中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 39 Issue 8
Aug.  2023
Turn off MathJax
Article Contents

Research advances in the mechanism of tumor microenvironment and targeted therapy for pancreatic neuroendocrine tumor

DOI: 10.3969/j.issn.1001-5256.2023.08.036
More Information
  • Corresponding author: ZHANG Hairong, zhr919@sina.com (ORCID: 0000-0002-9918-3673)
  • Received Date: 2022-10-26
  • Accepted Date: 2022-11-29
  • Published Date: 2023-08-20
  • The tumor microenvironment of pancreatic neuroendocrine tumor is a tumor-promoting microenvironment composed of tumor cells, immune/immunosuppressive cells, and extracellular matrix and has the marked feature of immunosuppression. It can lead to the immune escape, invasion, and metastasis of tumor cells by inhibiting antitumor immune response and promoting angiogenesis and is also the main cause of drug resistance to antitumor treatment. Therefore, it is of great significance to design new therapeutic strategies from the perspective of the tumor microenvironment of pancreatic neuroendocrine tumor to reverse suppressive tumor microenvironment and improve the treatment outcome of pancreatic neuroendocrine tumor. This article reviews the latest research advances in the composition and role of the tumor microenvironment of pancreatic neuroendocrine tumor and related targeted therapy.

     

  • loading
  • [1]
    DASARI A, SHEN C, HALPERIN D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States[J]. JAMA Oncol, 2017, 3(10): 1335-1342. DOI: 10.1001/jamaoncol.2017.0589.
    [2]
    BUICKO JL, FINNERTY BM, ZHANG T, et al. Insights into the biology and treatment strategies of pancreatic neuroendocrine tumors[J]. Ann Pancreat Cancer, 2019, 2: 12. DOI: 10.21037/apc.2019.06.02.
    [3]
    DA SILVA A, BOWDEN M, ZHANG S, et al. Characterization of the neuroendocrine tumor immune microenvironment[J]. Pancreas, 2018, 47(9): 1123-1129. DOI: 10.1097/MPA.0000000000001150.
    [4]
    KRUG S, ABBASSI R, GRIESMANN H, et al. Therapeutic targeting of tumor-associated macrophages in pancreatic neuroendocrine tumors[J]. Int J Cancer, 2018, 143(7): 1806-1816. DOI: 10.1002/ijc.31562.
    [5]
    LIU M, ZHANG Y, CHEN L, et al. Myeloid-derived suppressor cells in gastroenteropancreatic neuroendocrine neoplasms[J]. Endocrine, 2021, 71(1): 242-252. DOI: 10.1007/s12020-020-02467-2.
    [6]
    CAI L, MICHELAKOS T, DESHPANDE V, et al. Role of tumor-associated macrophages in the clinical course of pancreatic neuroendocrine tumors (PanNETs)[J]. Clin Cancer Res, 2019, 25(8): 2644-2655. DOI: 10.1158/1078-0432.CCR-18-1401.
    [7]
    RYSCHICH E, AUTSCHBACH F, EISOLD S, et al. Expression of HLA class Ⅰ/Ⅱ antigens and T cell immune response in human neuroendocrine tumors of the pancreas[J]. Tissue Antigens, 2003, 62(1): 48-54. DOI: 10.1034/j.1399-0039.2003.00075.x.
    [8]
    de HOSSON LD, TAKKENKAMP TJ, KATS-UGURLU G, et al. Neuroendocrine tumours and their microenvironment[J]. Cancer Immunol Immunother, 2020, 69(8): 1449-1459. DOI: 10.1007/s00262-020-02556-1.
    [9]
    ALLEN E, JABOUILLE A, RIVERA LB, et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation[J]. Sci Transl Med, 2017, 9(385): eaak9679. DOI: 10.1126/scitranslmed.aak9679.
    [10]
    ZHANG WH, WANG WQ, HAN X, et al. Infiltrating pattern and prognostic value of tertiary lymphoid structures in resected non-functional pancreatic neuroendocrine tumors[J]. J Immunother Cancer, 2020, 8(2): e001188. DOI: 10.1136/jitc-2020-001188.
    [11]
    XU SS, LI H, LI TJ, et al. Neutrophil extracellular traps and macrophage extracellular traps predict postoperative recurrence in resectable nonfunctional pancreatic neuroendocrine tumors[J]. Front Immunol, 2021, 12: 577517. DOI: 10.3389/fimmu.2021.577517.
    [12]
    ZHANG WH, WANG WQ, GAO HL, et al. Tumor-infiltrating neutrophils predict poor survival of non-functional pancreatic neuroendocrine tumor[J]. J Clin Endocrinol Metab, 2020, 105(7): dgaa196. DOI: 10.1210/clinem/dgaa196.
