行病学研究2报道,NAFLD的全球患病率为25.24%(95%CI:22.10%~28.65%)。NAFLD的全球负担与全球肥胖率的增加平行,随着肥胖和代谢综合征的全球化流行,预测2030年NAFLD的病例将达到1.01亿3-4。NAFLD的谱系疾病广泛,已成为21世纪第二大肝脏疾病,未来10年NAFLD可能逐渐成为终末期肝病、肝移植和原发性肝癌主要因素之一5

    铊(TL)是一种常见的天然微量金属,黄铁矿开采和相关炼钢业是环境中TL污染的主要来源6。高水平的TL可诱导不良的抗氧化反应,降低还原型谷胱甘肽和超氧化物歧化酶(Mn-SOD)的水平,并产生高水平的活性氧(ROS)7。虽然NAFLD的发病机制尚未明确,但是ROS的产生,氧化应激、炎症对NAFLD的发病至关重要8。TL对人类的毒性比汞、镉、铅、铜、锌更大,但人们对它的研究程度远低于汞、镉、铅等其他有毒金属9。当TL从人体缓慢释放后,它可以积聚在头发和指甲中,而尿液中的TL水平比头发、指甲中TL水平能更好地作为中毒指标10。目前,美国食品和药物监督管理局尚未批准针对NAFLD安全有效的治疗药物,生活方式(饮食和锻炼)的改变是治疗的主要方式,NAFLD的预防极其重要11。本研究通过探讨尿液TL与NAFLD疾病进展的风险相关性,旨在从不同角度探索NAFLD发展的生物标志物,以便在个人和人群水平上制订预防策略。

    国家健康与营养检查调查(NHANES)是一项评估美国人口健康和营养状况的横断面调查,主要收集参与者的人口统计学数据、生活方式以及健康和营养状况信息12。本研究中,选取NHANES 2017—2020年数据。纳入标准:NHANES数据库中2017—2020年18岁及以上的注册参与者(n=9 693)。排除标准:(1)缺乏肝脏瞬时弹性成像数据的人群(n=1 376);(2)患有乙型肝炎、丙型肝炎人群(n=128);(3)饮酒量显著的人群(男>30 g/d,女>20 g/d)(n=456);(4)缺乏尿液TL指标的人群(n=5 222)。最终共有2 511例受试者纳入分析。详细筛选流程见图1

    图  1  筛选流程图
    Figure  1.  Filter flow chart

    肝脏瞬时弹性成像已被广泛用于普通人群中检测NAFLD13。受控衰减参数(CAP)对NAFLD检测的可靠性可与肝活检(金标准)相比,以CAP≥238 db/m,同时排除患有乙型肝炎、丙型肝炎及饮酒量显著的人群(男>30 g/d,女>20 g/d)确诊为NAFLD14

    采用高效液相色谱-电喷雾电离-串联质谱和在线固相萃取联合同位素稀释等方法定量检测尿液TL水平15。本研究尿液TL的检出限为0.02 μg/L,低于检测限的值被替换为检测限除以2的平方根。

    采用R4.2.2软件,计量资料若符合正态分布用x¯±s表示,若是偏态分布用MP25P75)表示,两组间比较采用成组t检验或Wilicoxon秩和检验;计数资料两组间比较采用χ2检验。通过描述性分析、多因素Logistic回归、限制性三次样条回归分析、亚组分析、交互作用,探究尿液TL与NAFLD的风险关联。将尿液TL分为连续变量和分类变量(根据四分位数分为四组,第一个四分位数为参考)并计算3个模型中的比值比(OR)和95%CI。在Model 1中未调整变量,在Model 2中调整年龄、性别、种族、教育、婚姻状况、家庭收入与贫困比比值(FMPIR)、体质量指数(BMI)、社会人口学变量,Model 3在Model 2的基础上调整吸烟、喝酒、糖尿病(DM)、高血压(HTN)、高脂血症(HL)相关健康因素变量。使用限制性三次样条回归分析,以检验尿液TL与NAFLD是否存在非线性关联,并可视化两者之间的剂量-反应关系。此外,在亚组分析中以年龄、性别、种族、教育、婚姻状况、FMPIR、BMI、吸烟、喝酒、DM、HTN、HL分类,并采用相加模型和相乘模型来估计患病风险的交互作用,以检测尿液TL与NAFLD关系可能的差异。考虑到尿液的稀释,尿液TL采用尿肌酐进行校准。P<0.05为差异有统计学意义。

