中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巨噬细胞在原发性胆汁性胆管炎发病中的作用机制及影响

马狄 邰文琳

杨冰清, 尹静亚, 王琦. 肝线粒体功能障碍在非酒精性脂肪性肝病发病中的作用机制[J]. 临床肝胆病杂志, 2024, 40(1): 147-150. DOI: 10.12449/JCH240124.
引用本文: 杨冰清, 尹静亚, 王琦. 肝线粒体功能障碍在非酒精性脂肪性肝病发病中的作用机制[J]. 临床肝胆病杂志, 2024, 40(1): 147-150. DOI: 10.12449/JCH240124.
YANG BQ, YIN JY, WANG Q. The mechanism of action of mitochondrial dysfunction in the development of non-alcoholic fatty liver disease[J]. J Clin Hepatol, 2024, 40(1):147-150. DOI: 10.12449/JCH240124.
Citation: YANG BQ, YIN JY, WANG Q. The mechanism of action of mitochondrial dysfunction in the development of non-alcoholic fatty liver disease[J]. J Clin Hepatol, 2024, 40(1):147-150. DOI: 10.12449/JCH240124.

巨噬细胞在原发性胆汁性胆管炎发病中的作用机制及影响

DOI: 10.12449/JCH240126
基金项目: 

国家自然科学基金 (82060385);

昆明医科大学2023年研究生创新基金 (2023S321)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:马狄负责收集资料及文章撰写;邰文琳负责文章修改及定稿。
详细信息
    通信作者:

    邰文琳, taiwenlin2685@163.com (ORCID: 0000-0002-8278-929X)

The role and impact of macrophages in the pathogenesis of primary biliary cholangitis

Research funding: 

National Natural Science Foundation of China (82060385);

The Postgraduate Innovation Fund Project of Kunming Medical University 2023 (2023S321)

More Information
  • 摘要: 原发性胆汁性胆管炎(PBC)是一种以肝内胆汁淤积为特征表现的慢性自身免疫性疾病,免疫因素导致进行性小胆管破坏,胆汁淤积,最终发展为肝纤维化、肝硬化甚至肝衰竭。巨噬细胞作为一群具有功能异质性的群体,在PBC整个疾病进程中发挥着不同的作用。本文归纳了巨噬细胞参与PBC发病机制的可能方式,讨论了其对PBC的影响及相关潜在治疗靶点。本文指出巨噬细胞主要参与了PBC损伤中的先天性免疫,且与肠道微生物失调相联系,在疾病后期与胆汁淤积、肝纤维化、肝硬化有关。

     

  • 非酒精性脂肪性肝病(NAFLD)是指除外酒精和其他明确的肝损伤因素所致的肝细胞内脂肪过度沉积为主要特征的临床病理综合征,包括单纯性脂肪肝(NAFL)、非酒精性脂肪性肝炎(NASH)、NASH相关性肝纤维化、肝硬化和肝细胞癌等1-2。NAFLD已成为最常见的慢性肝病,全世界总患病率为32.4%3。当前针对NAFLD的治疗策略有效性不佳,深入研究发病机制具有重大意义。目前广为认可的发病机制是“多重打击”学说,即胰岛素抵抗、线粒体功能障碍、炎症激活、饮食因素和遗传因素等均参与NAFLD的疾病进展4。其中肝线粒体功能障碍发挥重要作用,包括线粒体形态学改变、线粒体DNA损伤、脂肪酸代谢紊乱和能量代谢异常、氧化应激、脂质过氧化和线粒体自噬异常等5。因此,针对肝线粒体的研究已经成为NAFLD防治一个新的、重要的突破口。

    线粒体最重要的作用是通过氧化磷酸化产生ATP向细胞提供能量,细胞生命活动95%的能量来自线粒体。三大能源物质糖、脂肪和氨基酸在线粒体氧化释放能量,其共同途径是三羧酸循环(TCA)和呼吸链的氧化磷酸化(OXPHOS)6