    [13]
    DEBIEN V, DAVIDSON G, BALTZINGER P, et al. Involvement of Neutrophils in Metastatic Evolution of Pancreatic Neuroendocrine Tumors[J]. Cancers (Basel), 2021, 13(11): 2771. DOI: 10.3390/cancers13112771.
    [14]
    HARNEY AS, KARAGIANNIS GS, PIGNATELLI J, et al. The selective Tie2 inhibitor rebastinib blocks recruitment and function of Tie2Hi macrophages in breast cancer and pancreatic neuroendocrine tumors[J]. Mol Cancer Ther, 2017, 16(11): 2486-2501. DOI: 10.1158/1535-7163.MCT-17-0241.
    [15]
    AKKARI L, GOCHEVA V, KESTER JC, et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix[J]. Genes Dev, 2014, 28(19): 2134-2150. DOI: 10.1101/gad.249599.114.
    [16]
    BEAUCHAMP RD, COFFEY RJ Jr, LYONS RM, et al. Human carcinoid cell production of paracrine growth factors that can stimulate fibroblast and endothelial cell growth[J]. Cancer Res, 1991, 51(19): 5253-5260.
    [17]
    MARIATHASAN S, TURLEY SJ, NICKLES D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548. DOI: 10.1038/nature25501.
    [18]
    SVEJDA B, KIDD M, GIOVINAZZO F, et al. The 5-HT(2B) receptor plays a key regulatory role in both neuroendocrine tumor cell proliferation and the modulation of the fibroblast component of the neoplastic microenvironment[J]. Cancer, 2010, 116(12): 2902-2912. DOI: 10.1002/cncr.25049.
    [19]
    CUNY T, van KOETSVELD PM, MONDIELLI G, et al. Reciprocal interactions between fibroblast and pancreatic neuroendocrine tumor cells: putative impact of the tumor microenvironment[J]. Cancers (Basel), 2022, 14(14): 3481. DOI: 10.3390/cancers14143481.
    [20]
    KATZ SC, DONKOR C, GLASGOW K, et al. T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases[J]. HPB (Oxford), 2010, 12(10): 674-683. DOI: 10.1111/j.1477-2574.2010.00231.x.
    [21]
    KIM ST, HA SY, LEE S, et al. The impact of PD-L1 expression in patients with metastatic GEP-NETs[J]. J Cancer, 2016, 7(5): 484-489. DOI: 10.7150/jca.13711.
    [22]
    de REUVER PR, MEHTA S, GILL P, et al. Immunoregulatory forkhead box protein p3-positive lymphocytes are associated with overall survival in patients with pancreatic neuroendocrine tumors[J]. J Am Coll Surg, 2016, 222(3): 281-287. DOI: 10.1016/j.jamcollsurg.2015.12.008.
    [23]
    KOMI D, REDEGELD FA. Role of mast cells in shaping the tumor microenvironment[J]. Clin Rev Allergy Immunol, 2020, 58(3): 313-325. DOI: 10.1007/s12016-019-08753-w.
    [24]
    SOUCEK L, BUGGY JJ, KORTLEVER R, et al. Modeling pharmacological inhibition of mast cell degranulation as a therapy for insulinoma[J]. Neoplasia, 2011, 13(11): 1093-1100. DOI: 10.1593/neo.11980.
    [25]
    MO S, ZONG L, CHEN X, et al. High mast cell density predicts a favorable prognosis in patients with pancreatic neuroendocrine neoplasms[J]. Neuroendocrinology, 2022, 112(9): 845-855. DOI: 10.1159/000521651.
    [26]
    NABA A, CLAUSER KR, MANI DR, et al. Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression[J]. Sci Rep, 2017, 7: 40495. DOI: 10.1038/srep40495.
    [27]
    GUADAGNO E, CAMPIONE S, PIGNATIELLO S, et al. Epithelial-mesenchymal transition proteins in neuroendocrine neoplasms: differential immunohistochemical expression in different sites and correlation with clinico-pathological features[J]. Diagnostics (Basel), 2020, 10(6): 351. DOI: 10.3390/diagnostics10060351.
    [28]
    JOYCE JA, FREEMAN C, MEYER-MORSE N, et al. A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer[J]. Oncogene, 2005, 24(25): 4037-4051. DOI: 10.1038/sj.onc.1208602.
    [29]
    HUNTER KE, PALERMO C, KESTER JC, et al. Heparanase promotes lymphangiogenesis and tumor invasion in pancreatic neuroendocrine tumors[J]. Oncogene, 2014, 33(14): 1799-1808. DOI: 10.1038/onc.2013.142.
    [30]
    JIAO H, ZENG L, ZHANG J, et al. THBS2, a microRNA-744-5p target, modulates MMP9 expression through CUX1 in pancreatic neuroendocrine tumors[J]. Oncol Lett, 2020, 19(3): 1683-1692. DOI: 10.3892/ol.2020.11273.