    本研究符合条件的研究对象共2 511例(NAFLD组1 612例,Non-NAFLD组899例)。NAFLD组尿液TL水平明显高于Non-NAFLD组(0.18 μg/L vs 0.16 μg/L),差异具有统计学意义(Z=-2.76,P=0.01)。与Non-NAFLD组相比,NAFLD组的年龄、BMI较高,且主要集中在40~59岁、BMI≥30 kg/m2的肥胖人群。此外,两组比较,NAFLD组更倾向于男性、墨西哥裔美国人、丧偶/离婚/分居、喝酒、患有DM、HTN、HL的人群,差异均具有统计学意义(P值均<0.01)(表1)。

    表  1  研究对象基本特征
    Table  1.  Basic characteristics of research objects
    变量 总人数(n=2 511) Non-NAFLD组(n=899) NAFLD组(n=1 612) 统计值 P
    年龄(岁) 51(34~64) 42(28~61) 54(40~65) Z=-4.55 <0.01
    年龄分组[例(%)] χ2=23.22 <0.01
    18~39岁 822(32.74) 419(46.61) 403(25.00)
    40~59岁 806(32.10) 220(24.47) 586(36.35)
    ≥60岁 883(35.17) 260(28.92) 623(38.65)
    性别[例(%)] χ2=10.63 <0.01
    1 262(50.26) 491(54.62) 771(47.83)
    1 249(49.74) 408(45.38) 841(52.17)
    种族[例(%)] χ2=20.94 <0.01
    墨西哥裔美国人 326(12.98) 88(9.79) 238(14.76)
    非西班牙裔黑人 672(26.76) 279(31.03) 393(24.38)
    非西班牙裔白人 828(32.97) 288(32.04) 540(33.50)
    其他 685(27.28) 244(27.14) 441(27.36)
    教育[例(%)] χ2=1.85 0.26
    大专或以上学历 1 371(54.60) 501(55.73) 870(53.97)
    高中或同等学历 666(26.52) 241(26.81) 425(26.36)
    高中以下 474(18.88) 157(17.46) 317(19.67)
    吸烟[例(%)] χ2=0.08 0.82
    一生吸烟<100支 1 502(59.82) 541(60.18) 961(59.62)
    一生吸烟≥100支 1 009(40.18) 358(39.82) 651(40.38)
    婚姻状况[例(%)] χ2=24.41 <0.01
    已婚/与伴侣同居 1 450(57.75) 485(53.95) 965(59.86)
    从来没有结过婚 527(20.99) 237(26.36) 290(17.99)
    丧偶/离婚/分居 534(21.27) 177(19.69) 357(22.15)
    喝酒[例(%)] χ2=10.66 <0.01
    277(11.03) 120(13.35) 157(9.74)
    2 234(88.97) 779(86.65) 1 455(90.26)
    FMPIR 2.26(1.17~4.14) 2.19(1.16~4.14) 2.32(1.17~4.15) Z=-0.99 0.34
    BMI(kg/m2 28.40(24.55~33.75) 24.60(21.60~27.90) 30.85(27.10~35.80) Z=-24.99 <0.01
    BMI分组[例(%)] χ2=76.56 <0.01
    BMI<25 kg/m2 685(27.28) 477(53.06) 208(12.90)
    BMI≥30 kg/m2 1 031(41.06) 138(15.35) 893(55.40)
    25 kg/m2≤BMI<30 kg/m2 795(31.66) 284(31.59) 511(31.70)
    HTN[例(%)] χ2=18.44 <0.01
    2 077(82.72) 770(85.65) 1 307(81.08)
    434(17.28) 129(14.35) 305(18.92)
    HL[例(%)] χ2=51.83 <0.01
    2 223(88.53) 851(94.66) 1 372(85.11)
    288(11.47) 48(5.34) 240(14.89)
    DM[例(%)] χ2=67.38 <0.01
    2 163(86.14) 852(94.77) 1 311(81.33)
    348(13.86) 47(5.23) 301(18.67)
    尿液TL(μg/L) 0.17(0.10~0.26) 0.16(0.09~0.25) 0.18(0.11~0.26) Z=-2.76 0.01
    下载: 导出CSV 
    | 显示表格