    1.1.1   脂肪酸的氧化

    线粒体中,长链脂肪酸通过脂酰CoA合成酶催化为脂酰CoA,在肉碱酯酰转移酶-1和肉碱-脂酰肉碱转位酶的作用下进入线粒体基质,脂酰CoA经β-氧化生成乙酰CoA,再经过TCA被彻底氧化7

    1.1.2   TCA

    乙酰CoA和草酰乙酸合成柠檬酸,经一系列反应和多次氧化脱羧,最终降解成草酰乙酸。此过程伴随着CO2的生成,并释放大量的能量。

    1.1.3   OXPHOS

    TCA中产生的H+与递H体结合,形成还原型辅酶Ⅰ和还原型黄素二核苷酸,电子在电子传递链(electron transfer chain,ETC)最终传给基质中的O2,生成H2O。线粒体基质泵出H+,产生跨膜电化学势能,这种势能又驱使H+通过ATP合酶重新回到线粒体基质,伴随ETC的氧化同时合成ATP。

    线粒体在调节细胞程序性死亡中扮演着重要作用,参与细胞凋亡、细胞焦亡、细胞自噬、坏死性凋亡、铁死亡和铜死亡等8

    线粒体是高度动态化的细胞器,细胞能量需求增加时,其结构和功能都会产生适应性的变化以满足细胞的能量需求。

    1.3.1   线粒体分裂/融合的动态平衡

    线粒体通过分裂、融合的动态平衡控制自身的形态,形成独特的网状结构来维持细胞正常生理功能和调控能量代谢9。线粒体的融合过程主要由动力蛋白超家族介导;分裂由动力相关蛋白介导10

    1.3.2   线粒体的生物合成

    线粒体的生物合成包括增殖和分化。增殖引起数量改变,分化引起功能性与结构性的改变11

    1.3.3   线粒体自噬

    线粒体自噬是指自噬小体包裹线粒体并融合溶酶体,降解清除老化、损伤的线粒体,以维持细胞平衡和抑制活性氧(ROS)的产生12-13。线粒体质量受线粒体生物合成与自噬共同调节控制。

    研究14表明,单纯性肥胖者和健康者肝线粒体含量相似,但肥胖者肝线粒体最大呼吸速率比健康者高4~5倍,提示肥胖者线粒体ETC复合物的活性更高、呼吸能力更强。另一项研究15分别对肥胖有抗性的A/J小鼠和敏感性的C57BL/6小鼠进行基因富集分析发现,相比C57BL/6小鼠,A/J小鼠肝线粒体ETC复合物Ⅰ‍、Ⅲ‍、Ⅳ和Ⅴ的13个OXPHOS基因显著增加。高脂饮食喂养后,两类小鼠肝线粒体产生同样的ATP,但A/J小鼠线粒体的最大呼吸速率更高,表明A/J小鼠肝线粒体解偶联呼吸增加。研究12证明当肝脂肪超载和能量需求增加时,肝线粒体能够调节自身来适应能量改变,阻止肥胖向NAFLD的进展。

    Petersen等16研究表明,NAFL患者和健康者的肝线粒体脂肪酸氧化速率没有差异。但也有研究17发现,NAFL患者比健康者肝线粒体TCA速率更高,且增加的倍数与肝内甘油三酯含量呈正相关,表明伴随肝脂质堆积,线粒体氧化活性增强。Pedersen等18发现,NAFL患者比健康者肝线粒体的最大呼吸速率增加。总之,NAFL患者肝脏慢性脂质过载进一步增强了肝线粒体的氧化代谢,导致氧化应激,损害线粒体,并从良性脂肪变性进展为NASH19

    NAFL进展为NASH时,肝线粒体进一步受损,包括肝线粒体结构改变、mtDNA损伤、呼吸代谢下降和解偶联呼吸增强、脂肪酸氧化异常、ROS过度生成、肝线粒体适应性下降和磷脂成分改变等。这些病理变化互相影响,加重肝脂肪变性,引发炎症及肝细胞死亡,促进NASH发展。

