中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 39 Issue 12
Dec.  2023
Turn off MathJax
Article Contents

Regulatory role of mechanical forces in the formation of liver organoids

DOI: 10.3969/j.issn.1001-5256.2023.12.030
Research funding:

National Natural Science Foundation of China (81774282);

National Key Research and Development Program of China (2018YFC1705700);

Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences (C12021A00801);

Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences (C12021A00802)

More Information
  • Corresponding author: LYU Wenliang, lvwenliang@sohu.com (ORCID: 0000-0002-4552-919X)
  • Received Date: 2023-03-24
  • Accepted Date: 2023-04-19
  • Published Date: 2023-12-12
  • In recent years, the continuous advances in material sciences and techniques have helped with the establishment and development of liver organoids that can simulate the structure and function of organs in vivo. In addition to the research on traditional biological factors, the construction of microenvironments with different mechanical cues to investigate the influence of mechanical stimulation on the growth of liver organoids has also become a research focus. This article first discusses the development of liver organoids and then reviews the influence of mechanical forces of different properties on the formation of liver organoids, so as to lay a foundation for the construction of more complex and ordered liver organoids in vitro and provide ideal research models for understanding the interaction between biological and mechanical factors in the formation of liver organoids.

     

  • loading
  • [1]
    TREFTS E, GANNON M, WASSERMAN DH. The liver[J]. Curr Biol, 2017, 27( 21): R1147- R1151. DOI: 10.1016/j.cub.2017.09.019.
    [2]
    COLLINO A, TERMANINI A, NICOLI P, et al. Sustained activation of detoxification pathways promotes liver carcinogenesis in response to chronic bile acid-mediated damage[J]. PLoS Genet, 2018, 14( 5): e1007380. DOI: 10.1371/journal.pgen.1007380.
    [3]
    ROBINSON MW, HARMON C, O’FARRELLY C. Liver immunology and its role in inflammation and homeostasis[J]. Cell Mol Immunol, 2016, 13( 3): 267- 276. DOI: 10.1038/cmi.2016.3.
    [4]
    LI WP, LI L, HUI LJ. Cell plasticity in liver regeneration[J]. Trends Cell Biol, 2020, 30( 4): 329- 338. DOI: 10.1016/j.tcb.2020.01.007.
    [5]
    LI C, ZHANG ZT, DONG SS, et al. Applications of liver organoids[J]. Sci Sin Vitae, 2023, 53( 2): 175- 184.