    构建多元Logistic回归模型,探究尿液TL与NAFLD的关系。首先将尿液TL作为连续性指标分析,在Model 1、Model 2、Model 3中,尿液TL每上升一个四分位数,NAFLD的患病风险分别增加13%(OR=1.13,95%CI:1.02~1.25)、29%(OR=1.29,95%CI:1.15~1.44)、30%(OR=1.30,95%CI:1.16~1.46)。

    将尿液TL作为四分位数指标分析,在Model 3中与尿液TL最低组Q1相比,尿液TL Q2、Q3、Q4组患NAFLD的风险分别增加29%(OR=1.29,95%CI:1.02~1.63)、52%(OR=1.52,95%CI:1.20~1.94)、90%(OR=1.90,95%CI:1.48~2.44)(表2)。

    表  2  尿液TL与NAFLD的Logistic分析
    Table  2.  Logistic analysis of urinary TL and NAFLD
    变量 Model 1 P Model 2 P Model 3 P
    OR(95%CI OR(95%CI OR(95%CI
    尿液TL 1.13(1.02~1.25) 0.03 1.29(1.15~1.44) <0.01 1.30(1.16~1.46) <0.01
    尿液TL(人数/构成比)
    Q1(682/27.16%)
    Q2(631/25.13%) 1.21(0.97~1.50) 0.10 1.29(1.03~1.62) 0.03 1.29(1.02~1.63) 0.03
    Q3(648/25.81%) 1.28(1.02~1.61) 0.03 1.48(1.17~1.87) <0.01 1.52(1.20~1.94) <0.01
    Q4(550/21.90%) 1.36(1.08~1.71) 0.01 1.86(1.46~2.39) <0.01 1.90(1.48~2.44) <0.01
    下载: 导出CSV 
    | 显示表格

    调整年龄、性别、种族、教育、婚姻状况、FMPIR、BMI、吸烟、喝酒、DM、HTN、HL后进一步使用限制性三次样条回归分析,尿液TL与患NAFLD的风险存在正向剂量-反应关系(P<0.01)且为非线性关系(P<0.01),尿液TL<0.17 μg/L时,尿液TL为NAFLD的保护因素且随含量升高保护降低,当尿液0.17 μg/L≤TL≤0.44 μg/L时,尿液TL为NAFLD的危险因素且随含量升高危险度升高,然而当TL>0.44 μg/L时,其与NAFLD的患病风险无关(图2)。

    图  2  尿液TL与NAFLD之间的剂量-反应关系
    Figure  2.  Dose-response relationship between urinary TL and NAFLD

    调整年龄、性别、种族、教育、婚姻状况、FMPIR、BMI、吸烟、喝酒、DM、HTN、HL多个协变量,本研究发现尿液TL与吸烟、BMI之间存在显著的交互作用,差异有统计学意义(P交互作用<0.05)。进一步开展尿液TL与吸烟、BMI之间的亚组分析发现,一生吸烟≥100支的人群尿液TL每上升一个四分位数患NAFLD的风险增加50%(OR=1.50,95%CI:1.24~1.80),一生吸烟<100支的人群尿液TL每上升一个四分位数患NAFLD的风险增加20%(OR=1.20,95%CI:1.03~1.40),BMI≥30 kg/m2的人群尿液TL每上升一个四分位数患NAFLD的风险增加30%(OR=1.30,95%CI:1.05~1.70),差异具有统计学意义(P<0.05)(表3)。