    2.3.1   肝线粒体结构的改变

    研究20发现,NASH患者肝线粒体形态高度异常,包括肝线粒体肿胀变圆、多层、嵴断裂消失、含有堆叠的晶状包涵体以及巨线粒体等。

    2.3.2   mtDNA损伤和复制受抑

    NASH患者mtDNA出现损伤,损伤的mtDNA激活TNFα上游的Toll样受体9引发炎症,加重NASH21。研究22发现,NASH患者的死亡相关凋亡诱导蛋白激酶2-丝氨酸/精氨酸富集剪接因子6信号通路被抑制,引起编码mtDNA复制机制酶的DNA聚合酶γ2基因病理性剪接,抑制mtDNA复制,导致肝线粒体数量减少和ETC蛋白缺失,破坏线粒体介导的呼吸作用。

    2.3.3   肝线粒体呼吸代谢下降和解偶联呼吸增加

    研究14发现,NASH患者肝线粒体的最大呼吸速率低于健康者,ETC复合物Ⅰ‍、Ⅲ、Ⅳ和Ⅴ表达降低,导致ETC活性下降。解偶联蛋白-2(uncoupling protein-2,UCP-2)是线粒体UCP家族成员,UCP介导H+不通过ATP合酶从线粒体内膜渗漏到线粒体基质(质子渗漏),降低内外膜的势能差但不产生ATP,直接将势能转化为热能释放。生理状态,肝细胞不表达UCP-2,但NASH患者过表达UCP-2,线粒体质子泄漏率增加,减轻氧化还原压力,但能量合成效率也降低,使肝细胞合成的ATP不满足细胞活动所需23。ATP耗竭实验24表明,NASH患者肝脏ATP耗竭后的恢复效率显著降低,线粒体无法为细胞活动提供足够的能量,加剧NASH。

    2.3.4   肝线粒体氧化损伤和产生大量ROS

    NASH患者肝线粒体中,参与抗氧化防御的H2O2酶活性下降,而DNA氧化损伤的标志物8-羟基-脱氧鸟苷表达增加。动物研究14发现,NASH小鼠肝线粒体氧化应激和炎性途径如c-Jun氨基端蛋白激酶/核因子κB信号通路被激活,也提示NASH肝脏存在氧化损伤。同时,线粒体抗氧化能力的下降又使线粒体更容易氧化损伤,导致线粒体功能障碍并生成大量ROS25。生理状态下,肝线粒体ETC产生的少量ROS可被抗氧化防御系统解毒,但NASH患者肝线粒体脂肪酸氧化增加(还原型辅酶Ⅰ生成增加)和ETC损伤(ETC内的电子流部分被阻断),产生过量ROS损害OXPHOS蛋白和mtDNA,这种氧化损伤加重了线粒体功能障碍,进一步增加电子泄漏和ROS形成,导致恶性循环26

    2.3.5   肝线粒体分裂/融合的动态平衡失调

    与健康小鼠相比,NASH小鼠调控肝线粒体融合的线粒体融合蛋白1/2和视神经萎缩蛋白1水平显著降低,提示NASH小鼠肝线粒体融合缺陷27。而肝线粒体过度分裂,加剧NASH的肝脏炎症和纤维化28

    2.3.6   肝线粒体自噬受抑

    NASH患者肝线粒体自噬调节基因缺失,线粒体自噬受抑制,且抑制的程度与NASH严重程度呈正相关,导致受损线粒体蓄积、细胞坏死和释放线粒体中的细菌残余(低甲基化的CpG基序和甲酰肽),进一步促进肝脏炎症和NASH5

    2.3.7   肝线粒体生物合成下降

    NASH患者调节肝线粒体生物合成的转录因子AMP活化蛋白激酶、过氧化物酶体增生物激活受体γ共激活因子-1α、线粒体转录因子A和核呼吸因子1/2表达下降,线粒体生物合成下降,肝线粒体氧化能力受损,加重肝脂肪变性14