    李春, 章正涛, 董双舒, 等. 肝脏类器官的应用[J]. 中国科学: 生命科学, 2023, 53( 2): 175- 184.
    [6]
    NESHAT SY, QUIROZ VM, WANG YJ, et al. Liver disease: Induction, progression, immunological mechanisms, and therapeutic interventions[J]. Int J Mol Sci, 2021, 22( 13): 6777. DOI: 10.3390/ijms22136777.
    [7]
    WANG FS, FAN JG, ZHANG Z, et al. The global burden of liver disease: The major impact of China[J]. Hepatology, 2014, 60( 6): 2099- 2108. DOI: 10.1002/hep.27406.
    [8]
    DUVAL K, GROVER H, HAN LH, et al. Modeling physiological events in 2D vs. 3D cell culture[J]. Physiology, 2017, 32( 4): 266- 277. DOI: 10.1152/physiol.00036.2016.
    [9]
    BAXTER M, WITHEY S, HARRISON S, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes[J]. J Hepatol, 2015, 62( 3): 581- 589. DOI: 10.1016/j.jhep.2014.10.016.
    [10]
    MARIOTTI V, STRAZZABOSCO M, FABRIS L, et al. Animal models of biliary injury and altered bile acid metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1254- 1261. DOI: 10.1016/j.bbadis.2017.06.027.
    [11]
    CAMP JG, SEKINE K, GERBER T, et al. Multilineage communication regulates human liver bud development from pluripotency[J]. Nature, 2017, 546( 7659): 533- 538. DOI: 10.1038/nature22796.
    [12]
    AZIMIAN ZAVAREH V, RAFIEE L, SHEIKHOLESLAM M, et al. Three-dimensional in vitro models: A promising tool to scale-up breast cancer research[J]. ACS Biomater Sci Eng, 2022, 8( 11): 4648- 4672. DOI: 10.1021/acsbiomaterials.2c00277.
    [13]
    TAGHDOUINI A EL, SØRENSEN AL, REINER AH, et al. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells[J]. Oncotarget, 2015, 6( 29): 26729- 26745. DOI: 10.18632/oncotarget.4925.
    [14]
    SHINOZAWA T, KIMURA M, CAI YQ, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids[J]. Gastroenterology, 2021, 160( 3): 831- 846. DOI: 10.1053/j.gastro.2020.10.002.
    [15]
    NERO C, VIZZIELLI G, LORUSSO D, et al. Patient-derived organoids and high grade serous ovarian cancer: From disease modeling to personalized medicine[J]. J Exp Clin Cancer Res, 2021, 40( 1): 116. DOI: 10.1186/s13046-021-01917-7.
    [16]
    LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: Modeling development and disease using organoid technologies[J]. Science, 2014, 345( 6194): 1247125. DOI: 10.1126/science.1247125.
    [17]
    HUCH M, GEHART H, VAN BOXTEL R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160( 1-2): 299- 312. DOI: 10.1016/j.cell.2014.11.050.
    [18]
    AKBARI S, SEVINÇ GG, ERSOY N, et al. Robust, long-term culture of endoderm-derived hepatic organoids for disease modeling[J]. Stem Cell Reports, 2019, 13( 4): 627- 641. DOI: 10.1016/j.stemcr.2019.08.007.
    [19]
    HU HL, GEHART H, ARTEGIANI B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids[J]. Cell, 2018, 175( 6): 1591- 1606.e19. DOI: 10.1016/j.cell.2018.11.013.
    [20]
    TAKASATO M, ER PX, CHIU HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526( 7574): 564- 568. DOI: 10.1038/nature15695.
    [21]
    SCHUTGENS F, ROOKMAAKER MB, MARGARITIS T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling[J]. Nat Biotechnol, 2019, 37( 3): 303- 313. DOI: 10.1038/s41587-019-0048-8.
    [22]
    CHUA CW, SHIBATA M, LEI M, et al. Single luminal epithelial progenitors can generate prostate organoids in culture[J]. Nat Cell Biol, 2014, 16( 10): 951- 961, 1- 4. DOI: 10.1038/ncb3047.
    [23]
    SACHS N, PAPASPYROPOULOS A, ZOMER-VAN OMMEN DD, et al. Long-term expanding human airway organoids for disease modeling[J]. EMBO J, 2019, 38( 4): e100300. DOI: 10.15252/embj.2018100300.
    [24]
    JO J, XIAO YX, SUN AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19( 2): 248- 257. DOI: 10.1016/j.stem.2016.07.005.
    [25]
    BROUTIER L, MASTROGIOVANNI G, VERSTEGEN MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23( 12): 1424- 1435. DOI: 10.1038/nm.4438.
    [26]
    ZHANG YJ, HUANG SB, LIU J, et al. Construction and application of innovation gene-edited rats and intestinal 3D organoids models in drug metabolism and pharmacokinetics[J]. Chin J Clin Pharmacol Ther, 2021, 26( 8): 914- 922. DOI: 10.12092/j.issn.1009-2501.2021.08.006.