    表  3  尿液TL与NAFLD的亚组分析及交互作用
    Table  3.  Subgroup analysis and interaction effect of urinary TL and NAFLD
    变量 OR(95%CI P 交互作用P
    年龄分组 0.58
    18~39岁 1.22(1.09~1.36) <0.01
    40~59岁 1.44(1.15~1.81) <0.01
    ≥60岁 1.09(0.91~1.31) 0.36
    性别 0.34
    1.35(1.13~1.60) <0.01
    1.28(1.09~1.50) <0.01
    种族 0.25
    墨西哥裔美国人 1.44(1.01~2.06) 0.04
    非西班牙裔黑人 1.33(1.07~1.66) 0.01
    非西班牙裔白人 1.41(1.15~1.72) <0.01
    其他 1.12(0.89~1.41) 0.34
    教育 0.74
    高中以下 1.45(1.09~1.93) 0.01
    高中或同等学历 1.22(0.99~1.51) 0.06
    大专或以上学历 1.32(1.13~1.54) <0.01
    婚姻状况 0.90
    已婚/与伴侣同居 1.30(1.12~1.51) <0.01
    从来没有结过婚 1.42(1.08~1.88) 0.01
    丧偶/离婚/分居 1.22(0.95~1.57) 0.11
    FMPIR 0.14
    <1.30 1.40(1.14~1.73) <0.01
    1.30≤FMPIR<3.50 1.31(1.08~1.59) 0.01
    ≥3.50 1.18(0.97~1.44) 0.10
    BMI分组 0.02
    <25 kg/m2 1.00(0.78~1.27) 0.37
    ≥30 kg/m2 1.30(1.05~1.70) 0.04
    25 kg/m2≤BMI<30 kg/m2 1.20(0.97~1.48) 0.09
    吸烟 0.03
    一生吸烟≥100支 1.50(1.24~1.80) <0.01
    一生吸烟<100支 1.20(1.03~1.40) 0.02
    喝酒 0.65
    1.30(1.15~1.47) <0.01
    1.28(0.91~1.80) 0.15
    DM 0.16
    1.64(1.01~2.64) 0.04
    1.29(1.15~1.46) <0.01
    HTN 0.37
    1.23(0.94~1.62) 0.14
    1.32(1.16~1.50) <0.01
    HL 0.14
    1.36(0.86~2.14) 0.19
    1.30(1.15~1.46) <0.01
    下载: 导出CSV 
    | 显示表格

    已有相关研究证明血清镉16、铜17、硒18、锰19、铅20、汞21、TL22及其他金属23,尿液锰19、砷24、镉25、钠26与NAFLD显著相关。肝功能受损与儿童尿液TL浓度升高有关27。在大鼠肝损伤实验28中,TL可导致大鼠肝细胞线粒体膜电位塌陷继而导致肝细胞死亡。暴露于TL(Ⅰ)和TL(Ⅲ)的小鼠肝脏HE染色显示肝窦充血和肝细胞坏死,肝脏/体质量比显著降低20。TL可诱导大鼠肝细胞中ROS形成,还原谷胱甘肽氧化,膜脂质过氧化和线粒体膜电位崩溃,致使线粒体膜电位塌陷和细胞色素C释放显著增加,破坏肝细胞的正常结构29。尿液TL浓度与肝损伤标志物ALT、AST、GGT和ALP呈显著正相关30。以上研究均表明尿液TL与肝细胞损伤密切相关,基于尿液TL与肝细胞损伤的相关性研究,本研究首次创造性探讨了尿液TL与患NAFLD的风险关联性,通过对NHANES 2017—2020年纳入NAFLD患者尿液TL水平进行评估,发现尿液高水平的TL是NAFLD患病风险增高的危险因素。燃煤、采矿和冶炼厂的工人是接触TL的高危人群,在NAFLD的预防和临床实践中,检测尿液TL水平有利于NAFLD的早期预防和高危人群筛查。