    2.3.8   肝线粒体膜磷脂成分的改变

    研究29表明,NASH患者肝线粒体膜磷脂成分改变,影响肝线粒体功能,包括线粒体动力学、ETC活性和线粒体自噬等。已有研究27发现,NASH患者肝细胞磷脂合成有关的酶CDP-二酰基甘油合酶2缺乏,肝细胞磷脂合成减少,损害肝线粒体的形态和功能,同时加重肝脂肪变性和纤维化。

    2.3.9   NASH患者血浆脂质的改变

    NASH患者的严重程度与一些血浆脂质含量改变有关。肝内甘油二酯和神经鞘脂类物质在NASH中增加,且与肝脏氧化应激和炎症反应呈正相关30-31。有研究32发现将血脂变量三酰甘油、二酰甘油和鞘脂等添加到常规标志物中,显著提高了NASH的诊断准确性。虽然没有达到指导临床诊断的区分水平,但这些结果显示了脂质组学作为NAFLD特别是NASH的非侵入性生物标志物的潜力。

    另外,最新研究33证实,线粒体丙酮酸载体蛋白1的表达与NAFLD肝脂质沉积呈正相关,其在小鼠肝细胞中的表达被敲减后可以改善肝细胞脂肪变性。存在于线粒体和细胞核中的双细胞器蛋白,可以通过激活Notch通路和增强骨桥蛋白的产生促进NASH肝纤维化34

    NAFLD的发生发展与肝线粒体功能障碍密不可分35。早期评估线粒体功能障碍对NAFLD的诊断并控制其进展具有重要意义,但评估肝线粒体形态、数量和质量仍具有挑战性36。目前,评价线粒体含量的金标准是透射电镜,但成本高、耗时长的缺点限制了其应用37。因此,研发更易检测、准确性高的无创诊断生物标志物极为重要。最近,肝线粒体无创性生物标志物如细胞外囊泡38和循环无细胞线粒体39的研究取得了新进展,这些标志物持续反映肝脏的变化和肝细胞的损伤,具有广阔的应用前景。

    NAFLD发病机制复杂,许多新药还处于临床研究阶段,安全性和有效性还需进一步验证。已有大量研究从线粒体动力学、mtDNA、线粒体ROS的产生及其抗氧化防御机制角度,阐述线粒体与NAFLD的密切关系,提示线粒体靶向治疗是一个有前景的治疗领域,希望未来通过深入、系统的研究为NAFLD的预防和治疗开辟新途径。