    张远金, 黄盛博, 刘洁, 等. 药物代谢创新模型:基因编辑大鼠和小肠3D类器官[J]. 中国临床药理学与治疗学, 2021, 26( 8): 914- 922. DOI: 10.12092/j.issn.1009-2501.2021.08.006.
    [27]
    WANG YQ, WANG P, QIN JH. Human organoids and organs-on-chips for addressing COVID-19 challenges[J]. Adv Sci, 2022, 9( 10): e2105187. DOI: 10.1002/advs.202105187.
    [28]
    GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159( 1): 176- 187. DOI: 10.1016/j.cell.2014.08.016.
    [29]
    CLEVERS H. Modeling development and disease with organoids[J]. Cell, 2016, 165( 7): 1586- 1597. DOI: 10.1016/j.cell.2016.05.082.
    [30]
    MICHALOPOULOS GK, BOWEN WC, MULÈ K, et al. Histological organization in hepatocyte organoid cultures[J]. Am J Pathol, 2001, 159( 5): 1877- 1887. DOI: 10.1016/S0002-9440(10)63034-9.
    [31]
    LIN L, LEI M, LIN JM, et al. Advances and applications in liver organoid technology[J]. Sci Sin Vitae, 2023, 53( 2): 185- 195.

    林丽, 雷妙, 林佳漫, 等. 肝脏类器官的研究进展及应用[J]. 中国科学: 生命科学, 2023, 53( 2): 185- 195.
    [32]
    HUCH M, DORRELL C, BOJ SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration[J]. Nature, 2013, 494( 7436): 247- 250. DOI: 10.1038/nature11826.
    [33]
    OGAWA M, OGAWA S, BEAR CE, et al. Directed differentiation of cholangiocytes from human pluripotent stem cells[J]. Nat Biotechnol, 2015, 33( 8): 853- 861. DOI: 10.1038/nbt.3294.
    [34]
    SAMPAZIOTIS F, DE BRITO MC, MADRIGAL P, et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation[J]. Nat Biotechnol, 2015, 33( 8): 845- 852. DOI: 10.1038/nbt.3275.
    [35]
    DIANAT N, DUBOIS-POT-SCHNEIDER H, STEICHEN C, et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells[J]. Hepatology, 2014, 60( 2): 700- 714. DOI: 10.1002/hep.27165.
    [36]
    WU FF, WU D, REN Y, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells[J]. J Hepatol, 2019, 70( 6): 1145- 1158. DOI: 10.1016/j.jhep.2018.12.028.
    [37]
    LI YW, WONG IY, GUO M. Reciprocity of cell mechanics with extracellular stimuli: Emerging opportunities for translational medicine[J]. Small, 2022, 18( 36): e2107305. DOI: 10.1002/smll.202107305.
    [38]
    HERRERA J, HENKE CA, BITTERMAN PB. Extracellular matrix as a driver of progressive fibrosis[J]. J Clin Invest, 2018, 128( 1): 45- 53. DOI: 10.1172/JCI93557.
    [39]
    FAN QH, ZHENG Y, WANG XC, et al. Dynamically re-organized collagen fiber bundles transmit mechanical signals and induce strongly correlated cell migration and self-organization[J]. Angew Chem Int Ed Engl, 2021, 60( 21): 11858- 11867. DOI: 10.1002/anie.202016084.
    [40]
    NIA HT, DATTA M, SEANO G, et al. In vivo compression and imaging in mouse brain to measure the effects of solid stress[J]. Nat Protoc, 2020, 15( 8): 2321- 2340. DOI: 10.1038/s41596-020-0328-2.
    [41]
    PRIYA R, ALLANKI S, GENTILE A, et al. Tension heterogeneity directs form and fate to pattern the myocardial wall[J]. Nature, 2020, 588( 7836): 130- 134. DOI: 10.1038/s41586-020-2946-9.
    [42]
    MUNCIE JM, AYAD NME, LAKINS JN, et al. Mechanical tension promotes formation of gastrulation-like nodes and patterns mesoderm specification in human embryonic stem cells[J]. Dev Cell, 2020, 55( 6): 679- 694.e11. DOI: 10.1016/j.devcel.2020.10.015.
    [43]