    目前尿液TL与NAFLD之间的关联研究较少,还需要进一步的研究来证实本次研究的结论。

  • 图  1  生物型人工肝种子细胞来源

    Figure  1.  Cell sources for bioartificial livers

  • [1] PAN XP, LI LJ. Advances in cell sources of hepatocytes for bioartificial liver[J]. Hepatobiliary Pancreat Dis Int, 2012, 11( 6): 594- 605. DOI: 10.1016/s1499-3872(12)60230-6.
    [2] DUAN ZP. Artificial liver technology and its progress[C]∥ Proceedings of the 10th National Military Infectious Disease Academic Symposium. 2007: 82- 84.

    段钟平. 人工肝技术及其进展[C]∥ 全军第十次传染病学学术研讨会论文集. 2007: 82- 84.
    [3] GAO YM, SUN LL, HUI LJ. Advances in research of bioartificial liver[J]. Chin Bull Life Sci, 2016, 28( 8): 915- 920. DOI: 10.13376/j.cbls/2016123.

    高义萌, 孙露露, 惠利健. 生物人工肝研究进展[J]. 生命科学, 2016, 28( 8): 915- 920. DOI: 10.13376/j.cbls/2016123.
    [4] TUERXUN K, HE JY, IBRAHIM I, et al. Bioartificial livers: A review of their design and manufacture[J]. Biofabrication, 2022, 14( 3): 032003. DOI: 10.1088/1758-5090/ac6e86.
    [5] ROZGA J, UMEHARA Y, TROFIMENKO A, et al. A novel plasma filtration therapy for hepatic failure: Preclinical studies[J]. Ther Apher Dial, 2006, 10( 2): 138- 144. DOI: 10.1111/j.1744-9987.2006.00355.x.
    [6] DETHLOFF T, TOFTENG F, FREDERIKSEN HJ, et al. Effect of Prometheus liver assist system on systemic hemodynamics in patients with cirrhosis: A randomized controlled study[J]. World J Gastroenterol, 2008, 14( 13): 2065- 2071. DOI: 10.3748/wjg.14.2065.
    [7] MATSUMURA KN, GUEVARA GR, HUSTON H, et al. Hybrid bioartificial liver in hepatic failure: Preliminary clinical report[J]. Surgery, 1987, 101( 1): 99- 103.
    [8] GARCÍA MARTÍNEZ JJ, BENDJELID K. Artificial liver support systems: What is new over the last decade?[J]. Ann Intensive Care, 2018, 8( 1): 109. DOI: 10.1186/s13613-018-0453-z.
    [9] Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure(2018)[J]. J Clin Hepatol, 2019, 35( 1): 38- 44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.