  • [1] GULAMHUSEIN AF, HIRSCHFIELD GM. Primary biliary cholangitis: Pathogenesis and therapeutic opportunities[J]. Nat Rev Gastroenterol Hepatol, 2020, 17( 2): 93- 110. DOI: 10.1038/s41575-019-0226-7.
    [2] LLEO A, WANG GQ, GERSHWIN ME, et al. Primary biliary cholangitis[J]. Lancet, 2020, 396( 10266): 1915- 1926. DOI: 10.1016/S0140-6736(20)31607-X.
    [3] COLAPIETRO F, BERTAZZONI A, LLEO A. Contemporary epidemiology of primary biliary cholangitis[J]. Clin Liver Dis, 2022, 26( 4): 555- 570. DOI: 10.1016/j.cld.2022.06.001.
    [4] LI H, GUAN YL, HAN CC, et al. The pathogenesis, models and therapeutic advances of primary biliary cholangitis[J]. Biomed Pharmacother, 2021, 140: 111754. DOI: 10.1016/j.biopha.2021.111754.
    [5] WU Y, FAN XX, YU HC, et al. Macrophage polarization is involved in liver fibrosis induced by β1-adrenoceptor autoantibody[J]. Acta Biochim Biophys Sin, 2022, 54( 8): 1100- 1112. DOI: 10.3724/abbs.2022102.
    [6] HEYMANN F, TACKE F. Immunology in the liver: From homeostasis to disease[J]. Nat Rev Gastroenterol Hepatol, 2016, 13( 2): 88- 110. DOI: 10.1038/nrgastro.2015.200.
    [7] RONCA V, MANCUSO C, MILANI C, et al. Immune system and cholangiocytes: A puzzling affair in primary biliary cholangitis[J]. J Leukoc Biol, 2020, 108( 2): 659- 671. DOI: 10.1002/JLB.5MR0320-200R.
    [8] LLEO A, LEUNG PSC, HIRSCHFIELD GM, et al. The pathogenesis of primary biliary cholangitis: A comprehensive review[J]. Semin Liver Dis, 2020, 40( 1): 34- 48. DOI: 10.1055/s-0039-1697617.
    [9] MA WT, CHEN DK. Immunological abnormalities in patients with primary biliary cholangitis[J]. Clin Sci, 2019, 133( 6): 741- 760. DOI: 10.1042/CS20181123.
    [10] SHAO T, LEUNG PSC, ZHANG W, et al. Treatment with a JAK1/2 inhibitor ameliorates murine autoimmune cholangitis induced by IFN overexpression[J]. Cell Mol Immunol, 2022, 19( 10): 1130- 1140. DOI: 10.1038/s41423-022-00904-y.
    [11] TIAN XB, WANG Y, LU Y, et al. Conditional depletion of macrophages ameliorates cholestatic liver injury and fibrosis via lncRNA-H19[J]. Cell Death Dis, 2021, 12( 7): 646. DOI: 10.1038/s41419-021-03931-1.
    [12] ZHANG XM, THOMPKINS-JOHNS A, ZIOBER A, et al. Hepatic macrophage types cluster with disease etiology in chronic liver disease and differ compared to normal liver: Implications for their biologic and diagnostic role[J]. Int J Surg Pathol, 2023, 31( 3): 268- 279. DOI: 10.1177/10668969221099630.
    [13] BRUNEAU A, GUILLOT A, TACKE F. Macrophages in cholangiopathies[J]. Curr Opin Gastroenterol, 2022, 38( 2): 114- 120. DOI: 10.1097/MOG.0000000000000814.
    [14] FU HY, BAO WM, YANG CX, et al. Kupffer cells regulate natural killer cells via the NK group 2, member D(NKG2D)/retinoic acid early inducible-1(RAE-1) interaction and cytokines in a primary biliary cholangitis mouse model[J]. Med Sci Monit, 2020, 26: e923726. DOI: 10.12659/MSM.923726.
    [15] LI X, LIU RP, WANG YY, et al. Cholangiocyte-derived exosomal lncRNA H19 promotes macrophage activation and hepatic inflammation under cholestatic conditions[J]. Cells, 2020, 9( 1): 190. DOI: 10.3390/cells9010190.
    [16] YANG Y, CHOI J, CHEN Y, et al. E. coli and the etiology of human PBC: Antimitochondrial antibodies and spreading determinants[J]. Hepatology, 2022, 75( 2): 266- 279. DOI: 10.1002/hep.32172.
    [17] REUVENI D, GORE Y, LEUNG PSC, et al. The critical role of chemokine(C-C motif) receptor 2-positive monocytes in autoimmune cholangitis[J]. Front Immunol, 2018, 9: 1852. DOI: 10.3389/fimmu.2018.01852.