    XUE XF, SUN YB, RESTO-IRIZARRY AM, et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells[J]. Nat Mater, 2018, 17( 7): 633- 641. DOI: 10.1038/s41563-018-0082-9.
    [44]
    ABHILASH AS, BAKER BM, TRAPPMANN B, et al. Remodeling of fibrous extracellular matrices by contractile cells: Predictions from discrete fiber network simulations[J]. Biophys J, 2014, 107( 8): 1829- 1840. DOI: 10.1016/j.bpj.2014.08.029.
    [45]
    POLING HM, WU D, BROWN N, et al. Mechanically induced development and maturation of human intestinal organoids in vivo[J]. Nat Biomed Eng, 2018, 2( 6): 429- 442. DOI: 10.1038/s41551-018-0243-9.
    [46]
    LI YW, CHEN MR, HU JL, et al. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β-catenin signaling[J]. Cell Stem Cell, 2021, 28( 1): 63- 78. DOI: 10.1016/j.stem.2020.09.012.
    [47]
    WANG L, LUO JY, LI BC, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow[J]. Nature, 2016, 540( 7634): 579- 582. DOI: 10.1038/nature20602.
    [48]
    STEWART MP, HELENIUS J, TOYODA Y, et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding[J]. Nature, 2011, 469( 7329): 226- 230. DOI: 10.1038/nature09642.
    [49]
    CAI DF, FELICIANO D, DONG P, et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression[J]. Nat Cell Biol, 2019, 21( 12): 1578- 1589. DOI: 10.1038/s41556-019-0433-z.
    [50]
    DABAGH M, JALALI P, BUTLER PJ, et al. Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow[J]. J R Soc Interface, 2017, 14( 130): 20170185. DOI: 10.1098/rsif.2017.0185.
    [51]
    DASH A, SIMMERS MB, DEERING TG, et al. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro[J]. Am J Physiol Cell Physiol, 2013, 304( 11): C1053- C1063. DOI: 10.1152/ajpcell.00331.2012.
    [52]
    WANG YQ, WANG H, DENG PW, et al. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system[J]. Lab Chip, 2018, 18( 23): 3606- 3616. DOI: 10.1039/c8lc00869h.
    [53]
    ZHENG Y, XUE XF, SHAO Y, et al. Controlled modelling of human epiblast and amnion development using stem cells[J]. Nature, 2019, 573( 7774): 421- 425. DOI: 10.1038/s41586-019-1535-2.
    [54]
    HOMAN KA, GUPTA N, KROLL KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro[J]. Nat Methods, 2019, 16( 3): 255- 262. DOI: 10.1038/s41592-019-0325-y.
    [55]
    KANG YBA, SODUNKE TR, LAMONTAGNE J, et al. Liver sinusoid on a chip: Long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms[J]. Biotechnol Bioeng, 2015, 112( 12): 2571- 2582. DOI: 10.1002/bit.25659.
    [56]
    HOFER M, LUTOLF MP. Engineering organoids[J]. Nat Rev Mater, 2021, 6( 5): 402- 420. DOI: 10.1038/s41578-021-00279-y.
    [57]
    JUNG DJ, BYEON JH, JEONG GS. Flow enhances phenotypic and maturation of adult rat liver organoids[J]. Biofabrication, 2020, 12( 4): 045035. DOI: 10.1088/1758-5090/abb538.
    [58]
    MICHIELIN F, GIOBBE GG, LUNI C, et al. The microfluidic environment reveals a hidden role of self-organizing extracellular matrix in hepatic commitment and organoid formation of hiPSCs[J]. Cell Rep, 2020, 33( 9): 108453. DOI: 10.1016/j.celrep.2020.108453.
    [59]
    KRATOCHVIL MJ, SEYMOUR AJ, LI TL, et al. Engineered materials for organoid systems[J]. Nat Rev Mater, 2019, 4( 9): 606- 622. DOI: 10.1038/s41578-019-0129-9.
    [60]