    中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2018年版)[J]. 临床肝胆病杂志, 2019, 35( 1): 38- 44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.
    [10] XIANG C, DU Y, MENG G, et al. Long-term functional maintenance of primary human hepatocytes in vitro[J]. Science, 2019, 364( 6438): 399- 402. DOI: 10.1126/science.aau7307.
    [11] KATSUDA T, KAWAMATA M, INOUE A, et al. Long-term maintenance of functional primary human hepatocytes using small molecules[J]. FEBS Lett, 2020, 594( 1): 114- 125. DOI: 10.1002/1873-3468.13582.
    [12] LIU MY, YANG JC, HU WJ, et al. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure[J]. Biomed Mater, 2016, 11( 1): 015008. DOI: 10.1088/1748-6041/11/1/015008.
    [13] HARPER AM, ROSENDALE JD, MCBRIDE MA, et al. The UNOS OPTN waiting list and donor registry[J]. Clin Transpl, 1998: 73- 90.
    [14] FACCIOLI LAP, KOCAS-KILICARSLAN ZN, DIAZ-ARAGON R, et al. Human hepatocytes isolated from explanted livers: A powerful tool to understand end-stage liver disease and drug screening[J]. Organogenesis, 2021, 17( 3-4): 117- 125. DOI: 10.1080/15476278.2021.1992216.
    [15] MIYAJIMA A, TANAKA M, ITOH T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming[J]. Cell Stem Cell, 2014, 14( 5): 561- 574. DOI: 10.1016/j.stem.2014.04.010.
    [16] TARLOW BD, PELZ C, NAUGLER WE, et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes[J]. Cell Stem Cell, 2014, 15( 5): 605- 618. DOI: 10.1016/j.stem.2014.09.008.
    [17] FU GB, HUANG WJ, ZENG M, et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens[J]. Cell Res, 2019, 29( 1): 8- 22. DOI: 10.1038/s41422-018-0103-x.
    [18] CHEN Y, TANG D, WU HP, et al. Assessment of long-term functional maintenance of primary human hepatocytes to predict drug-induced hepatoxicity in vitro[J]. Arch Toxicol, 2021, 95( 7): 2431- 2442. DOI: 10.1007/s00204-021-03050-y.
    [19] ZHANG K, ZHANG LD, LIU WM, et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity[J]. Cell Stem Cell, 2018, 23( 6): 806- 819. DOI: 10.1016/j.stem.2018.10.018.
    [20] HU HL, GEHART H, ARTEGIANI B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids[J]. Cell, 2018, 175( 6): 1591- 1606. DOI: 10.1016/j.cell.2018.11.013.
    [21] FANG Q, GAO FY, XU M, et al. Treatment of acute liver failure in mice by immortalized human hepatocytes[J]. Chin Med Biotechnol, 2010, 5( 4): 252- 256. DOI: 10.3969/cmba.j.issn.1673-713X.2010.04.003.

    房青, 高福云, 徐梅, 等. 永生化人肝细胞治疗小鼠急性肝衰竭的实验研究[J]. 中国医药生物技术, 2010, 5( 4): 252- 256. DOI: 10.3969/cmba.j.issn.1673-713X.2010.04.003.
    [22] ZHANG YF, SHI J, LIU SY. Establishment and characterization of a telomerase-immortalized sheep trophoblast cell line[J]. Biomed Res Int, 2016, 2016: 5808575. DOI: 10.1155/2016/5808575.
    [23] LU YZ, LI S, JIANG H, et al. Pre-clinical acute toxicity of an immortalized human hepatocyte cell line HepZJ[J]. Chin J Tissue Engineer Res, 2019, 23( 13): 2067- 2074. DOI: 10.3969/j.issn.2095-4344.1659.