    [18] CHEN RL, TANG RQ, MA X, et al. Immunologic responses and the pathophysiology of primary biliary cholangitis[J]. Clin Liver Dis, 2022, 26( 4): 583- 611. DOI: 10.1016/j.cld.2022.06.003.
    [19] DUKIĆ M, RADONJIĆ T, JOVANOVIĆ I, et al. Alcohol, inflammation, and microbiota in alcoholic liver disease[J]. Int J Mol Sci, 2023, 24( 4): 3735. DOI: 10.3390/ijms24043735.
    [20] CADAMURO M, GIRARDI N, GORES GJ, et al. The emerging role of macrophages in chronic cholangiopathies featuring biliary fibrosis: An attractive therapeutic target for orphan diseases[J]. Front Med, 2020, 7: 115. DOI: 10.3389/fmed.2020.00115.
    [21] PINTO C, GIORDANO DM, MARONI L, et al. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1270- 1278. DOI: 10.1016/j.bbadis.2017.07.024.
    [22] TANAKA A. Current understanding of primary biliary cholangitis[J]. Clin Mol Hepatol, 2021, 27( 1): 1- 21. DOI: 10.3350/cmh.2020.0028.
    [23] RONCA V, CHEN QB, LYGOURA V, et al. Autoantibodies in patients with interleukin 12 receptor beta 1 deficiency[J]. J Dig Dis, 2019, 20( 7): 363- 370. DOI: 10.1111/1751-2980.12790.
    [24] MAYO MJ. Mechanisms and molecules: What are the treatment targets for primary biliary cholangitis?[J]. Hepatology, 2022, 76( 2): 518- 531. DOI: 10.1002/hep.32405.
    [25] MU N, LIN F, JIANG ZG, et al. Characteristics of serum chemokine profile in primary biliary cholangitis[J]. Cytokine, 2020, 136: 155291. DOI: 10.1016/j.cyto.2020.155291.
    [26] RAMACHANDRAN P, DOBIE R, WILSON-KANAMORI JR, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level[J]. Nature, 2019, 575( 7783): 512- 518. DOI: 10.1038/s41586-019-1631-3.
    [27] BUONOMO EL, MEI SL, GUINN SR, et al. Liver stromal cells restrict macrophage maturation and stromal IL-6 limits the differentiation of cirrhosis-linked macrophages[J]. J Hepatol, 2022, 76( 5): 1127- 1137. DOI: 10.1016/j.jhep.2021.12.036.
    [28] DAEMEN S, GAINULLINA A, KALUGOTLA G, et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH[J]. Cell Rep, 2021, 34( 2): 108626. DOI: 10.1016/j.celrep.2020.108626.
    [29] GUILLOT A, WINKLER M, SILVA AFONSO M, et al. Mapping the hepatic immune landscape identifies monocytic macrophages as key drivers of steatohepatitis and cholangiopathy progression[J]. Hepatology, 2023, 78( 1): 150- 166. DOI: 10.1097/HEP.0000000000000270.
    [30] CAI SY, GE MX, MENNONE A, et al. Inflammasome is activated in the liver of cholestatic patients and aggravates hepatic injury in bile duct-ligated mouse[J]. Cell Mol Gastroenterol Hepatol, 2020, 9( 4): 679- 688. DOI: 10.1016/j.jcmgh.2019.12.008.
    [31] LIAO M, LIAO JW, QU JQ, et al. Hepatic TNFRSF12A promotes bile acid-induced hepatocyte pyroptosis through NFκB/Caspase-1/GSDMD signaling in cholestasis[J]. Cell Death Discov, 2023, 9( 1): 26. DOI: 10.1038/s41420-023-01326-z.
    [32] KODA S, ZHANG BB, ZHOU QY, et al. β2-adrenergic receptor enhances the alternatively activated macrophages and promotes biliary injuries caused by helminth infection[J]. Front Immunol, 2021, 12: 754208. DOI: 10.3389/fimmu.2021.754208.
    [33] GALLUCCI GM, ALSUWAYT B, AUCLAIR AM, et al. Fenofibrate downregulates NF-κB signaling to inhibit pro-inflammatory cytokine secretion in human THP-1 macrophages and during primary biliary cholangitis[J]. Inflammation, 2022, 45( 6): 2570- 2581. DOI: 10.1007/s10753-022-01713-1.
  • 期刊类型引用(1)

    1. 薄佳琪,郭子朋,刘立新. 铁死亡、双硫死亡相关的非酒精性脂肪性肝病诊断标志物筛选及诊断模型构建. 中华实验外科杂志. 2024(10): 2223-2225 . 百度学术

    其他类型引用(1)

  • 加载中
计量
  • 文章访问数:  381
  • HTML全文浏览量:  160
  • PDF下载量:  47
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-03-25
  • 录用日期:  2023-04-15
  • 出版日期:  2024-01-23
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回