    KANNINEN LK, HARJUMÄKI R, PELTONIEMI P, et al. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells[J]. Biomaterials, 2016, 103: 86- 100. DOI: 10.1016/j.biomaterials.2016.06.054.
    [61]
    GJOREVSKI N, SACHS N, MANFRIN A, et al. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539( 7630): 560- 564. DOI: 10.1038/nature20168.
    [62]
    NG S, TAN WJ, PEK MMX, et al. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture[J]. Biomaterials, 2019, 219: 119400. DOI: 10.1016/j.biomaterials.2019.119400.
    [63]
    ZHANG Y, TANG CL, SPAN PN, et al. Polyisocyanide hydrogels as a tunable platform for mammary gland organoid formation[J]. Adv Sci, 2020, 7( 18): 2001797. DOI: 10.1002/advs.202001797.
    [64]
    LANGHANS SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning[J]. Front Pharmacol, 2018, 9: 6. DOI: 10.3389/fphar.2018.00006.
    [65]
    LIU ZX, FU JX, YUAN HB, et al. Polyisocyanide hydrogels with tunable nonlinear elasticity mediate liver carcinoma cell functional response[J]. Acta Biomater, 2022, 148: 152- 162. DOI: 10.1016/j.actbio.2022.06.022.
    [66]
    SORRENTINO G, REZAKHANI S, YILDIZ E, et al. Mechano-modulatory synthetic niches for liver organoid derivation[J]. Nat Commun, 2020, 11( 1): 3416. DOI: 10.1038/s41467-020-17161-0.
    [67]
    LIU-CHITTENDEN Y, HUANG B, SHIM JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP[J]. Genes Dev, 2012, 26( 12): 1300- 1305. DOI: 10.1101/gad.192856.112.
    [68]
    KECHAGIA JZ, IVASKA J, ROCA-CUSACHS P. Integrins as biomechanical sensors of the microenvironment[J]. Nat Rev Mol Cell Biol, 2019, 20( 8): 457- 473. DOI: 10.1038/s41580-019-0134-2.
    [69]
    CHO S, IRIANTO J, DISCHER DE. Mechanosensing by the nucleus: From pathways to scaling relationships[J]. J Cell Biol, 2017, 216( 2): 305- 315. DOI: 10.1083/jcb.201610042.
    [70]
    CHARRAS G, SAHAI E. Physical influences of the extracellular environment on cell migration[J]. Nat Rev Mol Cell Biol, 2014, 15( 12): 813- 824. DOI: 10.1038/nrm3897.
    [71]
    FLETCHER DA, MULLINS RD. Cell mechanics and the cytoskeleton[J]. Nature, 2010, 463( 7280): 485- 492. DOI: 10.1038/nature08908.
    [72]
    HAN YL, RONCERAY P, XU GQ, et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix[J]. Proc Natl Acad Sci U S A, 2018, 115( 16): 4075- 4080. DOI: 10.1073/pnas.1722619115.
    [73]
    CHAUDHURI O, GU L, KLUMPERS D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J]. Nat Mater, 2016, 15( 3): 326- 334. DOI: 10.1038/nmat4489.
    [74]
    RIZWAN M, LING C, GUO CY, et al. Viscoelastic Notch signaling hydrogel induces liver bile duct organoid growth and morphogenesis[J]. Adv Healthc Mater, 2022, 11( 23): e2200880. DOI: 10.1002/adhm.202200880.
    [75]
    GÜNTHER C, WINNER B, NEURATH MF, et al. Organoids in gastrointestinal diseases: From experimental models to clinical translation[J]. Gut, 2022, 71( 9): 1892- 1908. DOI: 10.1136/gutjnl-2021-326560.
    [76]
    BEATTY R, MENDEZ KL, SCHREIBER LHJ, et al. Soft robot-mediated autonomous adaptation to fibrotic capsule formation for improved drug delivery[J]. Sci Robot, 2023, 8( 81): eabq4821. DOI: 10.1126/scirobotics.abq4821.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (177) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return