    [31]
    SHCHORS K, NOZAWA H, XU J, et al. Increased invasiveness of MMP-9-deficient tumors in two mouse models of neuroendocrine tumorigenesis[J]. Oncogene, 2013, 32(4): 502-513. DOI: 10.1038/onc.2012.60.
    [32]
    CARRASCO P, ZUAZO-GAZTELU I, CASANOVAS O. Sprouting strategies and dead ends in anti-angiogenic targeting of NETs[J]. J Mol Endocrinol, 2017, 59(1): R77-R91. DOI: 10.1530/JME-17-0029.
    [33]
    CUNY T, de HERDER W, BARLIER A, et al. Role of the tumor microenvironment in digestive neuroendocrine tumors[J]. Endocr Relat Cancer, 2018, 25(11): R519-R544. DOI: 10.1530/ERC-18-0025.
    [34]
    KEKLIKOGLOU I, KADIOGLU E, BISSINGER S, et al. Periostin limits tumor response to VEGFA inhibition[J]. Cell Rep, 2018, 22(10): 2530-2540. DOI: 10.1016/j.celrep.2018.02.035.
    [35]
    ALLEN E, WALTERS IB, HANAHAN D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition[J]. Clin Cancer Res, 2011, 17(16): 5299-5310. DOI: 10.1158/1078-0432.CCR-10-2847.
    [36]
    SONCINI M, CORNA G, MORESCO M, et al. 24-Hydroxycholesterol participates in pancreatic neuroendocrine tumor development[J]. Proc Natl Acad Sci USA, 2016, 113(41): E6219-E6227. DOI: 10.1073/pnas.1613332113.
    [37]
    XU J, SHEN L, BAI C, et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(11): 1489-1499. DOI: 10.1016/S1470-2045(20)30493-9.
    [38]
    CAPDEVILA J, FAZIO N, LOPEZ C, et al. Lenvatinib in patients with advanced grade 1/2 pancreatic and gastrointestinal neuroendocrine tumors: results of the phase Ⅱ TALENT trial (GETNE1509)[J]. J Clin Oncol, 2021, 39(20): 2304-2312. DOI: 10.1200/JCO.20.03368.
    [39]
    KULKE MH, OU FS, NIEDZWIECKI D, et al. Everolimus with or without bevacizumab in advanced pNET: CALGB 80701 (Alliance)[J]. Endocr Relat Cancer, 2022, 29(6): 335-344. DOI: 10.1530/ERC-21-0239.
    [40]
    GRANDE E, RODRIGUEZ-ANTONA C, LÓPEZ C, et al. Sunitinib and evofosfamide (TH-302) in systemic treatment-naïve patients with grade 1/2 metastatic pancreatic neuroendocrine tumors: The GETNE-1408 trial[J]. Oncologist, 2021, 26(11): 941-949. DOI: 10.1002/onco.13885.
    [41]
    AL-TOUBAH T, SCHELL MJ, CIVES M, et al. A phase Ⅱ study of ibrutinib in advanced neuroendocrine neoplasms[J]. Neuroendocrinology, 2020, 110(5): 377-383. DOI: 10.1159/000502383.
    [42]
    MEHNERT JM, BERGSLAND E, O'NEIL BH, et al. Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: Results from the KEYNOTE-028 study[J]. Cancer, 2020, 126(13): 3021-3030. DOI: 10.1002/cncr.32883.
    [43]
    YAO JC, STROSBERG J, FAZIO N, et al. Spartalizumab in metastatic, well/poorly-differentiated neuroendocrine neoplasms[J]. Endocr Relat Cancer, 2021. DOI: 10.1530/ERC-20-0382.[Online ahead of print]
    [44]
    KLEIN O, KEE D, MARKMAN B, et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers[J]. Clin Cancer Res, 2020, 26(17): 4454-4459. DOI: 10.1158/1078-0432.CCR-20-0621.
    [45]
    INOUE M, KIM M, INOUE T, et al. Oncolytic vaccinia virus injected intravenously sensitizes pancreatic neuroendocrine tumors and metastases to immune checkpoint blockade[J]. Mol Ther Oncolytics, 2022, 24: 299-318. DOI: 10.1016/j.omto.2021.12.016.
    [46]
    KAEMMERER D, PETER L, LUPP A, et al. Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours[J]. Eur J Nucl Med Mol Imaging, 2011, 38(9): 1659-1668. DOI: 10.1007/s00259-011-1846-5.
    [47]
    MANDRIANI B, PELLÈ E, MANNAVOLA F, et al. Development of anti-somatostatin receptors CAR T cells for treatment of neuroendocrine tumors[J]. J Immunother Cancer, 2022, 10(6): e004854. DOI: 10.1136/jitc-2022-004854.
    [48]
    FENG Z, HE X, ZHANG X, et al. Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues[J]. Nat Cancer, 2022, 3(5): 581-594. DOI: 10.1038/s43018-022-00344-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (244) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return