    卢扬洲, 黎少, 姜华, 等. 永生化人肝细胞HepZJ的临床前急性毒性评价[J]. 中国组织工程研究, 2019, 23( 13): 2067- 2074. DOI: 10.3969/j.issn.2095-4344.1659.
    [24] LI WJ, ZHU XJ, YUAN TJ, et al. An extracorporeal bioartificial liver embedded with 3D-layered human liver progenitor-like cells relieves acute liver failure in pigs[J]. Sci Transl Med, 2020, 12( 551): eaba5146. DOI: 10.1126/scitranslmed.aba5146.
    [25] YANGER K, ZONG YW, MAGGS LR, et al. Robust cellular reprogramming occurs spontaneously during liver regeneration[J]. Genes Dev, 2013, 27( 7): 719- 724. DOI: 10.1101/gad.207803.112.
    [26] DUAN YY, CATANA A, MENG Y, et al. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo[J]. Stem Cells Dayt Ohio, 2007, 25( 12): 3058- 3068. DOI: 10.1634/stemcells.2007-0291.
    [27] WANG YF, ZHENG Q, SUN Z, et al. Reversal of liver failure using a bioartificial liver device implanted with clinical-grade human-induced hepatocytes[J]. Cell Stem Cell, 2023, 30( 5): 617- 631. DOI: 10.1016/j.stem.2023.03.013.
    [28] TANG W, GUO R, SHEN SJ, et al. Chemical cocktails enable hepatic reprogramming of human urine-derived cells with a single transcription factor[J]. Acta Pharmacol Sin, 2019, 40( 5): 620- 629. DOI: 10.1038/s41401-018-0170-z.
    [29] CHAMULEAU RAFM, DEURHOLT T, HOEKSTRA R. Which are the right cells to be used in a bioartificial liver?[J]. Metab Brain Dis, 2005, 20( 4): 327- 335. DOI: 10.1007/s11011-005-7914-4.
    [30] COLTMAN NJ, COKE BA, CHATZI K, et al. Application of HepG2/C3A liver spheroids as a model system for genotoxicity studies[J]. Toxicol Lett, 2021, 345: 34- 45. DOI: 10.1016/j.toxlet.2021.04.004.
    [31] ELLIS AJ, HUGHES RD, WENDON JA, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure[J]. Hepatology, 1996, 24( 6): 1446- 1451. DOI: 10.1002/hep.510240625.
    [32] THOMPSON J, JONES N, AL-KHAFAJI A, et al. Extracorporeal cellular therapy(ELAD) in severe alcoholic hepatitis: A multinational, prospective, controlled, randomized trial[J]. Liver Transpl, 2018, 24( 3): 380- 393. DOI: 10.1002/lt.24986.
    [33] NAGAKI M, NAITO T, OHNISHI H, et al. Effects of plasma from patients with fulminant hepatic failure on function of primary rat hepatocytes in three-dimensional culture[J]. Liver Int, 2005, 25( 5): 1010- 1017. DOI: 10.1111/j.1478-3231.2005.01127.x.
    [34] NIBOURG GAA, CHAMULEAU RAFM, VAN DER HOEVEN TV, et al. Liver progenitor cell line HepaRG differentiated in a bioartificial liver effectively supplies liver support to rats with acute liver failure[J]. PLoS One, 2012, 7( 6): e38778. DOI: 10.1371/journal.pone.0038778.
    [35] GLORIOSO JM, MAO SA, RODYSILL B, et al. Pivotal preclinical trial of the spheroid reservoir bioartificial liver[J]. J Hepatol, 2015, 63( 2): 388- 398. DOI: 10.1016/j.jhep.2015.03.021.
    [36] CHEN HS, JOO DJ, SHAHEEN M, et al. Randomized trial of spheroid reservoir bioartificial liver in porcine model of posthepatectomy liver failure[J]. Hepatology, 2019, 69( 1): 329- 342. DOI: 10.1002/hep.30184.
    [37] HE YT, QI YN, ZHANG BQ, et al. Bioartificial liver support systems for acute liver failure: A systematic review and meta-analysis of the clinical and preclinical literature[J]. World J Gastroenterol, 2019, 25( 27): 3634- 3648. DOI: 10.3748/wjg.v25.i27.3634.
    [38] LI Y, WU Q, WANG YJ, et al. Novel spheroid reservoir bioartificial liver improves survival of nonhuman primates in a toxin-induced model of acute liver failure[J]. Theranostics, 2018, 8( 20): 5562- 5574. DOI: 10.7150/thno.26540.
    [39] MAZARIEGOS GV, KRAMER DJ, LOPEZ RC, et al. Safety observations in phase I clinical evaluation of the excorp medical bioartificial liver support system after the first four patients[J]. ASAIO J, 2001, 47( 5): 471- 475. DOI: 10.1097/00002480-200109000-00015.
    [40] MULLON C, PITKIN Z. The HepatAssist bioartificial liver support system: Clinical study and pig hepatocyte process[J]. Expert Opin Investig Drugs, 1999, 8( 3): 229- 235. DOI: 10.1517/13543784.8.3.229.
    [41] DEMETRIOU AA, BROWN RS JR, BUSUTTIL RW, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure[J]. Ann Surg, 2004, 239( 5): 660-667; discussion 667-670. DOI: 10.1097/01.sla.0000124298.74199.e5.
    [42] MARTIN U, WINKLER ME, ID M, et al. Productive infection of primary human endothelial cells by pig endogenous retrovirus(PERV)[J]. Xenotransplantation, 2000, 7( 2): 138- 142. DOI: 10.1034/j.1399-3089.2000.00052.x.
    [43] FENG L, WANG Y, FU Y, et al. A simple and efficient strategy for cell-based and cell-free-based therapies in acute liver failure: hUCMSCs bioartificial liver[J]. Bioeng Transl Med, 2023, 8( 5): e10552. DOI: 10.1002/btm2.10552.
    [44] KNAZEK RA, GULLINO PM, KOHLER PO, et al. Cell culture on artificial capillaries: An approach to tissue growth in vitro[J]. Science, 1972, 178( 4056): 65- 67. DOI: 10.1126/science.178.4056.65.
    [45] CASTILLO AB, JACOBS CR. Mesenchymal stem cell mechanobiology[J]. Curr Osteoporos Rep, 2010, 8( 2): 98- 104. DOI: 10.1007/s11914-010-0015-2.
    [46] WANG Y, LI H, LI X, et al. Hypoxic preconditioning of human umbilical cord mesenchymal stem cells is an effective strategy for treating acute lung injury[J]. Stem Cells Dev, 2021, 30( 3): 128- 134. DOI: 10.1089/scd.2020.0174.
    [47] CHEN ST, WANG JL, REN HZ, et al. Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure[J]. Cell Res, 2020, 30( 1): 95- 97. DOI: 10.1038/s41422-019-0261-5.
    [48] LU ZY, PRIYA RAJAN SA, SONG QQ, et al. 3D scaffold-free microlivers with drug metabolic function generated by lineage-reprogrammed hepatocytes from human fibroblasts[J]. Biomaterials, 2021, 269: 120668. DOI: 10.1016/j.biomaterials.2021.120668.
    [49] LIU WM, ZHOU X, CHEN CY, et al. Establishment of functional liver spheroids from human hepatocyte-derived liver progenitor-like cells for cell therapy[J]. Front Bioeng Biotechnol, 2021, 9: 738081. DOI: 10.3389/fbioe.2021.738081.
    [50] LI K, ZHANG GH, ZHANG C, et al. Assessment of in vitro 3D large-scale hepatocyte proliferation culture system and automated and intelligent bioreactor systems[J]. Chin J Tissue Engineer Res, 2022, 26( 19): 3100- 3107.

    李柯, 张广浩, 张丞, 等. 体外3D规模化扩增肝细胞的培养体系及自动化、智能化生物反应器的评估[J]. 中国组织工程研究, 2022, 26( 19): 3100- 3107.
    [51] TEIXEIRA AP, OLIVEIRA R, ALVES PM, et al. Advances in on-line monitoring and control of mammalian cell cultures: Supporting the PAT initiative[J]. Biotechnol Adv, 2009, 27( 6): 726- 732. DOI: 10.1016/j.biotechadv.2009.05.003.
    [52] DEMUTH C, VARONIER J, JOSSEN V, et al. Novel probes for pH and dissolved oxygen measurements in cultivations from millilitre to benchtop scale[J]. Appl Microbiol Biotechnol, 2016, 100( 9): 3853- 3863. DOI: 10.1007/s00253-016-7412-0.
    [53] RENNEBERG R, TROTT-KRIEGESKORTE G, LIETZ M, et al. Enzyme sensor-FIA-system for on-line monitoring of glucose, lactate and glutamine in animal cell cultures[J]. J Biotechnol, 1991, 21( 1-2): 173- 185. DOI: 10.1016/0168-1656(91)90269-2.
  • 期刊类型引用(1)

    1. 刘正一,庄颖洁,董旭,高利利,范振平,蒋丽娜. 非酒精性脂肪性肝病肝纤维化无创诊断模型构建. 临床军医杂志. 2024(07): 688-691 . 百度学术

    其他类型引用(0)

  • 加载中
图(1)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  108
  • PDF下载量:  90
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-10-25
  • 录用日期:  2023-11-27
  • 出版日期:  2024-02-19
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回